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Long-term annual trawl data
show shifts in cephalopod
community in the western
Barents sea during 18 years
Alexey V. Golikov1*, Lis L. Jørgensen2, Rushan M. Sabirov3,
Denis V. Zakharov4 and Henk-Jan Hoving1

1GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany, 2Ecosystem Processes
Department, Institute of Marine Research, Tromsø, Norway, 3Department of Zoology, Kazan Federal
University, Kazan, Russia, 4Laboratory of Marine Research, Zoological Institute of Russian Academy of
Sciences, Saint−Petersburg, Russia
Climate change is threatening marine ecosystems on a global scale but

particularly so in the Arctic. As a result of warming, species are shifting their

distributions, altering marine communities and predator-prey interactions. This is

known as the Atlantification of the Arctic. Warming may favor short-lived,

opportunistic species such as cephalopods, marine mollusks that previously

have been hypothesized to be winners in an ocean of change. To detect

temporal regional trends in biodiversity, long-term annual surveys in hotspots

of climate change are an unparalleled source of data. Here, we use 18 years of

annual bottom trawl data (2005–2022) to analyse cephalopods in the western

Barents Sea. More specifically, our research goals are to assess temporal trends in

cephalopod fauna composition, abundance and biomass, and to relate these

trends to climate change in the western Barents Sea. Main changes in

cephalopod diversity and distribution occurred in mid-2000s and early 2010s,

which corresponds with a period of warming in the Arctic since the late 1990s/

early 2000s. Repeated increased occurrence of the boreal-subtropical

cephalopods was recorded from 2005–2013 to 2014–2022. Moreover, the

abundance of cephalopods in the area (in general and for most taxa) increased

from 2005–2013 to 2014–2022. These observations suggest that the

cephalopod community of the Barents Sea is subjected to Atlantification since

the 2005–2013 period. This corresponds with previously reported evidence of

the Atlantification in fishes and benthic invertebrates in the Barents Sea and

benthic invertebrates. ‘Typical’ Arctic cephalopod species such as Bathypolypus

spp., Gonatus fabricii and Rossia spp., however, are still much more abundant in

the western Barents Sea compared to the deep-sea and the boreal-subtropical

species. We also found indirect indications for body-size reduction in

Bathypolypus spp. from 2005–2013 to 2014–2022. Overall, the temporal

trends in the Barents Sea cephalopod fauna provide evidence for changing

marine communities in the Arctic.
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1 Introduction

The Arctic is heavily affected by climate change (Lind et al., 2018;

Praetorius et al., 2018; Rantanen et al., 2022) with increase of

temperature, decrease of sea-ice extent, weakening of ocean

stratification, and changes in physical ocean dynamics and

hydrochemistry (Brandt et al., 2023; Gerland et al., 2023). The

Barents Sea is one of the fastest warming areas in the Arctic

(Overland et al., 2014; Lind et al., 2018; Gerland et al., 2023). This

sea is of high commercial importance due to its biological and

mineral resources (Moe and Jørgensen, 2013; Jørgensen et al., 2020;

Mikkelsen et al., 2023). The Barents Sea is simultaneously impacted

by anthropogenic activities and climate change (Moe and Jørgensen,

2013; Jørgensen et al., 2020; Mikkelsen et al., 2023) but with largely

unknown consequences for the marine communities in the area.

Due to ocean warming, many warm-water species are entering

the Arctic from the Atlantic, causing changes in biomass,

distribution and ecology of local Arctic species and altering

predator-prey interactions (Brandt et al., 2023; Gerland et al.,

2023). The changes in the Arctic ecosystems, which make them

more similar to the North Atlantic ecosystems over time, are known

as the ‘Atlantification’ (Jørgensen et al., 2016). The Atlantification

of the Barents Sea is best studied for pelagic and demersal fishes

(Fossheim et al., 2015; Frainer et al., 2017), but less so for benthic

invertebrate communities (Renaud et al., 2015; Jørgensen et al.,

2019). One of the reasons for our poor understanding of the extent

of the Atlantification of seafloor communities is the understudied

benthic biodiversity and difficulty in obtaining temporal trends in

Arctic benthos (CAFF, 2017; Jørgensen et al., 2022).

One abundant but particularly understudied group of

invertebrates in the Arctic are cephalopods (Phylum Mollusca,

Class Cephalopoda) (Nesis, 1987; Golikov et al., 2013; Xavier

et al., 2018). Despite their relatively low biodiversity in the Arctic,

cephalopods have a high ecological importance in the regional food

webs (Nesis, 1987; Bjørke and Gjøsaeter, 1998; Gardiner and Dick,

2010; Golikov et al., 2013; Xavier et al., 2018). They attain high

regional biomass, are important as prey and predators, and have

high ecological diversity (Bjørke and Gjøsaeter, 1998; Gardiner and

Dick, 2010; Golikov et al., 2013; Xavier et al., 2018). Cephalopods

are challenging to identify morphologically (e.g., Nozères and Roy,

2021; this study, below), and genetic identification of certain species

is hampered by limited availability of reference sequences in

GenBank (e.g., Fernández-Álvarez et al., 2021; Katugin and

Zolotova, 2023; Taite et al., 2023). Finally, cephalopods respond

opportunistically to climate change, resulting in increasing regional

biomass, changing size-at-maturity and expanding geographical

ranges (e.g., Pecl and Jackson, 2008; Hoving et al., 2013a;

Doubleday et al., 2016; Xavier et al., 2018; Golikov et al., 2019b;

Oesterwind et al., 2022). In the mid-2000s and early 2010s,

northward range expansions in the Barents Sea and adjacent

areas of the Nordic Seas of 2000 km were documented for two

boreal-subtropical squid species (Todaropsis eblanae and

Teuthowenia megalops) and of 100 km for one sepiolid (Sepietta

oweniana) (Sabirov et al., 2009, Sabirov et al., 2012; Golikov et al.,

2013, Golikov et al., 2014). In the mid-2000s, the Arctic squid

species (Gonatus fabricii) increased its range over the eastern
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Barents Sea and adjacent deep waters of the Kara Sea (Golikov

et al., 2012, Golikov et al., 2013). These areas were previously too

cold for this species (Nesis, 1987, Nesis, 2001).

To regulate human activities in important and geographically

extensive systems, monitoring of marine ecosystems’ structure and

functioning is needed. An example is the Norwegian-Russian

Ecosystem Survey that has taken place annually since 2003 in the

Barents Sea (Michalsen et al., 2011; Eriksen et al., 2018). The long

term benthos data from this survey were recently used in

management decisions. Management assigned specific seafloor

grounds with vulnerable benthos species in the northern Barents

Sea and adjacent areas of the Central Polar Basin to be closed for

commercial fisheries as a response to northward migrating

commercial fish stocks and fishing fleets (Jørgensen et al., 2020).

Here, we use annual bottom trawl data from this survey spanning

across 18 years (2005–2022) to study the cephalopods in the

western Barents Sea and adjacent areas of the Nordic Seas and

Central Polar Basin. We aim: 1) to describe the temporal dynamics

of cephalopod community composition; and 2) to assess the

temporal dynamics of cephalopod abundance and biomass.
2 Materials and methods

2.1 Study area, survey details, sampling
and identification

The study area includes the western Barents Sea, the adjacent

marginal areas of the Norwegian and Greenland Seas, and of the

Central Polar Basin covered by the bottom trawl stations of the

Norwegian-Russian Ecosystem Survey (eastward to 40° E)

(Figure 1). Since 2004, the bottom trawling within this survey has

been standardized to the use of a Campelen-1800 shrimp trawl by

all the participating four research vessels (RVs) (Michalsen et al.,

2011; Eriksen et al., 2018; Zakharov et al., 2018). All data from the

2005–2022 period were included in the analyses, except from three

RVs for 2005, where cephalopods were not identified within

benthos catch. The study period was separated into two equal

periods for comparative purposes (2005–2013 and 2014–2022).

Overall, 2720 and 1609 bottom trawl stations were performed in

the studied area during the 2005–2013 and 2014–2022 period,

respectively (Table 1; Supplementary Table 1).

All invertebrate benthos catch from the shrimp trawl surveys was

identified onboard by benthic experts alongside fish experts

(Zakharov et al., 2018; Jørgensen et al., 2019; Zakharov et al., 2020;

Jørgensen et al., 2022). Cephalopods usually were treated as the other

benthos bycatch taxa onboard (Zakharov et al., 2018; Jørgensen et al.,

2019; Zakharov et al., 2020; Jørgensen et al., 2022). Since 2005, a

varying number of cephalopods from the benthos catch was fixed or

frozen and analysed ashore by Alexey V. Golikov (A.V.G.) and

Rushan M. Sabirov (R.M.S.). Such re-identification of catches from

the older surveys increased the number of species initially found.

Moreover, in many cases old unfixed samples were photo-verified by

A.V.G. and R.M.S. These data, when provided to onboard benthic

experts, resulted in significant increase of onboard identification

quality in the 2014–2022 period in comparison to the 2005–2013
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period (see Results & Discussion). Outdated names such as

Benthoctopus sp. and later Muusoctopus sp. were changed to

Muusoctopus aegir after this species was formally described in 2023

(Golikov et al., 2023a). Rossia individuals that did not fit either R.

palpebrosa or R. moelleri taxonomic descriptions were identified to

Rossia megaptera after this species was found to present in the

Barents Sea (Golikov et al., 2020).

In some years, a cephalopod expert was absent onboard during

a particular cruise. It was never the case for all participating RVs

simultaneously, if we account for ashore/photo-reidentification

described above. During these years, Bathypolypus and Rossia
Frontiers in Marine Science 03
were often not identified to the species level and labelled as

“Bathypolypus sp.” and “Rossia sp.”, respectively. Also during

these years, species were labelled as “Incirrata” if either

Bathypolypus sp. or Muusoctopus aegir; “Octopoda” if either both

of the latter or Cirroteuthis muelleri; “Ommastrephidae” if either

Todaropsis eblanae, Todarodes sagittatus or unidentified

Ommastrephidae; and “Cephalopoda” if nothing else was

recorded/photographed to help the identification ashore. In this

manuscript, the data were provided on group level as Bathypolypus

spp. (= combined three species and Bathypolypus sp.), Rossia spp.

(= combined three species and Rossia sp.) and Ommastrephidae
FIGURE 1

Bottom trawl station taken during 2005–2022 within the Norwegian-Russian Ecosystem Survey in the western Barents Sea, and distribution of
cephalopods caught by bottom trawl stations. (A) All bottom trawl stations and unidentified Cephalopoda. (B) Bathypolypus spp. (C) Muusoctopus
aegir. (D) Cirroteuthis muelleri. (E) Unidentified Incirrata and Octopoda. (F) Gonatus fabricii. (G) Boreal-subtropical species. (H) Rossia spp. Blank
maps made with Natural Earth and IBCAO V. 4.2 (Jakobsson et al., 2020). Common occurrence in (B, G, H) indicated stations where more than one
of the represented species were caught.
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TABLE 1 Bottom trawl station number and frequency of cephalopods in their catches in 2005–2022 in the western Barents Sea.

Years
Number

of
stations

Stations with
cephalopods

Bathypolypus
arcticus

Bathypolypus
bairdii

Bathypolypus
pugniger

Bathypolypus
sp.

n % n % n % n % n %

2005–2013 2720 927 34.1 131 14.1 12 1.3 8 0.9 51 5.5

2014–2022 1609 874 54.3 61 7.0 22 2.5 3 0.3 209 23.9

2005–2022 4329 1801 41.6 192 10.7 34 1.9 11 0.6 260 14.4

c2, p N/A N/A
19.63,
0.0110

N/A
76.68,
0.0001

N/A N/A N/A N/A N/A N/A

Years

Bathypolypus
spp.1

Muusoctopus
aegir

Unidentified
Incirrata

Cirroteuthis
muelleri

Unidentified
Octopoda

n % n % n % n % n %

2005–2013 197 21.3 10 1.1 2 0.2 8 0.9 1 0.1

2014–2022 293 33.5 11 1.3 4 0.5 12 1.4 16 1.8

2005–2022 490 27.2 21 1.2 6 0.3 20 1.1 17 0.9

c2, p N/A
57.63,
0.0001

N/A N/A N/A N/A N/A N/A N/A N/A

Years

Gonatus
fabricii

Todaropsis
eblanae

Todarodes
sagittatus

Unidentified
Ommastrephidae

All
Ommastrephidae2

n % n % n % n % n %

2005–2013 292 31.5 3 0.3 2 0.2 0 0 4 0.4

2014–2022 314 35.9 0 0 2 0.2 2 0.2 4 0.5

2005–2022 606 33.6 3 0.2 4 0.2 2 0.1 8 0.4

c2, p N/A
30.43,
0.0004

N/A N/A N/A N/A N/A N/A N/A N/A

Years

Rossia
palpebrosa

Rossia
megaptera

Rossia
moelleri

Rossia
sp.

Rossia
spp.3

n % n % n % n % n %

2005–2013 248 26.8 60 6.5 7 0.8 10 1.1 310 33.4

2014–2022 316 36.2 72 8.2 31 3.5 93 10.6 495 56.6

2005–2022 564 31.3 132 7.3 38 2.1 103 5.7 805 44.7

c2, p N/A
49.85,
0.0001

N/A
43.76,
0.0001

N/A N/A N/A N/A N/A
46.56,
0.0001

Years

Sepietta
oweniana

Unidentified
Cephalopoda

n % n %

2005–2013 1 0.1 287 31.0

2014–2022 1 0.1 88 10.1

2005–2022 2 0.1 176 9.8

c2, p N/A N/A N/A
111.20,
0.0001
F
rontiers in Mari
ne Science
 04
 fro
1Bathypolypus arcticus, B. bairdii, B. pugniger and Bathypolypus sp.; 2Todaropsis eblanae, Todarodes sagittatus and unidentified Ommastrephidae; 3Rossia palpebrosa, R. megaptera, R. moelleri
and Rossia sp.
Frequency of occurrence between 2005–2013 and 2014–2022 assessed with a c2 test where applicable. Frequency values are given for the 2005–2013 and 2014–2022 periods, annual values are
presented in Supplementary Table 1. Significant p-values are in bold. N/A, not applicable.
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(T. eblanae, To. sagittatus or unidentified Ommastrephidae), as well

as on individual species level, to show both species’ patterns and

patterns unbiased by identification quality.
2.2 Abundance and biomass

The ratio of trawl stations with cephalopod catch to standardized

total catches was recorded annually and was used as a measure of

cephalopod relative abundance. Frequency of occurrence of individual

species/group of cephalopods in % of all stations with cephalopods was

used as an abundance proxy of particular species/group. Statistical

comparisons of frequencies between the 2005–2013 and 2014–2022

period were possible where we have enough data annually (= caught for

more than four years within either one of the periods). These taxa were

Bathypolypus arcticus, Bathypolypus spp., Gonatus fabricii, Rossia

palpebrosa, R. megaptera, Rossia spp. and unidentified Cephalopoda.

The latter was done to assess if the quality of onboard identification

changed from the 2005–2013 to 2014–2022 period.

Biomass density, i.e. biomass in gram per nautical mile of

towing (g/n.m.) was a proxy of absolute biomass. The quantitative

measures were estimated using towing speed and distance by

standard IMR/PINRO protocols (Jørgensen et al., 2019; Zakharov

et al., 2020). We decided not to correct density values to absolute

biomass, because the Campelen-1800 shrimp trawl’s catchability for

cephalopods is unknown, as revealed by previous attempts to do so

(Lubin and Sabirov, 2007; Golikov et al., 2017). Statistical

comparisons of biomass density between the 2005–2013 and

2014–2022 period were possible where enough data was available:

Bathypolypus arcticus, B. bairdii, Bathypolypus spp., Gonatus

fabricii, Rossia palpebrosa, R. megaptera and Rossia spp. Deep-sea

octopods (Muusoctopus aegir and Cirroteuthis muelleri) were not

temporally compared, because deep-sea slopes were sampled

infrequently and differently among years, unlike the shelf areas.
2.3 Data analyses

To compare the biomass of species/taxa (see above) between the

two groups (i.e., the 2005–2013 and 2014–2022 period), a Mann–

Whitney U-test was used; and to compare among three or more

groups (i.e., within Bathypolypus spp., Rossia spp. and among other

taxa) we used a Kruskal–Wallis H test with a post-hoc Dunn’s Z test

(Zar, 2010). Frequencies of species/taxa were compared using a c2

test (Zar, 2010). Statistical analysis, calculations, equations and plots

were performed in PAST 4.12b (Hammer et al., 2001), Statistica

12.0 (Statsoft) and MS Excel 2010. The value of a = 0.05 was

considered significant in this study.
3 Results

3.1 Cephalopod species and abundance

The Norwegian-Russian Ecosystem Survey recorded twelve

species in the Barents Sea and adjacent areas during 2005–2022:
Frontiers in Marine Science 05
Bathypolypus arcticus, B. bairdii, B. pugniger, Muusoctopus aegir

(incirrate octopods; Octopoda Incirrata); Cirroteuthis muelleri

(cirrate octopod; Octopoda Cirrata); Gonatus fabricii, Todaropsis

eblanae, Todarodes sagittatus (squids; Oegopsida); and Rossia

palpebrosa, R. megaptera, R. moelleri and Sepietta oweniana

(bobtail squids; Sepiolida). Among those, T. eblanae, To.

sagittatus and S. oweniana were boreal-subtropical migrants, and

all others belonged to permanent Arctic residents. All records of the

boreal-subtropical species occurred south of 75° N (Figure 1). All

these species were recorded during both the 2005–2013 and 2014–

2022 period, except for T. eblanae, which was absent during the

2014–2022 period (Table 1). The latter species, however, was found

east of 40° E in the Barents Sea during this period (Golikov et al., in

prep.). So, the fauna composition over the studied area seemed

identical between the 2005–2013 and 2014–2022 period.

The trawl catch of cephalopods increased significantly over time

(Figure 2, Table 1; Supplementary Table 1). Moreover, significant

increase in frequency was recorded in every taxon it was checked for

(i.e., Bathypolypus spp., G. fabricii, R. palpebrosa, R. megaptera,

Rossia spp. and unidentified Cephalopoda), except for B. arcticus

(Table 1). In the latter species, significant decrease in frequency was

recorded (Table 1). Among the taxa where the significance of

temporal frequency changes could not be checked, it was increase

in B. bairdii, Bathypolypus sp., deep-sea and unidentified octopods,

boreal-subtropical Ommastrephidae squids, R. moelleri and Rossia

sp. and decrease in B. pugniger (Figure 2, Table 1; Supplementary

Table 1). Boreal-subtropical S. oweniana was infrequently caught

and no differences in frequency were observed over time.

Aggregations of Bathypolypus sp. and B. bairdii were recorded in

the south-western Barents Sea (Figure 1). Both deep-sea incirrate

and cirrate octopods, M. aegir and C. muelleri, were much less

frequent than Bathypolypus spp. (Figure 2, Table 1). Both these two

deep-sea octopods were found on the slope and in the troughs, but

not on the shelf (Figure 1). Unidentified Incirrata and Octopoda

were also largely found over the deep-sea areas, but closer to the

shelf than ‘identified’ deep-sea octopods (Figure 1).

Overall, Bathypolypus spp., G. fabricii and Rossia spp. were

much more frequent than the deep-sea (M. aegir and C. muelleri)

and the boreal-subtropical (Ommastrephidae and S. oweniana)

species, and distributed all over the study area (Figures 1, 2,

Table 1). Among the three most abundant cephalopod taxa,

Rossia spp. was the most frequently recorded during both the

2005–2013 and 2014–2022 period, while Bathypolypus spp. was

the least frequently recorded (Table 2). Within the Bathypolypus

spp. and Rossia spp., widespread boreal-arctic species B. arcticus

and R. palpebrosa were the most ubiquitous (Figures 1, 2, Table 1).

While the high-boreal R. megaptera and the arctic R. moelleri

preferred warmer and colder areas, respectively, both of the two

high-boreal species B. bairdii and B. pugniger preferred warmer

areas (Figure 1, Table 1).
3.2 Biomass

While frequencies of occurrence showed significant differences

over time, the biomass only showed significant decrease from the
frontiersin.org
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2005–2013 and 2014–2022 period for Bathypolypus spp. (Table 3).

A non-significant decrease was recorded for B. arcticus, B. bairdii

and Gonatus fabricii, while a non-significant increase was found in

Rossia palpebrosa, R. megaptera and Rossia spp. (Table 3). Among

the three most abundant cephalopod taxa, the biomass density was
Frontiers in Marine Science 06
the highest for Bathypolypus spp., medium for Rossia spp. and the

lowest for G. fabricii (Tables 3, 4). Within Bathypolypus spp., no

significant differences were found among the species (Tables 3, 4).

Within Rossia spp., high-boreal R. megaptera had significantly

lower biomass density than the two other species (Tables 3, 4).
4 Discussion

4.1 Summary of the main findings from the
18 years of annual trawl data

The main changes in cephalopod fauna occurred during the

mid-2000s and early 2010s, when four boreal-subtropical species

appeared in the area (three of them for the first time ever, and one

for the first time since the early 1980s). The timing of their

occurrence (i.e., the mid-2000s and early 2010s) followed the

onset of increased climate-driven warming in the Barents Sea

since late 1990s/early 2000s (Swart et al., 2015; Rantanen et al.,

2022). The Atlantification of the cephalopod community in the

Barents Sea was evidenced by increased abundance of boreal-

subtropical Ommastrephidae squids, and repeated occurrence of

Ommastrephidae squids and Sepietta oweniana during two

periods (2005–2013 and 2014–2022). ‘Typical’ Arctic cephalopod

species (Bathypolypus spp., Gonatus fabricii and Rossia spp.) are

still much more abundant in the western Barents Sea compared to

the deep-sea and the boreal-subtropical cephalopod species.

Moreover, the abundance of these Arctic taxa increased from

the 2005–2013 to 2014–2022 period, as did the abundance of

other cephalopods across the studied area. The increased

abundance but reduced biomass of Bathypolypus spp. from the

2005–2013to 2014–2022 indirectly suggests a body-size reduction.

This would be the first evidence of size reduction in response to

ocean warming in octopods, a phenomena known for other taxa

elsewhere (e.g., Gardner et al., 2011; Sheridan and Bickford, 2011;

Ikpewe et al., 2021). Lastly, a significant increase of onboard

identification quality followed when onboard benthic experts were

educated by cephalopod taxonomic experts. Such taxonomic

training increases the value of the ecosystem surveys for the

future monitoring.
TABLE 2 Cross-taxa comparison of frequencies among the most abundant cephalopods in 2005–2013 and 2014–2022 in the western Barents Sea.

2005–2013 2014–2022

Taxa

c2 = 75.26, p = 0.0001

Taxa

c2 = 78.68, p = 0.0001

Bathypolypus spp.1
Rossia
spp.2

Gonatus
fabricii

Bathypolypus spp.1
Rossia
spp.2

Gonatus
fabricii

Bathypolypus
spp.1

N/A p = 0.0310 p = 0.0001
Bathypolypus

spp.1
N/A p = 0.0001 p = 0.0001

Rossia
spp.2

c2 = 16.58 N/A p = 0.0001
Rossia
spp.2

c2 = 37.81 N/A p = 0.0001

Gonatus
fabricii

c2 = 37.00 c2 = 53.21 N/A
Gonatus
fabricii

c2 = 32.76 c2 = 39.65 N/A
fr
1Bathypolypus arcticus, B. bairdii, B. pugniger and Bathypolypus sp.; 2Rossia palpebrosa, R. megaptera, R. moelleri and Rossia sp.
Differences in frequencies assessed with a c2 test (station number already given in Table 1). Significant p-values are in bold. N/A – not applicable.
A

B

FIGURE 2

Frequency of occurrence of different species/taxa of cephalopods
in % of all bottom trawl stations with cephalopod catch in 2005–
2022 in the western Barents Sea. (A) All species/taxa.
(B) Bahtypolypus taxa combined as Bathypolypus spp., Rossia taxa
combined as Rossia spp. and Ommastrephidae taxa combined
as Ommastrephidae.
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TABLE 3 Biomass density of cephalopods in 2005–2022 in the western Barents Sea.

Years Bathypolypus arcticus
Bathypolypus

bairdii
Bathypolypus pugniger Bathypolypus sp. Bathypolypus spp.1

2005–
2013

0.3–3471.0 (135.0 ± 36.8)
1.0–1095.6 (136.3

± 89.1)
1.5–76.7 (33.4 ± 11.6) 1.1–617.1 (55.6 ± 12.5)

0.3–3471.0 (113.5
± 27.7)

2014–
2022

1.3–885.2 (97.4 ± 18.1)
2.8–1126.6 (134.2

± 51.4)
20.3–146.1 (85.2 ± 36.4) 0.1–1801.0 (83.2 ± 11.9) 0.1–1801.0 (91.4 ± 10.3)

2005–
2022

0.3–3471.0 (123.0 ± 25.7)
1.0–1126.6 (134.9

± 45.0)
1.5–146.1 (47.5 ± 13.9) 0.1–1801.0 (77.7 ± 9.9)

0.3–3471.0 (100.2
± 12.7)

U, p 3424.0, 0.13 97.0, 0.22 N/A N/A 25194.0, 0.0238

Years Muusoctopus aegir
Unidentified
Incirrata

Cirroteuthis muelleri
Unidentified
Octopoda

Gonatus fabricii

2005–
2013

13.5–2225.8 (286.9 ± 215.8) 10.0–16.8 (13.4 ± 3.4) 88.6–559.9 (243.0 ± 55.1) 520.0 0.7–740.0 (39.3 ± 4.2)

2014–
2022

6.3–231.9 (56.5 ± 19.9) 13.4–52.9 (32.8 ± 8.2) 18.2–1791.8 (511.1 ± 163.5) 7.5–1004.6 (127.1 ± 63.7) 0.5–673.0 (28.8 ± 2.9)

2005–
2022

6.3–2225.8 (166.2 ± 103.7) 10.0–52.9 (26.3 ± 6.7) 18.2–1791.8 (403.8 ± 103.2) 7.5–1004.6 (150.2 ± 64.1) 0.7–740.0 (33.3 ± 2.5)

U, p N/A N/A N/A N/A 40483.0, 0.06

Years Todaropsis eblanae
Todarodes
sagittatus

Unidentified
Ommastrephidae

All
Ommastrephidae2

Rossia palpebrosa

2005–
2013

9.0–149.7 (79.3 ± 70.3) 4.4–22.6 (13.5 ± 9.1) 0 9.0–154.1 (61.9 ± 46.3) 0.1–3620.7 (56.6 ± 15.3)

2014–
2022

0 17.2–120.4 (68.8 ± 51.6) 33.9–37.6 (35.7 ± 1.8) 17.2–120.4 (52.3 ± 23.2) 0.4–3126.1 (59.7 ± 11.0)

2005–
2022

9.0–149.7 (59.6 ± 45.1) 4.4–120.4 (41.1 ± 26.7) 33.9–37.6 (35.7 ± 1.8) 9.0–154.1 (56.4 ± 21.5) 0.1–3620.7 (58.3 ± 9.1)

U, p N/A N/A N/A N/A 36401.0, 0.20

Years Rossia megaptera Rossia moelleri Rossia sp. Rossia spp.3 Sepietta oweniana

2005–
2013

0.1–152.4 (24.4 ± 2.9)
26.8–184.0 (102.1

± 25.2)
0.4–169.9 (65.6 ± 20.7) 0.1–3620.7 (51.1 ± 12.0) 38.7

2014–
2022

0.8–396.7 (33.0 ± 6.7) 2.0–516.6 (52.3 ± 16.0) 0.6–1064.1 (52.2 ± 14.7) 0.6–3126.1 (56.1 ± 7.7) 3.8

2005–
2022

0.1–396.7 (29.0 ± 3.8) 2.0–516.6 (61.3 ± 14.1) 0.4–1064.1 (53.5 ± 13.4) 0.1–3620.7 (54.2 ± 6.6) 3.8–38.7 (21.3 ± 17.5)

U, p 2118.5, 0.85 N/A N/A 75053.0, 0.72 N/A

Years
Unidentified
Cephalopoda

2005–
2013

0.6–1911.3 (93.0 ± 10.4)

2014–
2022

0.6–306.8 (36.9 ± 4.9)

2005–
2022

0.6–1911.3 (79.5 ± 8.1)

U, p N/A
F
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1Bathypolypus arcticus, B. bairdii, B. pugniger and Bathypolypus sp.; 2Todaropsis eblanae, Todarodes sagittatus and unidentified Ommastrephidae; 3Rossia palpebrosa, R. megaptera, R. moelleri
and Rossia sp.
Differences between 2005–2013 and 2014–2022 assessed with a Mann–Whitney U test where applicable (station number already given in Table 1). Significant p-values are in bold. Biomass values
are min – max (mean ± SE). N/A, not applicable.
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4.2 Temporal dynamics of cephalopod
community composition

Our study is the first to document temporal trends in the

cephalopod community of the Barents Sea, which is one of the

fastest warming regions in the Arctic (Overland et al., 2014; Lind

et al., 2018; Gerland et al., 2023). Before 2005 (= start of the time

series used here), cephalopod biodiversity of the Barents Sea was

lower than it currently is (Nesis, 1987; Golikov et al., 2013; Xavier

et al., 2018) (Table 5). Todarodes sagittatus has been the only

boreal-subtropical cephalopod known from the Barents Sea before

2005 (Nesis, 1987; Golikov et al., 2013; Xavier et al., 2018) (Table 5).

It was last recorded in the Barents Sea in 1983 (Nesis, 1987), while

in our studies the first records of this species start from 2010

(Golikov et al., 2013, 2014; Xavier et al., 2018). Other boreal-

subtropical cephalopods that were found in the Barents Sea in

2005–2013 are Todaropsis eblanae, Teuthowenia megalops and

Sepietta oweniana (Golikov et al., 2013, 2014; Xavier et al., 2018)

(Table 5). The deep-sea squid Te. megalops was only found once in

2009 (Golikov et al., 2013). This rare record was not from the

Norwegian-Russian Ecosystem Survey area, but from the north-

eastern slope of the Greenland Sea (Figure 1), and taken by the same

Campelen-1800 trawl as used in the Norwegian-Russian Ecosystem

Survey (Golikov et al., 2013). In 2014–2022, all boreal-subtropical

cephalopods were recorded in the Barents Sea again, except for Te.

megalops (Table 5). A gradual influx of Atlantic fauna in the Barents

Sea is also well known for other invertebrates and fishes, providing a

basis for ongoing Atlantification of the local ecosystems (Jørgensen

et al., 2016; Frainer et al., 2017; Brandt et al., 2023). The records

from our study show that the cephalopod community of the Barents

Sea is subjected to the Atlantification since the 2005–2013 period.

Mean annual temperatures in the Arctic, both modelled and

observed, continuously increase since the late 1990s/early 2000s

(Swart et al., 2015; Rantanen et al., 2022). This warming, which

results from climate change, is often hypothesized as a main cause

of the Atlantification (e.g., Jørgensen et al., 2016; Frainer et al., 2017;

Brandt et al., 2023).

Of the twelve permanent Arctic resident cephalopod species

(Xavier et al., 2018; Golikov et al., 2020; Golikov et al., 2023a), only

Muusoctopus sibiricus, M. leioderma and Muusoctopus sp. were

absent in the western Barents Sea and adjacent areas. These

octopods live in the Siberian Seas, Beaufort and Chukchi Sea (M.

sibiricus and M. leioderma), and in the northern Baffin Bay and

Canadian Arctic Archipelago (Muusoctopus sp.) (Nesis, 1987;

Xavier et al., 2018; Golikov et al., 2023a). The absence of

published records of Rossia megaptera, Bathypolypus bairdii and

B. pugniger before 2005 (Table 5) could rather be caused by the lack

of taxonomic studies and identification expertise. Bathypolypus

bairdii and B. pugniger were only taxonomically separated from

B. arcticus in 2002 (Muus, 2002). And R. megaptera is often

considered as living only in North-West Atlantic (Mercer, 1968;

Reid and Jereb, 2005), despite its presence was later confirmed from

Iceland (Golikov et al., 2018b) and the Barents Sea (Golikov et al.,

2020). When reanalyzing samples from before 2005, both B.

pugniger and R. megaptera have been found in the area, in 1967

and in 2003 respectively (Golikov et al., in prep.).
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Alternative methods to assess biodiversity and community

composition in marine ecosystems are underwater video imagery

and environmental DNA (eDNA) analyses (e.g., Merten et al., 2021;

Kopp et al., 2023). Environmental DNA analysis enables detection

of species based on genetic material from marine animals that is

released in the environment, such as shed skin cells, mucus, gametes

and faeces (Taberlet et al., 2012a, Taberlet et al., 2012b). The

advantages of eDNA analysis are that it gives a larger presence/

absence time frame than trawl surveys (eDNA remains suspended

in the water column for up to 60 days), and it allows simultaneous

identification of different taxa within the same water sample

(reviews: Thomsen and Willerslev, 2015; Rourke et al., 2022).

Advances and successes have been made with the application of
Frontiers in Marine Science 09
eDNA in fisheries surveys (Thomsen and Willerslev, 2015; Rourke

et al., 2022) and also in cephalopod biodiversity studies (e.g.,

Merten et al., 2021; Visser et al., 2021; Merten et al., 2023). While

the technique is being developed to be used for abundance estimates

(Thomsen and Willerslev, 2015; Rourke et al., 2022), it is currently

mostly used to obtain presence-absence for species or communities.

Results of eDNAmetabarcoding depend on the used primers, which

may be biased towards certain taxonomic groups, and sequence

availability in databases. For example, the 18S rRNA primer that is

used in cephalopod eDNA studies does not detect all octopods (De

Jonge et al., 2021). While, arctic and boreal-subtropical cephalopods

recorded in the Barents Sea and adjacent areas are better

represented in GenBank with COI, than with 18S. When
TABLE 5 Cephalopod fauna composition from the XIXth century to 2022 in the western Barents Sea and adjacent areas.

Timeline Before 2005
2005–2022 2019–2022

(Fram Strait)2005–2013 2014–2022

Source
Reviews: Nesis, 1987; Golikov et al., 2013; Xavier et al., 2018; and

references therein
This study Merten et al., 2023

Assessment
method

Trawling eDNA

Octopoda

Bathypolypus arcticus Bathypolypus arcticus Bathypolypus arcticus

1 Bathypolypus bairdii Bathypolypus bairdii

1 Bathypolypus pugniger Bathypolypus pugniger

Bathypolypus sp.2 Bathypolypus sp.2

Muusoctopus aegir3 Muusoctopus aegir3 Muusoctopus aegir

Incirrata2 Incirrata2

Cirroteuthis muelleri Cirroteuthis muelleri Cirroteuthis muelleri

Octopoda2 Octopoda2

Oegopsida

Gonatus fabricii Gonatus fabricii Gonatus fabricii Gonatus fabricii 4

Todaropsis eblanae5 5

Todarodes sagittatus Todarodes sagittatus Todarodes sagittatus

Ommastrephidae2 Ommastrephidae2

Teuthowenia
megalops6

Histioteuthis sp.

Histioteuthidae

Oegopsida

Sepiolida

Rossia palpebrosa Rossia palpebrosa Rossia palpebrosa Rossia palpebrosa

1 Rossia megaptera Rossia megaptera

Rossia moelleri Rossia moelleri Rossia moelleri

Rossia sp.2 Rossia sp.2

Sepietta oweniana Sepietta oweniana

Cephalopoda Cephalopoda2 Cephalopoda2 Cephalopoda
1not recorded due to lack of identification expertise, not a real absence (see Discussion); 2one of the taxa recorded in the Barents Sea, but not recognized by benthic experts onboard and not fixed/
frozen for ashore identification; 3as Benthoctopus piscatorum and Muusoctopus sp. prior to the species’ description in 2023; 4eDNA rendered it as Gonatus sp. and Gonatidae; 5recorded in the
south-eastern Barents Sea during 2014–2022; 6not recorded by the Norwegian-Russian Ecosystem Survey, where the rest of our samples in this study are from. Boreal-subtropical species marked
with light-grey color.
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applying, it is 18S which is better able to detect cephalopods during

eDNA metabarcoding on water samples (detailed in De Jonge et al.,

2021). The collection of underwater imagery enables analyses of

biodiversity and community composition, color, behavior, habitat

association, and estimation of abundance and biomass density in

case of standardized surveys (e.g., Robison et al., 1998; Robison,

2004; Buhl-Mortensen et al., 2015; Stratmann et al., 2022).

Underwater imagery analyses has been applied in biodiversity

assessments of cephalopod communities (e.g., Merten et al., 2021;

Pratt et al., 2021, Pratt et al., 2023). For example, G. fabricii was

recorded in the central Arctic Ocean under ice by a mooring camera

system (Snoeijs-Leijonmalm et al., 2022), and Arctic cirrate

octopods were documented to perform benthopelagic migrations

(Golikov et al., 2023b). While no studies have attempted to quantify

squid biomass from underwater imaging surveys, this approach

may be challenging since some squids may alter their behavior in

response to lights (avoidance or attraction behavior) (e.g., Hoving

et al., 2019; Snoeijs-Leijonmalm et al., 2022). On the other hand,

presumably natural cephalopod behavior has been documented

repeatedly via in situ observations of remotely operated vehicles

(e.g., Hoving and Robison, 2012; Hoving et al., 2013b; Hoving and

Haddock, 2017). Benthic cephalopods are often hard to identify to

species level from images (e.g., Pratt et al., 2021; Robinson et al.,

2021; Snoeijs-Leijonmalm et al., 2022; and many others). To

summarise, currently trawling, eDNA and video imagery each

have their strengths and weaknesses, and the best results are

rendered by combining them (e.g., Thomsen et al., 2016; Merten

et al., 2021; Kopp et al., 2023).
4.3 Temporal dynamics of cephalopod
abundance and biomass

A clear increase in the ratio of cephalopod catches to

standardized total catches, as well as an increase in the frequency

of occurrence was recorded for most of the studied cephalopod

species/taxa in the western Barents Sea from the 2005–2013 to

2014–2022 period. These observations align with ongoing

continuous increase of mean annual temperatures in the Arctic

during the same timeline (Swart et al., 2015; Rantanen et al., 2022).

While the expansion of cephalopods’ ranges and habitats was

previously indirectly implying to their increased abundance and

biomass (Golikov et al., 2012, Golikov et al., 2013; Xavier et al.,

2018; Golikov et al., 2019b; Oesterwind et al., 2022), our study is the

first direct evidence that indeed the abundance of cephalopods in

the Arctic is increasing. Our results are in line with a global trend

that shows that cephalopods’ biomass is increasing in tropical and

temperate areas (Doubleday et al., 2016). Our results are also in line

with the trends observed for other Arctic nekton, such as increasing

abundance of boreal pelagic fishes (Frainer et al., 2017; Brandt

et al., 2023).

The biomass density used here can be a proxy of absolute

biomass when coupled with abundance data and distribution maps.

This makes comparisons of biomass among the studies possible

(even though limited by the use of different gear). The biomass of

deep-sea octopods is the largest in the troughs and on the slopes of
Frontiers in Marine Science 10
the marginal areas of the Barents Sea. Cirroteuthis muelleri

specifically reaches the highest biomass density in the studied

area, even though it is still about two times lower compared to

this species’ hotspots in the Baffin Bay (Golikov et al., 2022). At the

same time widespread Arctic taxa (Bathypolypus spp., Gonatus

fabricii and Rossia spp.) have much higher abundance and

ubiquitous distribution in the studied area, while their biomass is

lower than of deep-sea octopods. The biomass of Bathypolypus spp.

and Rossia spp. in the Baffin Bay seems comparable to our values

(Frandsen and Wieland, 2004; Treble, 2007), but the trawls are

different and it may flaw a direct comparison. In the Porcupine

Seabight, abundance data of Bathypolypus spp. and Rossia spp.

suggest similar or slightly lower biomass than in the Barents Sea, but

the used trawls are also different from those used in the Barents Sea

(Collins et al., 2001). When correctly estimated, absolute biomass

may be a good parameter to compare among areas. Because we do

not know the trawl catchability of cephalopods, absolute biomass is

currently rarely used. Previous conservative estimates of absolute

biomass include 6.5 thousand tonnes of R. papebrosa and 24.8

thousand tonnes of G. fabricii in the Norwegian-Russian Ecosystem

Survey area in 2007 and 2011, respectively by Golikov et al., (2017).

Our current study exceeds these numbers in 8–10 times.

The standardized survey (gear, time and place) demonstrating

the congruent significant decrease of biomass and significant

increase in individual numbers (see Results and above) indirectly

suggests a reduction in body-size of Bathypolypus spp. in the

western Barents Sea. There are various examples of reduction in

size in aquatic invertebrates, fishes, and some seabirds in response

to climate change (e.g., Gardner et al., 2011; Sheridan and Bickford,

2011; Ikpewe et al., 2021). Among cephalopods, size reduction in

response to climate change has only been recorded for squids

(Jackson and Domeier, 2003; Hoving et al., 2013a; Arkhipkin

et al., 2015; Takahara et al., 2017).

To date, cephalopod monitoring in the Barents Sea has been

performed via analysis of benthos bycatch from the Norwegian-

Russian Ecosystem Survey. This survey uses the Campelen-1800

bottom trawl which is designed for demersal shrimp and fish

surveys (McCallum and Walsh, 1994). It is not typically used to

assess pelagic squids, as was done in this study. Still, even with a

gear that is suboptimal for nekton, G. fabricii is the second most

abundant cephalopod in the study area. This suggests that biomass

of G. fabricii and other squids in the Barents Sea may be even higher

if sampled with a pelagic trawl (Golikov et al., 2012, Golikov et al.,

2017; Golikov et al., 2019a).
4.4 Challenges to
cephalopod identification

Cephalopod identification can be challenging for non-

specialists, also because of wrong or insufficient species names in

GenBank (e.g., Fernández-Álvarez et al., 2021; Katugin and

Zolotova, 2023). Specifically, in Bathypolypus spp. only mature

males can be reliably identified by non-specialists. Genetic

barcodes from reliably identified B. bairdii and B. pugniger were

only recently uploaded to GenBank (Taite et al., 2023).
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Muusoctopus aegir was first described in 2023 (Golikov et al.,

2023a), and is in GenBank as ‘Muusoctopus sp.’ (Taite et al.,

2023). Sequences of specimens that were morphologically

identified as Gonatus fabricii and G. steenstrupi and originated

from several studies in the North Atlantic cluster as a single species

in GenBank (Lindgren et al., 2005; Lindgren, 2010; Vecchione et al.,

2010; Taite et al., 2020). These Gonatus sequences were referred to

as being different from ‘real’ G. fabricii from the Arctic (Taite et al.,

2020; Katugin and Zolotova, 2023), which was cited as ‘Lindgren,

unpublished’. To date, only G. fabricii has been recorded in the

Barents Sea (Golikov et al., 2012; Xavier et al., 2018; Golikov et al.,

2019a). The most northern distribution is still unknown for G.

steenstrupi, and is supposed to be in the low Arctic areas, such as

north off Iceland (Xavier et al., 2018; Golikov et al., 2018a). Rossia

palpebrosa also has several misidentifications in GenBank (they do

not even cluster as one species; A.V.G., pers. obs.), and there are no

uploaded sequences for R. moelleri and R. megaptera.

In this study there was a significant increase in quality of

onboard identification expertise by benthic experts over time.

This is demonstrated by a three times-decrease of unidentified

cephalopods from the trawl catches from the 2005–2013 period to

the 2014–2022 period, and by changed ratios of taxa within

Bathypolypus spp. Onboard experts recognized B. bairdii and B.

pugniger more often. Still, 10% of cephalopod catches were

unidentified in the 2014–2022 period, which imply necessary

improvements of onboard identification.
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