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Introduction: Intertidal habitat preferences and spatiotemporal variation in the

abundance of juvenile Chinese mitten crab Eriocheir sinensis in Yangtze Estuary

are reported.

Methods: The size and abundance of this crab are reported for mud flat, gravel,

root belt, and marsh habitats in this estuary’s lower, middle, and upper reaches

from June 2021 (spring) to February 2022 (winter) using quadrat method.

Results: Juvenile E. sinensis of carapace length (CL) 5.5 ± 2.1 mm (mean ±

standard deviation) were collected; no juveniles were found in February 2022.

Crab abundance in root belt and gravel habitats usually exceeded that of marsh

habitat; no juveniles were found inmud flat habitat. The greatest abundances and

smallest individuals were found when megalopa recruited in early spring (June);

juvenile abundance decreased sharply afterwards, and crabs were absent from

the intertidal during winter. Size and relative growth rate of juvenile crabs were

greater in root belt and gravel habitat than in marsh habitat from June to August.

Recruitment primarily drove changes in crab abundance and size during June

and July, and temperature best correlated with changes in the winter. Many stage

I juveniles (CL < 3.1 mm) occurred in the lower estuarine reaches, while stage III

and IV juveniles (CL 3.9–6.5 mm) primarily occurred in the middle and upper

estuarine reaches.

Discussion: Although intertidal wetland habitat in Yangtze Estuary is severely

degraded and reduced in area, it remains important for recruitment and

maintenance of mitten crab populations. An understanding of the habitat

requirements of this species will benefit management of this crab resource and

the prioritized restoration of intertidal habitat.
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1 Introduction

Estuaries represent transitional zones between rivers and

oceans, and provide nursery habitat for myriad fish and benthic

invertebrates (Lipcius et al., 2005; Johnson and Eggleston, 2010).

Survival and growth can be promoted by the quality of shelter and

foraging habitats that these environments provide (Beck et al., 2001;

Vermeiren and Sheaves, 2015). The value of estuarine habitat to

juveniles varies with factors such as ontogenetic stage, predation

risk, prey availability, three-dimensionality of seabed structure, or

condition of the habitat itself (Pfirrmann et al., 2023).

Many field and laboratory studies have demonstrated that

juvenile crabs tend to associate with structurally complex habitats

(Amaral et al., 2009), with seagrass beds, salt marshes, oyster reefs,

and gravels having higher juvenile densities than less-structured

habitats, and growth–survival ratios in vegetated habitats being

higher than in non-vegetated ones (Beck et al., 2001; Polte et al.,

2005; Fonseca et al., 2006; Lefcheck et al., 2019). However, highly

structured habitats may not always be higher in quality (Taylor and

Fehon, 2021), with growth and resource availability for the blue

crab Callinectes sapidus (Seitz et al., 2005) and Dungeness crab

Cancer magister (Holsman et al., 2006) greater in unstructured

intertidal habitats such as mud flats and sand than in adjacent, more

structured habitats.

The Chinese mitten crab Eriocheir sinensis, a native freshwater

species that is widely distributed throughout China, is traditionally

regarded as a culinary delicacy and a high‐valued aquatic product

(Wang et al., 2016). Yield increased from 8.4 × 103 t in 1991 to 8.1 ×

105 t in 2021, and its value has increased from an estimated 6.0 ×

107 United States Dollars (USD) in 1991 to 1.0 × 1010 USD in 2021;

wild capture of E. sinensis in China was 2.5 × 104 t in 2021 (FAO,

2024). While many studies have examined the ecology and resource

dynamics of adults of this species, few have examined those of

its juveniles.

Within the Yangtze River system, E. sinensis breeds exclusively

within the estuary, wherein mating, spawning, hatching, and early

development occur (Du, 2004; Chen and Du, 2017). During winter,

females spawn where salt and freshwater mix, where hatched larvae

ultimately settle (Chen and Du, 2017). Megalopa and juveniles are

transported by the tides into the upper estuarine reaches (Du, 2004),

where mortality and growth vary significantly with habitat type and

environmental condition (Liu, 2015, 2017). Therefore, Yangtze

River estuarine habitat may play an important role in the

migration, early development, and supplementation of the wild-

capture E. sinensis fisheries resource.

Few studies have investigated juvenile E. sinensis habitat use in

Yangtze Estuary (Zhao et al., 2020). We report (1) crab abundance

in different habitats, (2) spatiotemporal variation in juvenile

abundance and size, and (3) correlations between abundance of

juveniles and environmental parameters. An improved

understanding of each of these is important for more sustainable

management of this species and its habitat.
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2 Materials and methods

2.1 Sampling area

The Yangtze Estuary has irregular semi-diurnal tides, with mean

tidal range of 2.67 m and a maximum of 4.62 m. With a mouth

approximately 90 km wide (Yan et al., 2013), the Yangtze River

discharges approximately 470 × 106 t of sediment annually, which

over time has formed Chongming Island and two tributaries, the

northern and southern branch. The southern branch discharges > 99%

of the freshwater to the East China Sea, whereas the northern branch

runs almost perpendicular to the main channel and discharges only a

small proportion of the total flow (Zhang et al., 2012). The complicated

topography and influence of tides and saltwater intrusion result in

variable current and salinity conditions (Qiu et al., 2012). Sampling was

conducted in the southern branch off Chongming Island (Figure 1).

Local estuarine habitat includes marshes dominated by the reed

Phragmites australis, sedge Scirpus triqueter, cordgrass Spartina

alterniflora, gravels, and mud flats. Reeds are most common at high

water, and sedges seaward of them.Mud flats mostly occur in the mid-

and lower intertidal, within which patches of coarse gravel (mostly

comprising material of diameter 3–10 cm) sporadically occur.

Juvenile E. sinensis density was measured in the upper, middle,

and lower reaches of the estuary (Figure 1) twice monthly from June

2021 to February 2022. Density was estimated in three 0.5 m × 0.5

m quadrats in marsh (reed and sedge), root belt (the boundary

between marsh and mud flat habitats, including some roots of

marsh vegetation exposed because of tidal erosion), gravel, and mud

flat habitats. Juvenile crabs were collected from the surface and the

crab burrows within quadrats. We excavated crab burrows,

collecting sediment from around them and sieving it through a

0.5 mm mesh. Carapace length (CL, Figure 2) of juvenile crabs was

measured by vernier calipers in the laboratory. Sampling was

performed during the diurnal ebb of the semi-diurnal tide.

Salinity (‰), temperature (°C), and dissolved oxygen (mg/L) of

nearshore water were measured using an in situ multi-parameter

water quality analyzer (Pro Plus, YSI, OH, USA).
2.2 Data analysis

Crabs were categorized by CL (Figure 2) into five instar stages

(J1–J5) following Liu (2015) (Table 1). Juvenile crab (stage J1–J5)

densities were measured for each habitat and reach. A

preponderance of zero values during some sampling events meant

those analyses requiring normally distributed data had to be

abandoned in favor of non-parametric approaches (Anderson and

Millar, 2004). By way of univariate PERMANOVA (p< 0.05, with

4999 permutations of raw data units) we tested our null hypothesis,

that no significant differences in crab stage abundances or in total

densities existed between habitat (fixed, 3 levels), month (fixed, 8

levels), and reach (random, 3 levels nested in habitat). Analyses
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were performed using a Euclidian distance matrix. Because some

factors generated few possible permutations, a Monte-Carlo-based

p-value was used (Anderson, 2001; McArdle and Anderson, 2001;

Anderson and Robinson, 2003). This test is also recommended

when data are too sparse or unbalanced for typical asymptotic

methods (Senchaudhuri et al., 1995). Significant results were

assessed post-hoc using PERMANOVA pairwise comparisons (T-

test), which also used 4999 random permutations to obtain

p-values.

A Chi-squared test was used to determine if the frequency of

juvenile stages varied between months and between areas. The

relative growth rate (RGR) was calculated using the following

formula:

RGR   % =  
CL2 − CL1

CL1
� 100%
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In the formula, CL1 represents the mean CL of juvenile crabs in

the first month and CL2 represents the mean CL of juvenile crabs in

subsequent months.

An unrepeated two-factor ANOVA was used to study variation

in environmental factors among the three reaches. Pearson

correlations were performed to evaluate the relationship between

juvenile stage abundance and environmental variables.
3 Results

Juvenile E. sinensis were found between June 2021 and January

2022; no juvenile crabs were found in February 2022. During

sampling, 4567 juveniles (mean CL ± standard deviation (SD), 5.5

± 2.1 mm) of CL 2.3–15.5 mm were collected. These crabs were

attributed to stages J1 (1406 ind, 31%), J2 (556, 12%), J3 (1096,

24%), J4 (1019, 22%), and J5 (490, 11%). Juveniles were collected

from marsh, and root belt and gravel habitats, but not from mud

flats. No megalopa was collected intertidally.
3.1 Habitat-specificity and
temporal abundance

Juvenile density differed significantly between habitats and

over time (Table 2). Total densities in root belt (mean ± SD,
FIGURE 2

Schematic diagram of carapace length (CL).
TABLE 1 Carapace length (CL) ranges used to categorize juvenile
Eriocheir sinensis into stages; CL and carapace width (CW) ratios
calculated from fitted curves (Liu, 2015).

Stage J1 J2 J3 J4 J5

CL (mm) < 3.1 3.1–3.8 3.9–4.9 5–6.5 > 6.6

CL/CW 1.05 0.98 0.94 0.91 0.90
fro
FIGURE 1

Study area, southern branch of Yangtze Estuary, China. Sampling of juvenile Eriocheir sinensis occurred in the upper, middle, and lower reaches of
the estuary.
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107.95 ± 95.31 ind/m2) and gravel (79.14 ± 80.72 ind/m2)

habitats were significantly higher than those in marshes (16.03

± 17.60 ind/m2); no significant difference was apparent between

total crab densities in root belt and gravel habitats (t = 3.1881, p

= 0.0808).

Significant differences in abundances of stage J1–J5 crabs with

time and habitat were apparent (Figure 3; Table 2). For several

months, more J1–J5 stage crabs occurred in root belt and gravel

habitats than in marsh habitats.
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3.2 Spatiotemporal variation in
juvenile abundance

The distribution of juveniles was associated with sampling reach

(p< 0.05). Proportionally more J1 stage crabs (33%) were collected

in lower estuarine reaches than elsewhere. Proportions of J3 (31% in

middle reaches, 34% in upper reaches) and J4 (37% and 34% in

middle and upper reaches, respectively) stage crabs were higher

than in lower reaches (Figure 4).
TABLE 2 Univariate PERMANOVA results for Eriocheir sinensis stages, and for total density in each habitat.

Source Component df J1 J2 J3 J4 J5
Total
density

F
P

(MC)
F

P
(MC)

F
P

(MC)
F

P
(MC)

F
P

(MC)
F

P
(MC)

Habitat Fixed 2 30.81 0.0044 12.03 0.0204 71.31 0.0008 151 0.0008 189.53 0.0002 150.46 0.0006

Month Fixed 7 230.04 0.0002 42.59 0.0002 15.66 0.0002 40.36 0.0002 10.55 0.0002 22.84 0.0002

Reach (Habitat) Random 4 1.8 0.1314 2.63 0.0432 2.11 0.0798 1.72 0.1574 0.78 0.5412 2.82 0.0266

Habitat × Month Fixed 14 7.57 0.0002 3.73 0.0002 2.16 0.0434 4.77 0.0014 2.44 0.0278 2.08 0.0568

Reach (Habitat)
× Month

Random 24 1.48 0.07 1.93 0.009 3.51 0.0002 4.65 0.0002 2.81 0.0002 7.77 0.0002
fronti
Bold numbers indicate significant values (p< 0.05).
B

C D

E F

A

FIGURE 3

Spatial and temporal variation in Eriocheir sinensis densities. Stages: (A) J1, (B) J2, (C) J3, (D) J4, (E) J5, and (F) total juveniles. Lowercase letters
denote significant differences. Because no “habitat” and “month” interaction was apparent for total juvenile density, bars in (F) are unlabeled.
ersin.org
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Juvenile distributions were also associated with sampling month

(p< 0.05). In June, stage J1 and J2 individuals dominated size-class

frequencies (97%), while after June, the greatest proportion of

juveniles were stage J3–J5 crabs (Figure 5).

There were also differences in the size and RGR of juvenile E.

sinensis in different habitats. From June to August, size and RGR of

juvenile crabs were greater in root belt and gravel habitats than in

marsh habitat (Table 3). After August, growth rates declined.

3.3 Relationship between abundance and
environmental variables

Significantly higher juvenile densities occurred in June 2021,

when a recruitment peak occurred (Figure 3). There were no

significant differences in salinity, dissolved oxygen, or water

temperature among the upper, middle, and lower estuarine

reaches (p > 0.05). Salinity ranged 0.09–1.09, dissolved oxygen

ranged 6.78–11.62 mg/L, and water temperature ranged 9.4–27.8°C

(Figure 6). Pearson analysis revealed total juvenile abundance to

significantly, positively correlate with water temperature (Table 4)

but not with dissolved oxygen concentrations or salinity. There was

no significant correlation between the abundance of any stage J1–J5

crab and water temperature, dissolved oxygen, or salinity (Table 4).

4 Discussion

We report the distribution of juvenile E. sinensis in intertidal

habitat along the southern branch of the Yangtze Estuary from June
Frontiers in Marine Science 05
2021 to January 2022. Because the greatest juvenile crab densities

occur in root belt and gravel habitats, followed by marshes, and no

juveniles were found on mud flats, juvenile E. sinensis appears to

prefer more complex habitat. This conclusion is consistent with

accounts of E. sinensis mainly occurring in pebble habitat in the

intertidal of the Thames Estuary (Gilbey et al., 2007), and in

addition to pebbles, in Scirpus sp. and Typha latifolia habitats in

the intertidal San Francisco Bay (Rudnick et al., 2003). Subtidally,

juveniles mainly frequent densely vegetated shallow waters, with the

largest populations found in the waterweed Egeria densa (Rudnick

et al., 2003). Crustaceans typically prefer structurally complex

habitats. For example, juvenile Callinectes sapidus are significantly

more abundant in vegetated habitats than in unstructured mud flat

and sand habitats (Hovel and Lipcius, 2001), larval Cancer magister

densities are significantly higher in mussel than mud flat habitats

(Fernandez et al., 1993), and larval numbers of green crab Carcinus

maenas are significantly higher in filamentous algal, diatom, and

mussel bed habitats than they are in open sandy areas

(Moksnes, 2002).

The quality of refugia regulates populations of crab species

(Shervette et al., 2004). Juvenile E. sinensis are abundant in root belt

habitats, which may be related to habitat-specific food resource

availability (Taylor and Fehon, 2021). Vegetation, rich in organic

matter and detritus, supports high densities of benthic in- and

epifauna, including important prey for juvenile E. sinensis. Root belt

habitat might also offer size-suitable refugia for juveniles. Because

juvenile decapod crustaceans benefit from shelter (Stevens and

Swiney, 2005), and the structure of root belt and gravel habitats is
FIGURE 4

Spatial distribution of juvenile Eriocheir sinensis in the upper, middle, and lower reaches of the southern branch of the Yangtze Estuary.
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more complex than that of marshes, they might provide more

refugia for juvenile crabs (Shervette et al., 2011). A lack of suitably

sized shelter might also explain why no large E. sinensis were

collected intertidally (Bromilow and Lipcius, 2017).

Many indoor experiments have reported habitats such as

aquatic plants and simulated shelters to significantly increase

the developmental rate of juvenile E. sinensis (Liu, 2015). We

report juvenile E. sinensis to have higher CL and RGR in root belt

and gravel habitat than in marsh habitat from June to August. This

complex habitat structure helps juveniles to avoid predators, and
Frontiers in Marine Science 06
to store energy for development. Additionally, because crabs when

molting are relatively weak and vulnerable to attack, this complex

habitat provides suitable shelter to avoid attacks, thereby

increasing molting success. Therefore, although the intertidal

wetland in the Yangtze Estuary has been reduced by 36% over

the past three decades (Chen et al., 2016) because of frequent

large-scale intertidal reclamation, invasion by Spartina, and

artificial wetland alteration (Zou et al., 2016), what remains is

still important for recruitment and maintenance of E.

sinensis populations.
TABLE 3 Changes in carapace length (CL) and relative growth rate (RGR) of juvenile Eriocheir sinensis in different habitats.

Year Month
Root belt Gravel Marsh

Mean CL (mm) RGR (%) Mean CL (mm) RGR (%) Mean CL (mm) RGR (%)

2021

Jun. 3.13 ± 0.64 – 3.22 ± 0.74 – 3.23 ± 0.47 –

Jul. 4.78 ± 1.41 52.7 7.13 ± 2.68 121.40 4.48 ± 0.68 38.7

Aug. 6.24 ± 2 99.4 6.32 ± 2.63 96.3 5.89 ± 1.11 82.4

Sep. 6.36 ± 2.05 103.2 5.98 ± 2.69 85.7 5.91 ± 1.15 83.0

Oct. 6.41 ± 2.25 104.8 6.26 ± 2.64 94.4 5.46 ± 0.83 69.0

Nov. 6.56 ± 2.49 109.6 6.98 ± 2.34 116.8 4.38 ± 0.4 35.6

Dec. 5.91 ± 1.89 88.8 6.75 ± 2.99 109.6 – –

2022
Jan. 5.94 ± 2.29 89.8% – – – –

Feb. – – – – – –
f

“-” indicates that the sample size was small and was not calculated.
FIGURE 5

Distribution of juvenile Eriocheir sinensis stages over time along the southern branch of the Yangtze Estuary.
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Juvenile E. sinensis density varies over time. The greatest

abundances occur in June, when stage J1 and J2 crabs are prevalent.

Early juvenile abundance is closely related to spatiotemporal variation

in megalopa settlement (Etherington and Eggleston, 2000). Eriocheir

sinensis recruitment in Yangtze Estuary occurs in early June, over the

space of one week (Li et al., 1997), and crab densities decrease rapidly

after June. During recruitment from 2003 to 2013, megalopa catch

varied from 3 to 32 t (Wang, 2019). Following recruitment, juveniles

migrate into the upper reaches of the Yangtze Estuary. Additionally, the

decrease in density of juvenile crabs may correlate with juvenile

survivorship, with marine invertebrate mortality often being higher

during earlier life stages (Wang and Haywood, 1999). Survival of

juvenile crabs often increases with size (Johnson et al., 2008; Hultgren

and Stachowicz, 2010). In aquaculture, the survival rate of early juvenile

E. sinensis is low (Yang et al., 2018). Liu (2017) reported crabs to have a

survival rate of 48% frommegalopa to stage J5, and 79% from J5 to J10.

Early juvenile crab mortality in the field usually occurs because of

predation (Wilson et al., 1990; Thiel and Dernedde, 1994). Large-sized

conspecific crabs, intertidal fishes, and migratory birds may also all be

predators of juvenile crabs (Hedvall et al., 1998; Lipcius et al., 2005;

Choi et al., 2017), with indoor experiments having reported

cannibalism to occur in juvenile E. sinensis during periods of food

shortage (Zeng et al., 2018). Migratory shorebirds stopping over at the

Chongming Wetland also prey extensively on benthic

macroinvertebrates (Zhu et al., 2007; Li et al., 2023). Although we

might have expected the juvenile population to decline over time

because of this migration, densities (mainly comprising stage J3–J5

juveniles) remained relatively stable from July to November of 2021.

This may be because of continued juvenile recruitment, because a small
Frontiers in Marine Science 07
number of J1 crabs were collected over the sampling period, or as a

function of abnormal growth. In E. sinensis culture, frequent water level

changes, high population densities, low dissolved oxygen levels, low

vegetation cover, food shortage, and irregular feeding can contribute to

abnormal growth (Sun and Wu, 1996), producing small-sized “lazy

crabs” that remain in their burrows and neither feed nor move. Lazy

crabs are extremely small, usually the size of an early juvenile crab (Sun

and Wu, 1996). The semi-diurnal tides in Yangtze Estuary cause

frequent changes in tidal height, which may result in lazy crabs.

Reductions in intertidal wetland habitat may also lead to high

densities of juvenile crabs in the Yangtze Estuary and food shortage,

resulting in more lazy crabs.

Juvenile crabs in the upper estuarine reaches are generally larger

than those in the lower reaches, consistent with the early migratory

life history of the E. sinensis. The spatial and temporal distributions

of decapod juveniles are closely related to biotic and abiotic factors

(González-Ortegón et al., 2023). We report water temperature to

positively, significantly correlate with juvenile E. sinensis density.

After December 2021, numbers of juvenile E. sinensis decreased

rapidly. It is possible that juvenile E. sinensis migrate to deeper

riverbeds, where water temperatures are higher, and that

temperature affects their spatial clustering. Consistent with our

results, juvenile E. sinensis densities in intertidal zones during

winter were also significantly lower than during summer (Gilbey

et al., 2007). Low water temperature may hinder crustacean feeding

and growth (Frederich et al., 2000) and contribute to juvenile E.

sinensis migration during this period.

Understanding juvenile E. sinensis habitat requirements is

important for their conservation and management. Understanding
TABLE 4 Pearson correlation test results between Eriocheir sinensis abundance and salinity, water temperature, and dissolved oxygen along the
southern branch of the Yangtze Estuary.

Factor
J1 J2 J3 J4 J5

Total
abundance

r p r p r p r p r p r p

Salinity 0.26 0.618 0.289 0.578 −0.612 0.197 −0.33 0.524 −0.359 0.484 −0.091 0.864

Water
temperature

0.507 0.305 0.399 0.433 0.382 0.455 0.013 0.981 0.28 0.591 0.872 0.024

Dissolved
oxygen

−0.069 0.896 −0.187 0.723 −0.605 0.203 −0.311 0.548 −0.494 0.32 −0.649 0.163
fron
Bold numbers indicate significant values (p< 0.05).
FIGURE 6

Mean dissolved oxygen, water temperature, and salinity values over time along the southern branch of the Yangtze Estuary.
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the role of estuaries in recruitment requires knowledge of appropriate

physicochemical conditions, prey abundance, habitat availability, and

interactions with other organisms. Our results from the southern

branch of the Yangtze River along Chongming Island indicate that

vegetated and gravel habitats should be prioritized for conservation as

essential nursery grounds for this species.
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