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Characterizing spatio-temporal
variations of dimethyl sulfide in
the Yellow and East China Sea
based on BP neural network
Wen-Ning Guo, Qun Sun*, Shuai-Qi Wang and Zhi-Hao Zhang

College of Ocean and Environment, Tianjin University of Science and Technology, Tianjin, China
Dimethyl sulfide (DMS), an organic volatile sulfide produced from

Dimethylsulfoniopropionate (DMSP), exerts a significant impact on the global

climate change. Utilizing published literature data spanning from 2005 to 2020,

a BP neural network (BPNN) model of the surface seawater DMS in the Yellow and

East China Sea (YECS) was developed to elucidate the influence of various marine

factors on the DMS cycle. Results indicated that the six parameters inputted BPNN

model, that include the time (month), latitude and longitude, sea-surface

chlorophyll a (Chl-a), sea-surface temperature (SST), and sea-surface salinity

(SSS), yielded the optimized simulation results (R2 = 0.71). The optimized

estimation of surface seawater DMS in the YECS were proved to be closely

aligned with the observed data across all seasons, which demonstrated the

model’s robust applicability. DMS concentration in surface seawater were found

to be affected by multiple factors such as Chl-a and SST. Comparative analysis of

the three environmental parameters revealed that Chl-a exhibited the most

significant correlation with surface seawater DMS concentration in the YECS (R2

= 0.20). This underscores the pivotal role of chlorophyll in phytoplankton

photosynthesis and DMS production, emphasizing its importance as a non-

negligible factor in the study of DMS and its sulfur derivatives. Furthermore,

surface seawater DMS concentration in the YECS exhibited positive correlations

with Chl-a and SST, while displaying a negative correlation with SSS. The DMS

concentration in the YECS show substantial seasonal variations, with the

maximum value (5.69 nmol/L) in summer followed in decreasing order by spring

(3.96 nmol/L), autumn (3.18 nmol/L), and winter (1.60 nmol/L). In the YECS, there

was a gradual decrease of DMS concentration from the nearshore to the offshore,

especially with the highest DMS concentration concentrated in the Yangtze

River Estuary Basin and the south-central coastal part off the Zhejiang Province.

Apart from being largely composed by the release of large amounts of

nutrients from anthropogenic activities and changes in ocean temperature, the

spatial and temporal variability of DMS may be driven by additional

physicochemical parameters.
KEYWORDS
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variations, Yangtze river estuary
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1 Introduction

Dimethyl sulfide (DMS) generated by marine phytoplankton,

serves as a crucial contributor to the volatile gases with the marine

biochemical cycle. The amount of DMS emitted from the ocean to the

atmosphere, exceeding more than 90% of the total sulfide emissions

(Liss et al., 1997), which is an important participant in the global sulfur

cycle (Andreae, 1990). Fung et al. (2022) highlighted that the

prominence of pre-industrial DMS as a source of sulfate, with 57%

derived from DMS, exerting a more pronounced effect on suppressing

aerosol indirect radiative forcing than pristine present-day (−2.2 W

m−2 in standard versus −1.7 W m−2). Upon entering the atmosphere

via sea-air exchange, DMS undergoes photochemical oxidation to yield

products such as methanesulfonic acid (MSA) and SO2. The

subsequent oxidation and conversion of DMS to SO2 in the

troposphere are crucial processes in generating and expanding

sulfur-containing aerosols with the marine boundary layer (Sciare et

al., 2000). These aerosols can also undergo long-range transport and

affect background aerosol sulfate levels in continental regions (Sarwar

et al., 2023). Further oxidation of SO2 in the atmosphere results in the

formation of non-marine sulfate aerosol (nss-SO4
2-) (Vogt and Liss,

2009). Most of the oxidation products of DMS in the atmosphere

exhibit high acidity, influencing the natural acidity of precipitation in

the coastal areas (Ayers et al., 1991; Archer et al., 2013). Additionally,

nss-SO4
2- is a key participant in the global sulfur cycle, which is

involved in the formation of cloud condensation nuclei (CCN). This

process elevates the concentration of CCN, thereby augmenting the

reflection and scattering rate of solar radiation from clouds.

Consequently, these phenomena exert profound affects on the

balance of surface solar radiation, thus influencing the global climate

(Charlson et al., 1987; Kloster et al., 2007; Quinn and Bates, 2011).

Surface seawater DMS is produced from its precursor

Dimethylsulfoniopropionate (DMSP) by algal enzymes or

microbial enzymes, and DMSP is synthesized and released by

algae through a series of reactions utilizing sulfate from seawater

(Challenger and Simpson, 1948). Coral and macroalgae are the

main sources of dissolved acrylate and DMSP to the reef ecosystem

(Xue et al., 2022). DMS is generated and eliminated by three

pathways, namely, bacterial consumption, photochemical

oxidation, and sea-air exchange (Kettle and Andreae, 2000; Toole

et al., 2004; Kloster et al., 2005). Throughout the cycle of DMS

generation and removal, the final production of DMS is a joint

contribution of biogenic conditions and many environmental

factors (Shen et al., 2021). For the high-productivity YECS, there

is a big difference in the contribution of DMSP-producing ability of

different algal species to DMS. Chrysophyceae and Pyrrophyceae

are the major producer of high DMS, and Bacillariophyceae is

minor DMS producer (Keller et al., 1989), which result in a

signifcant spatiotemporal variations of DMS in the YECS. A large

number of studies have showed Chl-a is the main environmental

factor in the study of DMS, and concluded that the surface DMS

and Chl-a concentration show a significant positive correlation

(Zhang et al., 2008; Yang et al., 2014; Li et al., 2015). SST can change

the solubility of DMS in seawater and indirectly affect the DMS

concentration by influencing biological activities (biotic enzyme

activities) (Yu et al., 2015). These studies revealed the considerable
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complexity of the oceanic DMS cycle. Given the ecological role of

DMS and its potential impact on global climate, a large number of

studies have focused on characterizing the dynamics of this

compound in seawater. The scarcity of missing DMS data in the

Chinese coastal ocean limits the development of simple prediction

algorithms to characterize its spatial and temporal variability, and

the estimation of DMS concentrations in the YECS is of particular

importance. Estimating the surface DMS concentration can

enhance comprehension of the spatial and temporal distribution

of DMS, as well as the correlation with marine environmental

factors in the East China Shelf. This can lead to a better

understanding of the sulfur cycle, which is significant for

mit iga t ing globa l warming and mainta in ing mar ine

ecosystem stability.

Several methods and models have been proposed for the

prediction and hindcasting of DMS, mainly including multiple

linear regression method, coupled sea-air model, coupled ecological

model of DMS, generalized mixed additive statistical model

(GAMM), etc. Shen et al. (2019) established a multivariate

statistical model to discuss the relationship between Chl-a and

DMS concentration in the surface layer of YECS. Grandey and

Wang (2015) used a coupled air-sea model to investigate the global

DMS changes under the RCP4.5 scenario. Li et al. (2022) simulated

the near-future (mid-21st century) surface DMS concentration in the

Yellow Sea using a coupled DMS modular ecological model for the

eastern Chinese shelf area. Li et al. (2023b) used the GAMMmodel to

simulate the DMS concentration in the East China Sea from 1998 to

2020. To some extent, these models can improve the regional

characterization of YECS at small scales. However, the accuracy of

the output DMS, particularly with the simple linear regression

method, still has limitations to meet the needs of constructing a

complete and accurate DMS level distribution model. Compared with

the models mentioned above, artificial neural networks (ANNs), as

an important branch of artificial intelligence, can learn complex and

nonlinear functions from a large amount of data, and achieve the best

simulation effect through self-adjustment and optimization of the

learning data.

Traditionally, the collection of ocean dimethyl sulfide (DMS) data

has relied on discrete samples obtained from in situ observations,

resulting in significant gaps and sparsity in global ocean DMS

observations. In recent years, recent advancements in artificial

intelligence methods, particularly neural networks, have emerged as

promising tools to address this data deficiency. The ANNs are

commonly used for predictive reconstruction of oceanic dimethyl

sulfide (DMS). McNabb and Tortell (2022) presented improves upon

existing statistical DMS models by capturing 62% of the observed

DMS variability in the northeast subarctic Pacific and showing

significant regional patterns associated with mesoscale oceanic

variability. Wang et al. (2020) obtained a global oceanic DMS

distribution based on ANN at a spatial resolution of 1°×1°. The

predictions made by the ANN model were reasonable when

compared to the raw data in the global database (R2 = 0.66). Bell

et al. (2021) found that the ANN models were able to predict

seasonally averaged seawater DMS trends in the North Atlantic

when compared with the global DMS climatology. The models’

accuracy surpasses that of traditional multiple linear regression
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algorithms, indicating that the neural network’s DMS model results

can well simulate most of the real-world values, and that the

individual predictors extracted by the model effectively explain

their respective explanatory variance of DMS concentration.

However, a common challenge identified across these studies

pertains to the inability of neural networks to directly discern the

potential relationships between DMS concentrations and relevant

marine environmental factors. Consequently, these models exhibit

limitations in elucidating the underlying mechanisms driving the

DMS cycle. Despite these limitations, the findings from these tests

facilitate inductive inference regarding the significance of the factors

influencing the DMS cycle. Furthermore, there has been no research

on the application of neural networks to DMS in the Chinese sea area.

Thus, this paper presents a DMS estimation model for the YECS

based on neural networks. Improved long-term seawater DMS

concentration data from 2005-2020 are expected to positively

impact the estimated DMS fluxes into the YECS atmosphere and

may contribute to the parameterization of atmospheric biogenic

sulfur aerosol concentrations. The model was trained and tested

using oceanic factors that have a significant correlation with DMS

as input variables. The validated results were then compared with

previous empirical algorithms or biochemical coupling model to

assess whether the application of the ANNs improves the estimate

capacity of DMS in YECS. We evaluated the contribution of each

variable to the DMS variance using the optimal DMS estimation

model. The test results allow for an inductive inference of the

importance of the factors involved in the DMS cycle. Our new

modeling approach significantly improved upon previous methods

and estimated regional DMS distributions consistent with potential

patterns of oceanographic change. Notably, regional patterns in

nutrient supply and ocean physical mixing dynamics largely explain

modeled DMS concentrations. The significance of YECS as a global

source of atmospheric sulfur is further emphasized.
2 Data and methods

2.1 Data

This study is based on the in situ observation data in the published

literature compiled by Shen et al. (2019) and then collected the

observation data of surface DMS concentration and related impact

factors in YECS from 2005 to 2020 by reviewing the literature, of which

a total of 19 cruises were conducted in the spring, 18 cruises in the

summer, 14 cruises in the autumn, and 12 cruises in the winter. The

observation stations of the total of 63 cruises are as shown in Figure 1.

The study area of this paper is (24°-34°N, 118°-130°E), and 2780 sets of

sea surface chlorophyll (Chl-a), sea surface temperature (SST), and sea

surface salinity (SSS) data were collected.
2.2 Model building methodology

The Back Propagation neural network (BPNN) is a kind of

multi-layer feed-forward neural network trained according to the

error backpropagation algorithm, which belongs to one of the
Frontiers in Marine Science 03
ANNs models. The backpropagation algorithm contains two

processes, the forward propagation of the signal and the back

propagation of the error (Figure 2). Forward propagation refers

to the input signal (feature) applied to the output node through the

hidden layer and is transformed to the output node through the

nonlinear transformation that generates an output signal. When

the actual output does not match the desired value, the output error
FIGURE 1

Distributions of in-situ stations in the YECS. The black dashed line is
the dividing line between the Bohai Sea, the North Yellow Sea, the
South Yellow Sea and the East China Sea.
FIGURE 2

Structure of BP neural network.
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is back propagated to the input layer and distributed to the neurons

in each layer to obtain the error signal obtained from each layer.

The error signal obtained from each layer is used as the basis for

adjusting the weights of each unit. After repeated learning and

training, the connection strength of each node is continuously

adjusted so that the error is in the direction of the gradient

direction. After repeated learning and training, the connection

strength of each node is continuously adjusted so that the error

decreases in the direction of the gradient, and the weights and

thresholds corresponding to the minimum error are determined, to

achieve the effect that the output results are close to the actual value,

and the training is finished at this time (Fu et al., 2021a).

Generally, increasing the number of neurons and the depth of the

network during training can improve the learning ability of the

network to extract useful information from the training set. However,

the modeling dataset is only 2780 sets of data, which is a small dataset

compared to the ocean database, and a neural network with too much

depth and complexity will learn the features of a large amount of

noisy data because of the insufficient data in the training set when it

performs inversion operation, resulting in the poor generalization

ability of the model and overfitting phenomenon easily. To avoid this

phenomenon, one BPNN model was proposed after repeated

debugging with the appropriate network depth, size, number of

hidden layers, learning rate, and other parameters (Table 1).

Meanwhile, a dropout layer was added in each hidden layer to

ensure that some neurons can be randomly deleted during the

training process, reducing the complexity and parameters of the

neural network, effectively avoiding the problem of overfitting and

improving the accuracy of the estimation results of the BPNN. The

result accuracy is improved.

This study presents the BPNN of YECS constructed with the

parameter combinations of time month, latitude and longitude,

Chl-a, SST, and SSS, and the estimated fitting results of the DMS

concentration of the surface seawater are obtained. In the

construction process, the total amount of 2780 data sets was

firstly divided into 2224 data training sets and 556 data test sets

according to the 8:2 division ratio, and the different modeling

parameters and combinations screened out were used as neurons

in the input layer for the modeling algorithm, and after repeated

adjustments of the algorithmic model to obtain the optimal

estimation parameter scheme. The 2015 DMS-related data (300

data points) are singled out to serve as an external validation dataset

for the modeling, which is to facilitate the comparison with the

accuracy of related DMS forecast hindcasting methods. The
Frontiers in Marine Science 04
remaining 2480 data sets are divided into 1984 training sets and

496 test sets according to the same partition ratio to participate in

the final BPNN model weight, and the test set responses are used as

the validation results of this experiment. The BPNN structure

consists of one input layer, three hidden layers, and one output

layer, and the input parameters are transformed by the built-in

nonlinear function of the hidden layer, and the output error of the

hidden layer is used as the weight adjustment to it continuously

approximates to the real value of DMS concentration observation

and finally outputs the DMS fitted value.

To obtain the results of BPNN estimation with optimal DMS

concentration, experimental protocols EXP1-6 (Table 2) were set up

and three groups of control experiments were conducted, in which

the control groups EXP1 and EXP2 could explore the effect of

salinity change on DMS concentration, EXP3 and EXP4 to observe

the percentage of variance in DMS interpretation due to differences

in temporal and spatial variations, and EXP5 and EXP6 to facilitate

the comparison between the DMS cycling process of other marine

factors not considered to be involved in modeling the moderating

role of the three elements of chlorophyll, SST, and sea

surface salinity.

To evaluate the accuracy and credibility of the final

reconstruction results, we used the following parameters as

evaluation indicators. The coefficient of determination, R2, is a

statistical indicator used to assess the goodness of fit of a regression

model. It indicates the proportion of variability in the dependent

variable that can be explained by the model, i.e. how well the model

fits the data, and could be defined as,

R2 =
SSR
SST

= 1 −
SSE
SST

in which the sum of squares regression (SSR) is the sum of the

difference between the predicted value and the mean of variable to

quantify its variability explained by regressions model. The sum of

squares of residuals (SSE) is the error between the estimate and the

true value, and the sum of squares of total deviations (SST) is the

error between the mean and the true value.

Both the Root Mean Squared Error (RMSE) and Mean Absolute

Error (MAE) are commonly used as a measure of the difference

between the predicted and measured values of a model to assess the

degree offit of themodel on the given data. Theoretically, the higher the

R2, the smaller the MAE and RMSE, the better the model fits a dataset.
3 Results

3.1 Validation of BPNN model and its
applicability analysis

Table 3 presents the evaluation parameters of the BPNN model

for each experimental scheme. The algorithm was used to model the

data, resulting in R2 values of 0.71 for the test set. The RMSE values

was 2.55 nmol/L, and the MAE values was 1.63 nmol/ L. The results

of the BPNN test set constructed from the combination of EXP1

parameters demonstrate the greatest R2 with MAE and RMSE

values slightly higher than those of EXP2 by 10.9% and 17.0%,
TABLE 1 Selected parameters of BPNN model

Parameters Value

Input Layer, Output Layer 1

Hidden layer 3

Number of nodes in hidden layer 256

Epoch 1500

Learning rate 0.001

Dropout rate 0.2
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respectively. This discrepancy may be attributed to the discrete-

valued deviation errors that affect the model's accuracy (Bell et al.

2021). These results suggest that EXP1 is the optimal parameter

training combination for this study. Moreover, comparison of the

R2, RMSE, and MAE of all parameter experiments (Figure 3)

revealed that alterations in input parameters had a positive or

negative impact on model accuracy. This suggests that, in addition

to temporal position, the involvement of chlorophyll, SST, and

salinity in the modeling of DMS is of significance.

To further validate the best BPNN model, the data were divided

into four groups of data according to season, namely, spring
Frontiers in Marine Science 05
(March-May), summer (June-August), autumn (September-

November), and winter (December-February), to assess the

seasonal applicability of the surface seawater DMS concentration

in YECS. From the fit (correlation coefficient r) between the

predicted values and the observations of surface seawater DMS in

different seasons (Figure 4), the estimation results of the optimal

BPNN model, EXP1, were better in all four seasons.

The MAE and RMSE of the best BPNN model were smaller in

the winter, 0.37 and 0.51 nmol/L, and 1.9 and 2.86 nmol/L in the

summer (Table 4), which indicated that the best BP neural network

had the best applicability in the winter and the worst applicability in

the summer. The MAE and RMSE of the optimal BPNN model in

the four seasons did not differ much, and the explained variance of

the DMS concentration in YECS exceeded 60%, which indicated

that the applicability of the optimal BP neural network was

still good.
3.2 Evaluation of DMS estimations in
the YECS

Figure 5 shows the monthly DMS concentration in the YECS

estimated based on the optimal BPNN model. The surface seawater

DMS in the YECS exhibits pronounced seasonal variation, peaking

during spring and summer and declining in autumn and winter.

Particularly notable are elevated DMS concentrations in the coastal

area of Changshan Islands in the North Yellow Sea and the

southward sea area of the Yangtze River estuary in the East China

Sea, as well as the area near Zhoushan Islands. The maximum DMS

concentration typically occurs in April along the coastal area of

Zhejiang and Fujian Provinces, with the fitted maximum value

slightly underestimating the observed concentration by

approximately 7 nmol/L (Figure 6). This discrepancy diminishes

towards offshore regions. Notably, the area around Hupi Reef

manifests as a hotspot for DMS concentration, reaching

approximately 23 nmol/L. Similarly, elevated DMS concentrations
B

C

D

E

F

A

FIGURE 3

Validations of BPNN in the YECS. (A) EXP1, (B) EXP2, (C) EXP3, (D) EXP4, (E) EXP5, (F) EXP6. Note that r is the correlation coefficient; rMAE,rBias,rRMSE
represent the relative mean error, relative bias, and relative root-mean-square error; respectively. N is the number of test samples. The color indicates
the density of scattered data.
TABLE 2 Experimental setup of parameter combinations in BPNN model.

Experimental name Parameter combinations

EXP1 Month+Lat+Lon+Chl-a+SST+SSS

EXP2 Month+Lat+Lon+Chl-a+SST

EXP3 Lat+Lon+Chl-a+SST+SSS

EXP4 Month+Chl-a+SST+SSS

EXP5 Month+Lat+Lon

EXP6 Chl-a+SST+SSS
TABLE 3 Evaluation parameters of the DMS estimation model based on
BP neural network.

Experiment R2 MAE RMSE r

EXP1 0.71 1.63 2.55 0.84

EXP2 0.70 1.47 2.18 0.81

EXP3 0.62 1.68 2.81 0.76

EXP4 0.61 1.69 2.66 0.73

EXP5 0.37 2.05 3.26 0.69

EXP6 0.31 2.14 3.68 0.47
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are observed in the eastern East China Sea, aligning closely with

areas of high DMS observation, particularly in proximity to Jeju

Island and the Korean Peninsula, which is highly coincident with

the area of high value of DMS observation (Figure 5). From the

analysis of significant discrepancy in the location of Hupi Reef in

April, it is suggested that in addition to the abundance of Chl-a in

the spring phytoplankton population, the substantial influx of

nutrients supplied to the surface by upwelling may be one of the

reasons for the outbreak of DMS. In early summer, elevated DMS

values were recorded in June in the North Yellow Sea near Korea

Bay and Zhoushan Islands, with a broad range of high values (about

7-11 nmol/L) extending from the Yellow Sea to the western part of

the East China Sea. In July, the high DMS concentrations were

mainly concentrated along the coasts of Chengshanjiao and

Hangzhou Bay. Compared with the observations, the fitted

concentrations of DMS were relatively high in the Yangtze River

estuary basin and the north-south Yellow Sea demarcation line (the
Frontiers in Marine Science 06
coastal area of Shandong Peninsula). There were sporadic

anomalously high DMS concentrations along the Yangtze River

estuary in October, although the difference from the observed

concentrations was large (7-10 nmol/L), the overall phenomenon

in the estimated area was in perfect agreement with the conclusion

of the previous studies related to DMS in autumn (anomalously

high DMS in October). The DMS concentrations in the South

Yellow Sea were marginally higher than the observed values (about

2-3 nmol/L) in August and November, and the model performed

best in winter, with the disparity between the actual and estimated

values being nearly identical to the observed values. The minimal

difference between the real and estimated values is almost

maintained at 0-1.50 nmol/L, suggesting that the decrease in SST

coupled with a sharp decrease in Chl-a is the main reason for the

low DMS in winter. These findings closely mirror the spatial and

temporal distribution characteristics of the surface DMS

concentration in YECS from 2005 to 2020 collected in the

literature (Figure 7), which further demonstrates that the BPNN

model based on the parameter combinations of EXP1 is feasible to

be used for estimating the surface DMS concentration in YECS.

Analysis of the discrepancy between observed and estimated

monthly averages (Figure 6) reveals that the majority of errors fall

within the range of -2 to 1 nmol/L. Areas exhibiting minimal

discrepancies are primarily situated in the Yellow Sea and the eastern

East China Sea offshore waters. However, certain estimated values

exhibit significant deviations, with some data points deviating by 10

nmol/L lower (in April) or 8 nmol/L higher (in June) compared to the

true values. These deviations are particularly prominent in the

Changjiang River mouth basin (Figure 6), with the original data

points representing the extreme values. This indicates that the

discrete anomalous signals of the high-concentration DMS exert a

substantial impact on the accuracy and applicability of the BPNN

model, which leads to a large difference in the spatial applicability of the

best BPNN model in the Yellow Sea and the East China Sea.

Consequently, there is a notable divergence in the spatial

applicability of the optimal BPNN model in the Yellow Sea and East

China Sea: the applicability is good in the offshore areas of the Yellow

Sea and East China Sea, while the applicability in the extreme regions

along the Yangtze River estuary and the Jeju Peninsula is relatively

poor. These findings underscore the importance of considering

localized environmental factors and anomalous signals when

assessing the predictive performance of modeling approaches in

marine ecosystems.

In general, compared with the DMS observation data, the optimal

BPNN model developed in this paper has better applicability in the

spatial and temporal distribution characteristics of DMS in the YECS,
B

C

D

A

FIGURE 4

Seasonal applicability of DMS estimated based on the optimal BPNN in
the YECS (A) Spring, (B) Summer, (C) Autumn, (D) Winter.
TABLE 4 Seasonal applicability of the best BP model.

Season R2 MAE RMSE r

Spring 0.64 1.19 1.86 0.86

Summer 0.62 1.97 2.86 0.82

Autumn 0.66 1.24 2.26 0.85

Winter 0.66 0.37 0.51 0.91
fr
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which may be related to the spatial and temporal information of

month and latitude/longitude as the predictor variables. Although the

parameters considered in this paper are not comprehensively

compared with the models based on various ocean physicochemical

properties such as MLD, photosynthetically active radiation (PAR)

(Galı ́ et al., 2018), upwelling, and phytoplankton abundance, the

parameters required by this model are easy to obtain, and the

methodology is relatively simple, and it is also able to accurately

analyze the seasonal characteristics of the DMS in the surface layer of

YECS and the overall trend of changes.

In addition to the comparing the BPNNmodel’s performance with

the original observation data, to better evaluate the estimation ability of

the BP model, this study compares the hindcast results with other
Frontiers in Marine Science 07
statistical models commonly used in similar studies. Like the

generalized mixed additive statistical model (GAMM) and

multivariate statistical methods based on the same DMS dataset and

parameter combinations. Li et al. (2023a) employed the GAMMmodel

to obtain the hindcast DMS dataset of the East China Sea, in which the

GAMM model DMS concentration was set as the response variable,

and other parameters (longitude, latitude, month, SST, and Chl-a) were

set as the explanatory variables. Validation of the GAMM model

against the 2015 East China Sea DMS measured data yielded a

correlation coefficient of 0.65 and RMSE= 0.59 nmol/L. Shen et al.

(2019) established a suitable multivariate statistical model for surface

DMS concentration in the Chinese offshore based on the same

combination of parameters and obtained R2 = 0.55 and
FIGURE 5

Monthly DMS in the YECS estimated based on BPNN.
FIGURE 6

Difference between observed data and BPNN results from 2005 to 2020 in YECS. (Difference = Observed value - BPNN value).
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RMSE=2.24nmol/L. Despite the significant differences in accuracy

reported by various models when applied to DMS dataset in YECS,

the correlation coefficient of the present experiment after external

validation was obtained as r=0.95, RMSE=1.64 nmol/L, and the

estimation results of the optimal BPNN, R2 = 0.71 and

RMSE=2.55nmol/L in our study. It indicates superior accuracy

compared to the aforementioned evaluation metrics. This reaffirms

the BPNNmodel’s efficacy in estimating DMS concentration in YECS.
Frontiers in Marine Science 08
4 Discussion

4.1 Spatial and temporal variations of DMS

Seasonal variations of sea surface temperature (SST), salinity

(SSS), chlorophyll (Chl-a) concentration, and DMS concentration

obtained based on in situ observations from 2005 to 2020 are given

in Figure 8. Without considering the inter-annual and intra-
FIGURE 7

Seasonal distributions of monthly mean observed DMS in YECS from 2005 to 2020.
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FIGURE 8

Seasonal variations of SST (A),salinity (B),chlorophyll (C) and DMS (D) in YECS.
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seasonal variations of biogenic substances, the surface DMS

concentration in YECS showed obvious seasonal variations, which

started to increase in March, peaked in April and June, and

gradually decreased to a low peak in autumn and winter. The

highest value of DMS concentration, 41.21 nmol/L, appeared in

April 2017, and its concentration was 41.19 nmol/L in mid-July

2011. It is interesting to note that there were many high values of

DMS in the summer and autumn seasons, which led to the fact that

the June, July, and October standard deviation of DMS

concentration was slightly larger than other months, and the

minimum DMS concentration of 0.03 nmol/L existed in

December 2009.

The seasonal variation of DMS concentration in the YECS were

similar to those of Chl-a concentration and SST (Figure 8), with

positive correlations (correlation coefficients r = 0.31, 0.23) and

some negative correlations (correlation coefficients r = -0.12) with

salinity. Seasonal variations of DMS were characterized by a

maximum in summer, followed by a minimum in winter

(summer > spring > autumn > winter), with average

concentrations of 5.69, 3.96, 3.18, and 1.60 nmol/L, respectively,

in all seasons. The lower concentrations of DMS in winter

compared to spring and summer are due to reduced solar

radiation, resulting in lower sea surface temperatures and

decreased phytoplankton activity and productivity. This, in the

aggregate, leads to lower SSTs and lower phytoplankton activity and

productivity, with a corresponding decrease in zooplankton

predation (Yu et al., 2015). It also diminished the rate of DMS

secretion from DMSP, resulting in a correspondingly lower peak

DMS concentration.

Since DMS and DMSP originate from seaweeds, phytoplankton

species and biomass are considered to be important factors in

controlling seawater DMS and DMSP concentrations (Liu et al.,

2022). The size of phytoplankton biomass can directly influence the

concentration of DMS in marine areas. So the main reason for the

high DMS in summer and autumn is the rapid reproduction and

efficient production of phytoplankton, but the algal species that

cause the change of DMS during the high production period in

summer and autumn are different in different sea areas. Previous

authors have extensively studied the contribution of different algal

species in releasing DMSP and DMS content. Their findings suggest

that dinoflagellates, golden algae, and methanogens are high

producers of DMS (Ma and Yang, 2023), while diatoms and

cryptophytes are low producers of DMS (Yang et al., 2012).

According to the research, the highest intracellular DMSP content

was found in Hirschsprungia (golden algae) at 689 ± 81 mmol L-1,

followed by Anterior Gourami (dinoflagellates) at 666 ± 0 mmol L-1,

and Streptophyta (diatoms) at only 9 ± 1 mmol L-1 (Liss et al.,

1994). Additionally, Nudibranchs, which are unicellular organisms

distinct from algae, have a much higher DMS production capacity

than diatoms due to their higher cellular DMSP content and DMSP

lyase activity (Guo et al., 2022).

Consequently, the higher DMS production capacity of

phytoplankton in the East China Sea in summer than in autumn

is mainly related to the dominance of methanotrophs in

phytoplankton abundance (Yang et al., 2008). On the one hand,

the proportion of DMS-producing methanotrophs increased with
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the temperature rise (Zhang et al., 2014). The upwelling along the

Zhejiang coast transported a large amount of nutrients to the

estuary of the Yangtze River, which promoted the release of

chlorophyll from phytoplankton. Suitable temperature intervals

and abundant nutrients are optimal for the growth of

methanotrophs in environments with high Chl-a concentrations.

On the other hand, the cell abundance of dominant algal species

was higher in summer compared to autumn, which was dominated

by diatoms (Yang et al., 2011). Instead, the phytoplankton

population was dominated by diatoms (97.8%), and the

production of DMS in the autumn decreased significantly (Yang

et al., 2014; Fu et al., 2021b). Although diatoms are low producers of

DMS, when they have absolute dominance in phytoplankton

species, they can significantly contribute to the production of

these compounds. Zheng et al. (2014) report the phytoplankton

community in Jiaozhou Bay is primarily composed of diatoms and

flagellates, with two peaks of phytoplankton cell counts in February

and October(1.108×107 cell/m3 and 4.587×106 cell/m3). Similarly,

the abundance of phytoplankton cells detected on the northeast side

of Zhoushan Islands was 1.9 × 104 cells/L (Jia et al., 2017). It proves

that the amount of DMS produced by large numbers of diatoms is

still significant. In contrast to the East China Sea, the flagellates were

the predominant algal species responsible for DMS production in

the Yellow Sea. Browman et al. (2013) report a 3-fold increase in the

growth rate of flagellates from 0.23 to 0.61 d-1 between 15 and 20°C,

along with almost no growth below 10°C. During the summer, the

Yellow Sea experiences high temperatures (22.7 ± 3.8°C) which

promote the growth and reproduction of flagellates. These

organisms account for 59.6% of the total phytoplankton

abundance, leading to a high production of DMS in the northern

Yellow Sea. However, the decrease in seawater temperature in the

autumn(16.7 ± 3.6°C)weakened its effect on DMS production.

Toward spring, the temperature gradually rose and harmful algal

blooms occurred frequently in the East China Sea (Yang et al.,

2012). At this time, large diatoms and active flagellates dominated

the high production of DMS near Hangzhou Bay in early spring and

April (Figure 5).

Figure 7 illustrates the monthly average distribution patterns of

DMS aboard observation data from 2005 to 2020. In the horizontal

distribution, a discernible spatial trend emerges, depicting a gradual

decline in DMS concentration along the Zhejiang Province

coastline extending towards the open sea. This pattern is

intricately linked to the substantial discharge of anthropogenic

nutrient salts in the vicinity of the Yangtze River estuary. The

average concentration of DMS in YECS was 3.67 nmol/L in March

or early spring. Subsequently, there was a progressive rise noted in

mid-spring (April), and gradually extended to the far sea, with high

concentrations in the coastal area of Liaodong Peninsula and the

boundary of the Bohai and Yellow Seas. Notably, a focal point of

elevated DMS values emerged in the area of Hangzhou Bay located

to the south of the Yangtze River mouth from 26°N-30°N, with 28°

N as the center line (the range of concentrations was 26.24-35.09

nmol/L). This distribution bears resemblance to the spatial patterns

of Chl-a, likely attributable to both anthropogenic nutrient inputs

and phytoplankton blooms in the central Yellow Sea during spring.

The zenith of DMS concentration was attained in June, reaching a
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peak value of 36.83 nmol/L in the northern Yellow Sea, proximate

to the Changshan Islands. Additionally, heightened DMS levels

were observed near the area of the mouth of the Yangtze River in

the southern Yellow Sea (about 23.60 nmol/L). In September, DMS

levels surpassed those in the central Yellow Sea near the Changshan

Islands. Subsequently, a decline in DMS concentration commenced

in September, punctuated by minor peaks in mid-autumn

(October), primarily concentrated in the Yangtze River mouth

and Hangzhou Bay areas, where the highest concentration

recorded was approximately 37.83 nmol/L. The occurrence of

these peaks is ostensibly linked to the proliferation of diatom

blooms within this maritime region during autumn. In YECS,

Chl-a, DMS, and SST all reached a low peak in winter, and the

DMS concentration was lower than 3.65 nmol/L, with the lowest

concentration of only 0.03 nmol/L. The peaks of Chl-a, DMS, and

SST in YECS were all in the winter.

During the period spanning from early spring to late autumn,

persistent high concentrations of dimethyl sulfide (DMS) have been

consistently observed in the Yangtze River estuary basin and

downstream areas of Hangzhou Bay, Zhejiang Province

(Figures 5, 7). This phenomenon is primarily attributed to the

discharge of nutrient salts from agricultural and industrial sources,

coupled with favorable sea surface temperatures (SST), which create

optimal nutrient conditions for phytoplankton proliferation.

Consequently, there is a notable proliferation of phytoplankton

populations, particularly dominated by diatoms and golden algae,

in the vicinity of the Yangtze River mouth. This proliferation

ultimately results in abnormally high DMS concentrations around

the Zhoushan Islands during autumn.

Unlike environmental parameters such as Chl-a and SST, we do

not believe that the level of salinity variability significantly affects

the spatial distribution of DMS in YECS. The distribution

characteristics of DMS in spring and summer suggest that the

enrichment of DMS in the Yangtze River estuary is related to the

large amount of nutrients brought by the Changjiang (Yangtze

River) Diluted Water (CDW) (Yang et al., 2012) and the favorable

SST (Figure 8) that accelerates phytoplankton production efficiency.

Speeckaert et al. (2019) observed that the high salinity environment

was not conducive to DMS release, and we also revealed no

significant correlation between salinity and DMS here. First of all,

the abundant nutrients provide conducive nutritional conditions

for the growth of microorganisms along the Yangtze River estuary.

However, with the burgeoning growth of population and

heightened anthropogenic activities (agricultural and industrial

runoff), a large number of organic nutrients, such as phosphate

and nitrate, have been escalated into China’s estuarine and riverine

systems. This influx has notably exacerbated the impact on the

phytoplankton in the Yangtze River estuary in the East China Sea

and other coastal seas (Walling, 2006). In spring and summer,

substantial quantities of nutrients are transported by CDW into the

East China Sea, leading to elevated DMS concentrations in the

estuary and its proximal waters.

At the same time, the offshore of the East China Sea is affected by

the oligotrophic Kuroshio and the Taiwan Warm Current (TWC),

resulting in low Chl-a concentration, and correspondingly reduced

DMS concentration. Secondly, suitable SST is favorable to foster
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heightened activity of biological enzymes (DMSP lyase in

phytoplankton cells) and accelerate the rate of DMSP cleavage to

DMS, while too-low or too-high seawater temperature will limit the

activity of heterotrophic organisms. It is noteworthy that the

anomalous deviations of high Chl-a and DMS concentrations in

October were significantly larger than those in other months

(Figures 7, 8), which may be attributed to the increase of Chl-a

concentration due to the large amount of nutrients brought in by the

upwelling along the Fujian coast and the lower SST in the autumn,

which led to the occurrence of the high-value zone of DMS

concentration along the Fujian coast (Hao et al., 2019). In

summary, the distribution of nutrients and SST in the eastern shelf

and the influence of the phytoplankton population resulted in the

spatial distribution of high DMS in the Changjiang estuary and

juxtaposed with a gradual decrease of DMS offshore.
4.2 Analysis of influencing factors of DMS

Light intensity, chlorophyll, SST, nutrients, mixed layer depth,

and other factors are pivotal parameters of the marine ecosystems.

Variations in these parameters directly affects the living environment

of plankton. DMS is produced by the phytoplankton growth and

demise cycle, forming the ecological cycle of DMS. The entire cycle,

encompassing the release of dimethylsulfoniopropionate (DMSP) to

the production and removal of DMS, is subject to modulation by

diverse oceanographic factors.

Chl-a is a key pigment that serves as a marker for important

phytoplankton groups, such as diatoms and seaweeds, providing a

visual measure of phytoplankton biomass within specific marine

regions (Fu et al., 2021b). Numerous studies, both domestically and

internationally, have consistently underscored a critical relationship

between Chl-a concentration, DMSP production rate, and the

concentration of DMS. The rate of DMS production was found to

be higher in the microlayer and closely associated with the level of

chlorophyll a (Zhang et al., 2008) (correlation coefficient r =

0.8828). During the modeling process outlined in this paper, we

meticulously analyzed the distinct contribution of each

environmental factor. Our findings emphasized that Chl-a had

the highest explained variance at 20% (R2 = 0.20), followed by

SST at 8% (R2 = 0.08), and salinity at only 3% (R2 = 0.03). This

suggests that chlorophyll content has substantial impact on the

surface layer of YECS DMS compared to SST and salinity. In April,

the coasts of Zhejiang and Fujian witnessed a notable outbreak of

DMS (Figure 7) attributable to the spring bloom and high density of

Chl-a. This fostered the production of the dominant algal species

of DMS, along with the large amount of nutrients carried by the

upwelling, which nourished the phytoplankton abundance. The

epicenter of the high value of DMS was concentrated along the coast

of Zhejiang and Fujian. During the spring and summer seasons in

the Yellow Sea, when the Chl-a concentration is low, the dominance

of diatoms in the phytoplankton community is relatively waned.

Meanwhile, the proportion of methanogens and other algae in the

phytoplankton community is instead high. The correlation between

the surface DMS concentration and the Chl-a concentration in the

two seasons is 0.46 and 0.48, respectively (Shen et al., 2021).
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Yang et al. (2014) comprehensively explores the impact of

temperature, nutrients, and other factors on the distribution of

DMS, as well as its production and consumption rates in the highly

productive waters of YECS. Favorable temperatures play a pivotal

role in facilitating the growth of phytoplankton, with zooplankton

abundance peaks occurring under moderate temperatures alongside

ample food availability. Daphnia magna emerges as a significant

species in YECS ecosystem. The intensified predation of Daphnia

magna increases significantly within the temperature range of

15~25°C, and the concentration of DMS is elevated (Yu et al.,

2015). At higher concentrations of CO2 and temperatures, bacterial

production of DMS may decrease, leading to a decrease in DMS

concentration (Yan et al., 2023). The decrease in the spatial extent

of high DMS concentration, alongside their migration towards the

eastern shelf coast during the transition from June to July, may

indeed be linked to the increase in SST.

The relationship between salinity and DMS production is

somewhat controversial. Gao et al. (2017) reported a significant

positive correlation between DMS and Chl-a, temperature, and

salinity in the Yangtze River estuary during winter (Correlation

coefficient between salinity and DMS is r=0.414). However, during

summer, the correlation between salinity and DMS was not as

pronounced (r=0.060) in this research. Conversely, Guo et al. (2022)

calculated a statistically significant negative correlation (r= -0.236)

between DMS and salinity in the Bohai and North Yellow Seas in

summer. Li et al. (2015) concluded that the surface salinity of the North

Yellow Sea during winter did not significantly influence the

productivity and consumption rate of DMS. It is noteworthy that

DMS production tends to be lower during winter, as evidenced by the

overall DMS concentration in YECS, which typically ranges from 0.07-

3.65 nmol/L (Figure 7). Furthermore, the salinity remains stable within

the range of (33-34) during this season. The observed strong

correlation between DMS and salinity in the Yangtze River estuary

during winter can be attributed to the reduction of biological activity on

the sea surface caused by low SST and high salinity, which due to

current systems such as the CDW and TWC. Yet, it is crucial to

acknowledge that this correlation does not take into account the

internal interaction of environmental elements. Our study found no

significant correlation between the overall surface salinity and DMS

concentration in YECS. This conclusion was drawn based on the

negative correlation between the monthly mean salinity and DMS

concentration from 2005 to 2020, the minimal difference between the

indicators of EXP1 and EXP2 in the BPmodel (Table 3), and the results

of the sensitivity tests of the individual environmental factors.

Moreover, it is crucial to note that while most disparities

between BPNN estimates and observations fell within minimal

margins (0-2 nmol/L) (Figure 6), the occurrence of extreme DMS

values during specific months (April, May, June, and October)

underscores the necessity of considering a broader range of

environmental factors beyond those examined in this study. This

discrepancy likely stems from the intricate interplay of physical,

chemical, and biological processes within near-shore regions. The

concentration of DMS is influenced not only by variables such as

Chl-a, SST, and SSS (which were incorporated into the modeling)

but also by factors like nutrient concentration, upwelling dynamics
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(Mansour et al., 2023), ENSO phenomena and the depth of the

mixed layer (MLD), among others.

For instance, the Zhoushan fishery, situated in a well-developed

upwelling zone along Zhejiang Province’s coast, experiences

nutrient-rich seawater upwelling from the deep sea’s lower layers

to the ocean’s upper layer. This continuous nutrient influx sustains

phytoplankton growth, leading to enhanced DMS production in the

vicinity of Zhoushan. The slightly lower estimated DMS

concentration along the Zhejiang and Fujian coasts in March and

April, compared to the original observed concentrations, may be

associated with this phenomenon (Figure 6). The variability of DMS

emission fluxes associated with ENSO primarily arises from

heightened wind speeds during La Niña events. High-frequency

ENSO impacts positively the sea-air exchange fluxes of DMS (Xu

et al., 2016), potentially eliciting a favorable response of DMS

concentrations in the East China Sea to ENSO occurrences in the

Pacific Ocean. The oceanic mixing layer serves as a reservoir for a

considerable amount of heat generated by diverse dynamical

processes. When the mixing layer depth is relatively shallow, a

positive correlation is observed between mixing depth and nutrient

concentrations. As the mixing layer deepens, the nutrient layer

replenishes the upper ocean with increased nutrients, thereby

augmenting chlorophyll responses. The elevated DMS

concentration in the low/mid-latitude region is propelled by the

combination of shallow MLD and intense irradiance (Wang et al.,

2020). Situated in the subtropical low-latitude zone, the Yangtze

River estuary basin experiences low cloud cover and high light

intensity during summer. The MLD in this region is influenced by

the CDW and the Kuroshio, both of which contribute to MLD

deepening. Variations in these factors may trigger DMS outbreaks

along the Yangtze River estuary coast during the summer

months (Figure 5).
5 Conclusions

Based on the BPNN algorithm, a new method for estimating

surface seawater DMS of the YECS is proposed by utilizing the

physicochemical parameters. The spatiotemporal variations of the

DMS were analyzed and the environmental factors influencing on

DMS was discussed, leading to the following key conclusions:
(1) The surface DMS in YECS can be optimally estimated

utilizing the seawater BPNN model, exhibiting the highest

explainable variance (71%) and superior simulation

accuracy. The model incorporates six crucial parameters:

month, latitude, longitude, Chl-a, SST, and SSS.

(2) Sensitivity tests underscored the predominant role of Chl-a

in influencing DMS levels in YECS surpassing the impact of

SST and salinity. As the foremost parameter shaping DMS

response, the mechanistic underpinnings of Chl-a should

be prioritized in DMS forecasting and hindcasting studies.

A comparative evaluation of BPNN model performance

across different parameter combinations of reveals that the
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effect of salinity on DMS concentration in YECS

is negligible.

(3) The concentration of DMS in the YECS was influenced by a

confluence of environmental factors and precursor biomass.

It was positively correlated with Chl-a and SST, while

displaying a negative correlation with SSS. Leveraging the

optimal model, we scrutinized the spatial and temporal

distribution of DMS concentrations in YECS. The results

delineated higher DMS concentrations during spring and

summer compared to autumn and winter. Specifically,

elevated concentrations of DMS were higher in the coastal

waters(121°-123°E, 27°-28°N) and (124°-127°E, 29°-32°N)

during spring, with coastal regions exhibiting higher

concentrations relative to that of the open sea. Moreover, a

discernible gradient of decreasing DMS concentrations

was noted from the Yangtze River estuary towards

offshore regions.

(4) The model developed in this paper aligns with existing

literature regarding seasonal variations and spatial

distributions. However, the estimation error is exacerbated

by the intricate interplay of physical, chemical, and biological

processes impacting the surface DMS concentration in near-

shore waters. In addition to incorporating Chl-a, SST, SSS,

time, and location information, this study recommends

further exploration of physicochemical parameters such as

photosynthetically active radiation(PAR), nutrient

concentration, MLD, ENSO, and other relevant factors in

the modeling framework.
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