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Bryde’s whales produce
Biotwang calls, which occur
seasonally in long-term acoustic
recordings from the central and
western North Pacific
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Angela R. Szesciorka5, Jennifer L. K. McCullough1

and Erin M. Oleson1

1NOAA Pacific Islands Fisheries Science Center, Honolulu, HI, United States, 2Google, Inc., Mountain
view, CA, United States, 3Google, Inc., Boulder, CO, United States, 4Saltwater Inc, Under Contract to
NOAA Pacific Islands Fisheries Science Center, Honolulu, HI, United States, 5Marine Mammal Institute,
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In 2014, a novel call was discovered in autonomous acoustic recordings from the

Mariana Archipelago and designated a “Biotwang”. It was assumed to be

produced by a baleen whale, but without visual verification it was impossible to

assign a species. Using a combination of visual and acoustic survey data collected

in the Mariana Archipelago, we determined that Biotwangs are produced by

Bryde’s whales. Bryde’s whales occur worldwide in tropical and warm temperate

waters, but their population structure and movements are not well understood.

Genetic andmorphological data recognize two populations in the western North

Pacific (WNP), separate from those elsewhere in the Pacific. We used a

combination of manual and machine learning annotation methods to detect

Biotwangs in our extensive historical passive acoustic monitoring datasets

collected across the central and western North Pacific. We identified a

consistent seasonal presence of Biotwangs in the Mariana Archipelago and to

the east at Wake Island, with occasional occurrence as far away as the

Northwestern Hawaiian Islands and near the equator (Howland Island). The

seasonal occurrence of Biotwangs is consistent with Bryde’s whales migrating

between low and mid-latitudes, with a small peak in calling between February

and April and a larger peak between August and November as the whales travel

past the recording sites. Our results provide evidence for a pelagic WNP

population of Bryde’s whales with broad distribution, but with seasonal and

inter-annual variation in occurrence that imply a complex range most likely

linked to changing oceanographic conditions in this region.
KEYWORDS

Bryde’s whale, passive acoustic monitoring, deep machine learning, seasonal
occurrence, western North Pacific, Mariana archipelago, long-term monitoring
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1 Introduction

Bryde’s whales (Balaenoptera edeni) were originally described

from the northern Bay of Bengal. Later, Balaenoptera brydei was

described from whales landed at a South African whaling station

(Olsen, 1913). Both were originally confused with Sei whales

(B. borealis), and more recently with Omura’s whales (B. omurai)

and Rice’s whales (B. ricei), which all have morphological

similarities. There has been further disagreement as to whether

they are comprised of a single species or two subspecies. The Society

of Marine Mammalogy considers them subspecies: a smaller form

(B. edeni edeni) found coastally in the Indian and western Pacific

Ocean, and (B. edeni brydei) a larger form found worldwide in

pelagic waters (Yoshida and Kato, 1999; Wada et al., 2003; Kershaw

et al., 2013). Some of this confusion is driven by the globally

distributed, but dispersed nature of their populations, with

Bryde’s whales found in warm (>20°C) tropical and warm-

temperate waters between approximately 40°S and 40°N (Omura

and Nemoto, 1955; Omura, 1959).

Bryde’s whales are found throughout the North Pacific (NP).

They are present in the Gulf of California (Viloria-Gómora et al.,

2015) and range along the coast of California up to 36°N (Heimlich

et al., 2005; Kerosky et al., 2012; Smultea, 2012). In the central

North Pacific (CNP), visual surveys of the Hawaiian Islands have

shown occurrences of Bryde’s whales in the Northwestern Hawaiian

Islands (DeLong and Brownell, 1977; Barlow, 2006; Yano et al.,

2018), with rare sightings and acoustic detections further south in

the Main Hawaiian Islands (Smultea et al., 2010; Helble et al., 2016).

In the western North Pacific (WNP) Omura and Fujino (1954)

initially identified the presence of Bryde’s whales around the

Ogasawara Islands, with subsequent sighting data from line

transect surveys conducted under the Japan Whale Research

Program (JARPN II) demonstrating Bryde’s whale presence in

tropical and subtropical waters from Japan extending as far east

as 150°W, encompassing the waters around the Northwest

Hawaiian Islands (Kitakado et al., 2008). Visual surveys further

documented Bryde’s whale presence around the Mariana

Archipelago and the West Mariana Ridge (Hill et al., 2020).

However the cryptic nature, and complex movements of Bryde’s

whales make it difficult to distinguish between populations.

In the eastern North Pacific (ENP) population structure is based

on gaps in distribution from sighting surveys or distinct call

characteristics. Unique calls from the Gulf of California suggest a

resident population discrete from whales in the broader ENP

(Viloria-Gómora et al., 2021). Separate call types North and

South of the equator in the eastern tropical Pacific (ETP; Oleson

et al., 2003) aligned with a latitudinal gap in sighting surveys of

Bryde’s whales (Wade and Genodette, 1993), suggesting distinct

populations. Sighting surveys show no Bryde’s whales between 140°

W and 150°W, indicating a separation between ENP populations

from CNP andWNP populations (Kishiro, 1996). However, there is

still little clarity around the division, range, and extent of Bryde’s

whale populations in the NP.

Genetic data can provide important insights into population

structure and within the NP, WNP Bryde’s whales are among the

best studied, with genetic and sighting data collected by
Frontiers in Marine Science 02
International Whaling Commission- Pacific Ocean Whale and

Ecosystem Research Programme (IWC-POWER) cruises and

JARPN II. Two populations of Bryde’s whales are recognized

based on morphology and genetics: (1) in the East China Sea

including the coastal waters around southwestern Japan (Yoshida

and Kato, 1999; Wada et al., 2003) and (2) in the pelagic WNP with

density prediction models based on the Japanese sighting data

indicating the population is likely concentrated between 145°E

and 165°E (Wada et al., 2003; Konishi et al., 2009). Recent studies

established differences in genetic markers for Bryde’s whales

sampled west vs east of the 180° longitude line (Pastene et al.,

2016; Taguchi et al., 2023), possibly separating WNP and CNP

populations, but there is still uncertainty about the division of WNP

Bryde’s whales.

Bryde’s whales differ from other baleen whales in that they do

not undertake long-range seasonal migrations to high-latitudes,

instead traveling widely within ocean basins, moving between low

and mid-latitudes. They are generally thought to be income

breeders, feeding regularly and following prey distributions,

which are in turn influenced by oceanographic and biological

factors which vary over time. Within the WNP, pelagic whales

feed along the subarctic-subtropical transition area associated with

the Kuroshio Current, which forms the northern edge of their range

(Sasaki et al., 2013). Kishiro (1996) examined mark-recapture data

and found that in the WNP Bryde’s whales stayed in low latitudes

(0°–10°N) from January to March and then migrated to mid-

latitudes (20-40°N) in April to September, although some

individuals stayed in the mid-latitudes from February through

August. Historical commercial catch and sighting data showed

Bryde’s whales were also distributed all the way to the equator in

the WNP during August and September (International Whaling

Commission, 2007), indicating a potentially complex migration

pattern. However, sighting and genetic data are limited in

temporal resolution, which is needed to clarify annual

migration patterns.

A powerful tool for long-term data collection is passive acoustic

monitoring (PAM) which can add this temporal resolution to

estimates of the distribution and movements of cryptic marine

mammal species. Bryde’s whale call types are well documented in

the ENP (Cummings et al., 1986; Oleson et al., 2003; Heimlich et al.,

2005; Viloria-Gómora et al., 2015). Their vocalizations are generally

low frequency, typically below 100 Hz, often with higher frequency

harmonics up to 400 Hz and above. While many of the calls share

similar features, the specific call types have been shown to be

regionally specific (Oleson et al., 2003; Heimlich et al., 2005;

Viloria-Gómora et al., 2015), and in the ENP they have been used

to differentiate between different stocks (Viloria-Gómora et al.,

2021) and document changes in their distribution over time

(Kerosky et al., 2012). However, there is almost nothing known

about the vocalizations Bryde’s whales make in the Western and

Central North Pacific, with only three known recordings: one taken

from off the coast of Japan containing a call named Be8 that has

fundamental frequencies around 45Hz and multiple harmonics

(Oleson et al., 2003); another from Japan, that also detected Be8

as well as a mother-calf call similar to mother-calf recordings from

Bryde’s whales in the Atlantic (Edds et al., 1993; Oleson et al., 2003;
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Chiu, 2009); and a third from a moored array off the coast of the

Hawaiian Island of Kauai (Helble et al., 2016), documenting calls

similar to the Be3 call type from the ENP (Oleson et al., 2003). No

other Bryde’s whale call types have been identified in the Central

and WNP.

In 2014 and 2015, an acoustic glider survey was conducted over

the Mariana Trench off the coast of Guam (Nieukirk et al., 2016).

During the survey they detected a novel sound, a complex call

lasting 3.5 sec with 5 different parts, starting at 30 Hz and ending

with a metallic sound that reaches up to 8000 Hz, which they

dubbed a ‘Biotwang’. Nieukirk et al. (2016) attributed Biotwangs to

baleen whales, but without visual observations they could not

conclude which species was generating the sound. Here we

demonstrate that this complex vocalization is a previously

undocumented sound produced by Bryde’s whales. We then use

manual and machine learning annotations to identify Biotwangs in

both bottom-mounted and drifting acoustic recorders at locations

in the Western to the Central North Pacific. Using this data we can

identify possible population demarcation throughout the Western

and Central North Pacific, deduce information on the seasonal

presence of Bryde’s whales at the recording locations suggesting

migration patterns, and document differences in Bryde’s whale

presence at recording locations which indicate complex migration

patterns with inter-annual variations in movement.
2 Materials and methods

2.1 Identification of Biotwang as belonging
to Bryde’s whales

Paired visual and acoustic observations of Bryde’s whales

occurred during two ship-based surveys in the Mariana

Archipelago, one from July 9 - August 1, 2018 surveying between

Guam and Pagan and west to the West Mariana Ridge, and the

other from May 3 - July 14, 2021 surveying the entire Exclusive

Economic Zones (EEZ) of Guam and the Commonwealth of the

Northern Marianas (CNMI) (Hill et al., 2020; Yano et al., 2022). A

team of visual observers collected sighting data for cetaceans using

line-transect methods. Cetacean groups within 3 nmi of the transect

line were approached for group size estimation, attempted photo

identification, and biopsy sampling. For most baleen whale

sightings that were approached within 1 nmi, Directional Fixing

and Ranging (DIFAR) type 53F and 53G sonobuoys were deployed

to obtain recordings of any low frequency vocalizations of the

animals. The low frequency (0-3,000 Hz) audio from the sonobuoy

was monitored in real time according to the methods in Rankin

et al. (2019), and cetacean vocalizations were annotated.
2.2 Geographic and temporal distribution
of Biotwangs

Drifting Acoustic Spar Buoy Recorders (DASBRs) were

deployed during both ship-based survey efforts (McCullough

et al., 2021, Yano et al., 2022). DASBRs collect acoustic
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recordings on two hydrophones, suspended vertically at a depth

of ~135 m and 150 m. The data were recorded using a SoundTrap

(ST4300HF, Ocean Instruments, Auckland, NZ) at a sampling rate

of either 576 kHz or 384 kHz on a duty cycle of 2 mins of recording

out of every 5 or 10 mins. The buoys were allowed to drift until

pickup, with GPS location recorded every 2 hours using an iridium

transmitter. In 2018, eight DASBRs were deployed, with recordings

from July 9 to July 27. In 2018, all DASBRs were deployed between

the island archipelago and the West Mariana Ridge, between 12°N

and 18°N. Deployments lasted between 4.5 days and 11.5 days for a

total of 1,807 hours of recordings, and all DASBRs drifted in a

generally westerly direction. In 2021, twenty-two DASBRs were

deployed from May 3 to July 11, with recording durations between

33 hours and 24.5 days for a total of 4,405 hours of recordings. They

were deployed between 11.7°N and 22.5°N to both the East and the

West of the Mariana Islands, with drifts in non-uniform directions.

All files from the DASBR data were decimated to 9.6 kHz

sampling rate and were manually scanned in the program Raven

Pro 1.6.2 (K. Lisa Yang Center for Conservation Bioacoustics,

2022). Spectrograms of 120 s in length and up to 4.3 kHz were

scanned manually and each occurrence of a Biotwang call was

annotated with the start and end time. The start time of the call was

then matched to the nearest GPS location of the DASBR to provide

an approximate location.

Long term acoustic recordings were collected at 13 sites in the

North Pacific (Figure 1) using bottom-mounted High Frequency

Acoustic Recording Packages (HARPs; Wiggins and Hildebrand,

2007) and form the Pacific Islands Passive Acoustic Network

(PIPAN). HARPs are equipped with an omni-directional

hydrophone, with a flat (± 2 dB) hydrophone sensitivity from

10 Hz to 100 kHz of −200 dB re V/mPa. Recording efforts began

in 2005 with long-term monitoring (>6 years) at 5 of the 13 sites.

Monitoring duration at an individual site varied from just over a

month to 13 years, with recording schedules ranging from

continuous to 5 min of recording out of every 40 min. HARPs

were deployed at depths between 111 and 1,266 m with an average

deployment depth of 730 m. The data were low-pass filtered and

decimated to 10 kHz, resulting in an effective bandwidth of 10 Hz to

5 kHz, to facilitate efficient detection of Biotwangs.

Given the duration of the HARP dataset, complete manual

annotation was not feasible. Three WNP HARP deployments were

manually scanned and annotated for Biotwang occurrence: Saipan

(May 13, 2015 to May 2, 2016; May 30, 2016 to May 17, 2017) and

Tinian (May 30 to November 5, 2016). For all three deployments

the data were duty-cycled, with 5 mins of recording out of every 7.

The data were scanned in a custom software package TRITON

(Wiggins et al., 2010) and the start and end time of every observed

Biotwang marked (example Biotwang: Supplementary Figure 1).

The initial manual annotations of the HARP data were used to train

a convolutional neural network (CNN) Machine Learning (ML)

model to identify Biotwangs in the full HARP dataset.

The Biotwang ML model was developed as part of a larger effort

to create a multi-species model to recognize a range of cetacean

vocalizations in a variety of different types of hydrophone

recordings, with several organizations which collect whale

acoustic monitoring data contributing to the model. The training
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dataset for Biotwangs consisted of all the Biotwangs from the three

fully annotated HARP deployments as ‘positives.’ As negatives, it

included a random sample of background audio, annotated

positives of other species and anthropogenic sound events, and

annotated false positives from prior active learning efforts on the

same dataset. Biotwangs are rare in the entire HARP dataset, but

due to pre-selection with a coarse detector, they make up a large

fraction of audio that has been human reviewed. Therefore, to

balance the training set to better reflect the natural occurrence of

Biotwangs and to better sample the background distribution, we

added to the training set a random sample of audio from the entire

dataset, with total duration about 10 times the total duration of the

human-reviewed data. This kind of implicit negative sampling

carries some risk of adding false negatives to training, but at the

10:1 ratio, these do not overwhelm the number of confirmed

positives. For training, the train/test split was uniform, with 20%

of the data going to test.

In order to standardize audio for the multi-species model, we

first resampled all of the HARP recordings to 24kHz, which

amounted to upsampling for most of the contributed data. We

then sliced the audio into non-overlapping 5-second windows, with

independent binary labels for each species or call type, ‘true’ if the

window overlapped with a human label by a minimum of 1s or half

the duration of the label.

We transformed the audio to a spectrogram with a standard

short-time Fourier transform (STFT) with a Hann window of 200

ms and a hop of 30 ms. We then applied a non-trained log mel

spectrogram frontend with 128 bins from 20Hz to 12kHz and a

break frequency of 50Hz (chosen due to the low frequencies

produced by rorquals). To reduce inter-deployment variation in

overall level and background spectrum, we applied per-channel

energy normalization (PCEN; Wang et al., 2017).
Frontiers in Marine Science 04
We fed the normalized spectrogram images into an

EfficientNetB0, whose output was max pooled over the spatial

dimensions, and minimized the cross entropy between the binary

labels and the network output, as is standard for multi-label

classifiers. For optimization, we chose the Adam optimizer with

batch size 256 and a constant learning rate of 1e-4. We did not apply

dropout or data augmentation.

We used several rounds of active learning to improve on the first

Biotwang model candidate, annotating high scoring segments from

the initial model as positive or negative. To increase training data

from all recording sites and years, but without the sampling bias

resulting from preselection in active learning, an additional manual

annotation round was conducted, selecting random segments (~1

hour long) of data from every 10 days of data from the Pagan, Wake,

Tinian, and Saipan sites. All annotations can be found with the

openly available data. Data were pooled into 75 s ‘subchunks’ and the

maximum 5 s score taken as the score for the total subchunk. Overall

performance was evaluated using the area under the receiver

operating characteristic curve (AUC-ROC). Site-specific detection

thresholds were chosen targeting < 3% false positive rate, which was

chosen to approximate optimal AUC-ROC thresholds across all sites.

2.2.1 Seasonal and spatial distribution
The Biotwang annotations from the ML model were analyzed

for spatial presence at the HARP sites, and within sites with

consistent Biotwangs, for patterns of seasonal occurrence. To

account for differences in duty cycles and recording durations,

occurrence was calculated as the percentage of daily audio that was

positive for Biotwangs. For those HARP sites with consistently low

ML scores, manual spot checking of the highest scoring segments

was used to evaluate whether there was any Biotwang occurrence, or

if all detections were false positives.
FIGURE 1

Map of the 13 HARP recording locations.
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2.2.2 Diurnal patterns
We looked for diurnal patterns in the occurrence of Biotwangs

in the HARP and DASBR data. The range of sunrise and sunset

times over the course of the entire year, at the latitude and longitude

of the recorder at each site were calculated using ‘suncycle’ (The

MathWorks Inc., 2022). The manually annotated Biotwangs from

the DASBRs and the ML annotated Biotwangs from each HARP site

were analyzed for diurnal patterns both as seasonal aggregations

(grouped in 3 month bins) and combined across all months.
2.2.3 Intercall intervals
The intercall intervals (ICI) of Biotwangs were calculated from

the two datasets with a continuous recording duty cycle, one from

Saipan (recordings between July 23, 2019 – June 7, 2020) and one

from Wake (recordings between May 8, 2021 and March 6, 2022).

High scoring segments from the CNN model were used to identify

time periods with Biotwangs, and then the start and end time of

each call in the identified period were manually annotated. The ICI

was calculated as the start time from one call to the start time of the

next call.
3 Results

3.1 Identification of Biotwang as belonging
to Bryde’s whales

There were 13 large whale sightings (Figure 2) with concurrent

sonobuoy deployments during the 2018 survey (Table 1). Of these,

10 were confirmed sightings of Bryde’s whales, including four

sightings with a mother-calf pair. Nine of the confirmed Bryde’s

whale sightings had Biotwangs recorded on a deployed sonobuoy

(Table 1). The only Bryde’s whale encounter without Biotwangs was

from a group of five whales, none of them calves. In addition to the

confirmed Bryde’s whales there were three sightings of unidentified

large whales with concurrent sonobuoy recordings, two of these

encounters included Biotwangs (Table 1). None of the Bryde’s

whale or large whale encounters included mixed species groups.

In five instances there were other sightings within 10 km of the

Bryde’s whale sighting. Three of these were of odontocetes, which

are extremely unlikely to produce sounds similar to the Biotwang.

The other two were an unidentified rorqual and a confirmed Bryde’s

whale that were sighted within an hour of each other. The Bryde’s

whale had confirmed Biotwangs during the sighting, but there were

no Biotwangs recorded for the unidentified rorqual.
3.2 Geographic and temporal distribution
of Bryde’s whale Biotwangs

Biotwangs were consistently detected at four of the PIPAN

recording sites (example Biotwang: Supplementary Figure 1), all in

the Central and WNP: Saipan, Tinian and Pagan and 2,200 km to

the east at Wake Island. After manual spot checking, it was

confirmed that a small number of Biotwangs were detected in the
Frontiers in Marine Science 05
Northwestern Hawaiian Islands, at Pearl and Hermes Reef, but they

were only present at very low levels (<3% of recording time with

Biotwangs) with no apparent seasonal pattern, and most

consistently during the years 2015-2016. They were also found in

low numbers (<3% of recording time with Biotwangs) at the

equatorial recording site at Howland Island. This site has only 9

months of recording, with Biotwangs found throughout the

recording period, but more consistently from April through

September. No other recording sites in the PIPAN network had

confirmed Biotwangs.

The performance of the CNN model varied between sites, but it

generalized well across the four locations with consistent Biotwangs,

with AUC-ROCs of 0.992, 0.982, 0.964 and 0.959 for Wake, Pagan,

Tinian and Saipan respectively (Supplementary Figure 2). For

consistency, a threshold was chosen for each site with a 3% false

positive rate, which approximated the optimal point on the curve.

This corresponded to a threshold of 0.48, 0.67, 0.80, and 0.63 for

Wake, Pagan, Tinian, and Saipan.

The percentage of recording time with Biotwangs per day of the

year for each of the four sites with consistent Biotwang detections is

displayed in Figure 3. There was a maximum of 78% recording time

with calls at Wake, 60% at Pagan, 30% at Saipan and 29% at Tinian.

There was an increase in calling during July through November at

each of these sites, with the start date of increased calling and the

peak date varying between sites and between years within a site.
FIGURE 2

Map of the Mariana Archipelago with DASBR tracks from 2018
indicated in black, and 2021 in blue, Biotwang detections on the
DASBRs are indicated with red diamonds, and yellow stars represent
the 10 confirmed visual sightings of Bryde’s whales from 2018.
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There was a smaller peak in calling during February through April

at Pagan, Wake, and Tinian during some years. Saipan also had this

peak in some years, but it frequently blended into low level year-

round calling. There was large inter-annual variation in percentage

of recording time with calling, with 2016 corresponding to relatively

high calling rates at all sites and 2021 to low calling at Wake and

Pagan (the only sites with data for that year). At Pearl and Hermes

Reef the majority of Biotwangs were detected during 2015-2016.

In the DASBR recordings from July 2018, 5 of the 8 drifts had

detections of Biotwangs, with a total of 191 Biotwangs detected,

primarily within two DASBR deployments (Figure 2). In May-June

2021, 7 of the 22 DASBR deployments had detections of Biotwangs,

with a total of 80 detected. The majority of these occurred to the east

of the Mariana Archipelago, though with relatively few total

detections compared to 2018 (Figure 2).

The ICIs for manually annotated Biotwangs at Saipan and Wake

had a peak between 3.5-5 min (Figure 4). The ICIs then tapered off

sharply until maintaining a low level distribution after 9 mins.

When the call data was split into seasons there was no pattern

of diurnal calling distinctive from that seen when all data was

aggregated across all months of the year. There was no consistent

pattern in the number of calls detected per hour of day across all

datasets (Figure 5). The DASBR data showed a peak in calling

from dawn until noon and two hours after sunset to midnight. At

Tinian there were a higher number of calls at night, while Pagan

and Wake had slightly higher numbers of calls during the

daytime hours.
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4 Discussion

4.1 Biotwangs are produced by
Bryde’s whales

With nine confirmed Bryde’s whale sightings in conjunction

with sonobuoy recordings we demonstrate that the previously

identified Biotwang call is made by Bryde’s whales. Biotwangs

were observed in association with a single whale, mom-calf pairs,

and groups up to four individuals with and without a calf. The only

Bryde’s whale sighting without Biotwang recordings was of the

largest observed group (five animals), which was the only sighting of

multiple individuals that did not contain a calf.

This is only the third identified call type of Bryde’s whales in the

Western North Pacific. There is another unidentified nocturnal call

type from the Mariana Archipelago that is theorized to belong to

Bryde’s whales (Szesciorka et al., 2023) but without visual

affirmation of the linkage. Other Bryde’s whale call types have

been documented in the eastern North Pacific and Japanese coastal

waters (Oleson et al., 2003; Chiu, 2009), in the Beibu Gulf between

China and Vietnam (Wang et al., 2022), in New Zealand

(McDonald, 2006), and in the Lau basin near Tonga in the

Southern Hemisphere (Brodie and Dunn, 2015). None of these

calls are similar to the complex multi-part Biotwang, which has

mechanical sounding features that range up above 8 kHz. Many of

the documented vocalizations have low frequency components

(<100Hz) similar to the 37 Hz long downsweep that forms the
TABLE 1 Table of all visual encounters during which a sonobuoy was also deployed. There were 10 confirmed Bryde’s whale encounters, with another
three that could not be differentiated to the species level.

UTC time
Visual

Species ID Latitude Longitude

Closest
Approach
Distance

Num
of

Individuals Calves

Other
Species
within
10 km

Sonobuoy
Biotwang
Detection?

09 Jul, 2018 22:25 Bryde’s Whale 15.1737 145.4100 300 1 0 None Yes

13 Jul, 2018 07:33 Bryde’s Whale 17.8345 144.3600 10 1 0 None Yes

17 Jul, 2018 03:14 Bryde’s Whale 14.5015 144.5732 50 1 0 None Yes

17 Jul, 2018 23:55 Bryde’s Whale 13.8495 143.3135 10 3 1 None Yes

19 Jul, 2018 22:06 Bryde’s Whale 13.6202 142.5620 20 4 1 Rough-
toothed
Dolphins

Yes

20 Jul, 2018 06:04 Bryde’s Whale 14.1513 142.8150 30 5 0 None No

23 Jul, 2018 00:12 Bryde’s Whale 18.1485 143.3203 70 1 0 None Yes

23 Jul, 2018 07:55 Sei/Bryde’s Whale 18.1253 143.8168 500 1 0 None Yes

26 Jul, 2022 00:38 Unid
Large Whale

15.2813 144.7198 2900 1 unknown None Yes

26 Jul, 2018 23:37 Unid Rorqual 12.9390 142.8358 2500 1 unknown Bryde’s Whale
(next sighting)

No

27 Jul, 2018 00:13 Bryde’s Whale 12.9610 142.7860 80 3 1 Unid Rorqual
(previous
sighting)

Yes

27 Jul, 2018 08:19 Bryde’s Whale 12.8352 141.9043 30 2 1 None Yes

29 Jul, 2018 21:06 Bryde’s Whale 15.0907 144.9093 20 1 0 None Yes
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FIGURE 3

Relative occurrence of Biotwangs across the four HARP sites with consistent detections, calculated as the percentage of daily recording time with
recordings. (A) Wake, (B) Pagan, (C) Saipan, (D) Tinian.
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principal component of the Biotwang, which is often the only

component to appear in a spectrogram. Confirmation that

Bryde’s whales are capable of producing Biotwangs suggests that

they could be responsible for other unknown complex call types.

Additionally, the positive linkage between Biotwangs and Bryde’s

whales enables additional studies on the distribution of Bryde’s

whales from the NP using PAM datasets.

The ICI of the Biotwangs had a peak around 4 min, which is

similar to ICIs reported for other Bryde’s whale calls (Brodie and

Dunn, 2015; Helble et al., 2016). In Hawaii, Helble et al. (2016) used

swim tracks of calling animals to determine that whales traveling

together had synchronous ICIs, which increased when one animal

stopped calling, suggesting that Bryde’s whales may use the

vocalizations to maintain group cohesion and spacing. No

consistent pattern was found in the diurnal distribution of the

Biotwangs, with slightly more Biotwangs during daytime hours at

Pagan andWake, slightly more nighttime calls at Tinian, and a peak

in calling in the morning hours and at night in the DASBR data.

Pagan and Wake are at similar latitudes at the northernmost range

of the Biotwangs, Tinian is at the southernmost, and the DASBRs

locations are spread throughout the range. This could suggest a shift

in the production of Biotwangs as Bryde’s whales progress along

their migration route, but recordings from more latitudes would be

required to establish a pattern.
4.2 Spatio-temporal patterns of Bryde’s
whale Biotwang detection

PIPAN data spans over a decade at sites in both the central and

western North Pacific, but Biotwangs were only detected with any

regularity at the sites west of the dateline, in the Mariana

Archipelago and at Wake Atoll. They were infrequently detected

in the Northwestern Hawaiian Islands, at Pearl and Hermes Reef, as

well as near the equator at Howland Island, extending the overall

known distribution of Biotwangs to just east of the dateline ranging

from the equator to 27°N. Call detections were rare at these
Frontiers in Marine Science 08
locations, suggesting they are outside of the common range of the

Bryde’s whales that are producing them. Japanese whaling studies

have gathered genetic data supporting that there is a Bryde’s

population in the WNP distinct from those in the western South

Pacific, eastern South Pacific and eastern Indian Oceans (Kanda

et al., 2007). A recent study (Taguchi et al., 2023) further

distinguished a Bryde’s whale stock in the WNP extending to

about 170°E as genetically distinct from the stock found in the

NW Hawaiian Islands. Some Bryde’s whale calls have been used to

differentiate between stocks (Viloria-Gómora et al., 2021), and the

regional distribution of Biotwangs aligns well with the genetic ID of

a WNP stock suggesting it may also be a population specific call.

However, this study does not include detection data for other

known Bryde’s whale call types in the North Pacific. Future work

identifying whether other call types are present in the long term

recording data in conjunction with Biotwangs would aid in

determining if the Biotwang is regionally specific to a

WNP population.

The ML model generalized quite well with a high AUC-ROC at

the Biotwang sites, but with some differences in performance across

locations and years which could lead to varying recall rates.

However, we see a clear bimodal pattern in the occurrence of

Biotwangs (Figure 3) with a large peak in production in August

through November, and then a smaller peak from February to April

at some sites. It is generally thought that Bryde’s whales occupy low

latitudes (0–10°N) from January to March and middle latitudes (20-

40°N) from April to August (Kishiro, 1996). The PIPAN sites with

the highest level of call detection were between these feeding and

breeding latitudes (15-19°N). The bi-modal pattern of increased

Biotwang occurrence in our data supports this migration model,

with whales passing by the recording sites twice a year. At all sites,

the peak in calling during August through November has a higher

percentage of recording times with Biotwangs than the peak from

February to April. This variation could be attributed to the whales

increasing their call rates in the latter half of the year, switching to

other call types, or using different travel routes during the two

migratory periods.

While we do not know where this population breeds, Nishimoto

et al. (1952) reported that Bryde’s whales were feeding on krill and

fish as far south as Ogasawara in May and June. To the north, Sasaki

et al. (2013) found that Bryde’s whales were feeding along the

Kuroshio Current in an area of increased productivity called the

Transition Zone Chlorophyll Front (TZCF). The TZCF is a zone of

high chlorophyll and an enhanced foraging habitat for predators,

driven by the zone of surface convergence between the North Pacific

Subtropical Gyre and the Subarctic Gyre (Polovina et al., 2001). It

spans more than 8000 km across the North Pacific, and seasonally

moves north and south by about 1000 km, between 30-35°N in the

winter to about 40-45°N in the summer (Polovina et al., 2001).

During surveys between 2008 and 2021 Bryde’s whales were present

in waters between 35-40°N in July to August (Hakamada and

Matsuoka, 2016; Katsumata and Matsuoka, 2022), and were

following the distribution of juvenile Japanese sardine and

anchovy, which move north with the TZCF in spring and

summer (Watanabe et al., 2012; Sasaki et al., 2013). However,

Murase et al. (2016) deployed satellite tags on two Bryde’s whales
FIGURE 4

Histogram of the intercall intervals calculated for the manually annotated
HARP data. The calls are binned into 30 second intervals and truncated
after 20 mins.
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offshore from Japan (37°36.5′N 155°10.4′E and 38°00.1′N 147°51.5′
E), and both animals traveled away from the subarctic-subtropical

transition area to subtropical latitudes in mid-July to mid-August,

indicating that Bryde’s whales do not stay in feeding areas

persistently in summer. Other populations of Bryde’s whales are

known to have complex movement patterns, influenced by a wide

range of oceanographic, physical, and biological variables, likely

driven by changes in prey movements (Constantine et al., 2018;

Kerosky et al., 2012; Tardin et al., 2017). Bryde’s whales are thought

to be income breeders, feeding regularly throughout the year, and

employing a wide array of novel behaviors to catch a large variety

prey (Murase et al., 2007; Iwata et al., 2017; Izadi, 2018), allowing
Frontiers in Marine Science 09
them greater plasticity in their foraging areas. Our acoustic data

support a complex migration pattern of WNP Bryde’s whales, with

some whales remaining at intermediate latitudes or beginning their

southward migration before the TZCF shifts in the fall. There are

low levels of calling from May to July and an increase in Biotwang

presence beginning in August and continuing through November at

most sites (Figure 3), although the timing and peaks of the

migrations are variable between years. Additionally, Biotwangs

were detected at our southernmost recording site at Howland

Island (0°48’ N 176°36’ W) from April through September, when

Bryde’s whales are typically expected to be at their mid-latitude

feeding grounds. Some fluctuation in the timing of movements may
FIGURE 5

The number of calls per hour of the day for the DASBRs and for each site with biotwangs. The annual range of sunrise and sunset times is displayed
in light grey and nighttime in dark grey. (A) Pagan, (B) Saipan, (C) Tinian, (D) Wake, (E) DASBR.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1394695
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Allen et al. 10.3389/fmars.2024.1394695
also be related to age class and or the reproductive condition

of individuals

In addition to variation in the timing of the migrations, there is

considerable inter-annual variation in the detection rates of

Biotwangs, with high detection rates at Mariana Archipelago and

Wake Atoll sites in 2016, and very low detection rates at Pagan and

Wake (the two sites with data) in 2021. The TZCF varies in location

and intensity with the Pacific Decadal Oscillation (PDO), with more

productive conditions and a more southerly boundary during

positive phases of the PDO and during El Niño years (Bograd

et al., 2004). This change in the boundary of the TZCF has been

shown to have high trophic level impacts on the distributions of

multiple species (Polovina et al., 2017). Only during positive PDO

years is the TZCF known to reach the Northwestern Hawaiian

Islands (Baker et al., 2007), and Biotwangs were only found with

regularity at our Pearl and Hermes Reef site during the strongly

positive PDO years of 2015-2016. Under accelerating climate

change we expect more frequent and extreme El Niño and La

Niña years, the TZCF to shift poleward by 500-1000 km (Polovina

et al., 2011), and the Kuroshio extension current to be more variable

(Navarra and Di Lorenzo, 2021), all of which may have large

impacts on the migration patterns of Bryde’s whales. In 2021

Katsumata and Matsuoka (2022) documented WNP Bryde’s

whales migrating further north (42°N vs 40°N) than ever

recorded in previous survey years. Longer migrations could have

population level impacts, as greater energy stores are required to

travel farther distances to achieve the same food resource. Some

species of baleen whales are known to forgo migration to the

breeding grounds in favor of prolonging feeding opportunities

(Stafford et al., 2009; Van Opzeeland et al., 2013; Magnúsdóttir

et al., 2014), possibly to increase energy stores to improve future

breeding opportunities. Given the Bryde’s whales strong ties to the

TZCF for feeding and the accelerating impact of climate change on

the locations and productivity of the TZCF, it merits future

investigation whether the variability in the Biotwang occurrence

in our PAM data is explainable by these changes in climatic regimes.

As climate change impacts increase it will be important to monitor

and mitigate phenology changes in WNP Bryde’s whales in order to

maintain a healthy population.
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