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Introduction: A sustainable fishery relies on consistent and substantial recruitment.

There is, however, considerably high mortality among fish larvae during their early

development. One of themost important factors determining larval survival is foraging

success. Bigeye tuna is among the most important commercial species in the Indian

Ocean. Despite being routinely researched and assessed, it remains unclear how food

availability affects the recruitment success of bigeye tuna.

Methods: In this study, we used phytoplankton size (MD50) as an indicator of prey

availability and investigated the connection betweenMD50 and bigeye tuna recruitment

from 2000 to 2018 through the Beverton-Holt stock-recruitment function. The Indian

Ocean was divided into four regions to accommodate spatial differences.

Results: As a result, larger MD50 could bring higher recruitment, particularly in the

eastern and southern Indian Ocean. Based on the analysis, we inferred that for bigeye

tuna, the eastern Indian Ocean is the primary spawning ground, and the peak

spawning period falls in Season 2 (April-June).

Discussion: The conclusions provide valuable insights for understanding the

recruitment characteristics of bigeye tuna in the Indian Ocean.
KEYWORDS

recruitment, larvae survival, phytoplankton, bigeye tuna, Indian Ocean
1 Introduction

The Indian Ocean ranks second after the Pacific Ocean in terms of tuna fishing,

accounting for 22% of the global tuna catches in 2020 (ISSF, 2022). Bigeye tuna (Thunnus

obesus Lowe, 1839), a vital commercial tuna species in the Indian Ocean, has witnessed a

surge in commercial value over the past few decades (Zudaire et al., 2022). In 2020, bigeye
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tuna catches amounted to 84,388 tonnes (in live weight),

representing about 7.5% of the total catches in the Indian Ocean

(data from FAO FishStat database, accessible at https://

www.fao.org/fishery/statistics-query/en/capture/capture_quantity,

retrieved on February 2, 2023). Historically, the major portion of

catches came from the longline fleets, but there was a dramatic drop

due to piracy activities in 2004 (ISSF, 2022). In the last decade, purse

seiners and longliners are the two major fisheries comprising 80% of

the catches (Secretariat, 2022). According to the stock assessment of

bigeye tuna conducted by the Indian Ocean Tuna Commission

(IOTC), the stock was considered to be overfished and had been

subject to overfishing (Fu, 2019).

Although bigeye tuna has been regularly assessed in the Indian

Ocean, the precise timing and location of recruitment are still

uncertain (Fu, 2019). Recruitment, being a critical process in

population dynamics, plays a vital role in ensuring the

sustainability of fisheries. Despite intensive fishing, fish populations

may still persist or even be maintained at sustainable levels due to

substantial compensatory and density-dependent mortality (Camp

et al., 2020). A better understanding of the recruitment characteristics

could enhance the efficiency of fishery management and provide

useful information for stock assessment and projection.

The spawning of bigeye tuna exhibits both seasonal and year-

round characteristics (Muhling et al., 2017). It occurs in tropical and

sub-tropical waters when the surface water temperature exceeds 24°C

(Nishikawa and Kenkyūjo, 1985; Schaefer, 2001). Eggs laid typically

hatch into larvae (about 3 mm in length) in a few days, develop

foraging and swimming organs quickly, and then grow into juveniles

within the first month of life (Miyashita et al., 2001; Reglero et al.,

2014). It is worth noting that the recruits experience exceedingly high

mortality throughout the hatching and early life stages (Anderson,

1988; Russo et al., 2022; Shropshire et al., 2022). The biotic and abiotic

conditions (e.g., temperature, zooplankton biomass, and eddies) in the

water column, especially the surface layers, could strongly affect fish

larval distribution and abundance, thereby impacting the reproduction

of the species (Cuttitta et al., 2018; Russo et al., 2022). The feeding

success of larvae is one of themost important processes in their survival

(Anderson, 1988; Llopiz and Hobday, 2015). In particular, for species

such as bigeye tuna, which primarily spawn in tropical regions, prey

availability is more relevant than temperature to larvae (Reglero et al.,

2014; Shropshire et al., 2022). To meet their metabolic requirements,

tuna larvae hinge on the zooplankton availability after the yolk sack

absorption (Llopiz and Hobday, 2015; Shropshire et al., 2022). They

have a very narrow diet and are highly selective in their consumption of

limited species of zooplankton inhabiting the shallowmixed layer (such

as appendicularians, cladocerans, and cyclopoid copepods in the genera

Farranula and Corycaeus) (Llopiz and Hobday, 2015; Artetxe-Arrate

et al., 2021).

After transitioning from endogenous to exogenous nutrition, the

larvae are most vulnerable to environmental factors, particularly food

availability. High mortality rate often follows the strictly endogenous

yolk feeding period as well as the first exogenous feeding phase. This

period has been hypothesized as a “critical period” (Hjort, 1914) that

determines recruitment success, but the hypothesis remains

controversial (Sifa and Mathias, 1987; Robert et al., 2013). As a

highly migratory species in the open seas, the recruitment of bigeye
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tuna is difficult to monitor by fishery-independent methods (Kolody

et al., 2019). Thus, only a limited amount of research has been

conducted to explore the influence of larval foraging success on the

recruitment of bigeye tuna, with most information being related to

tuna recruitment and reproduction confined to the Pacific Ocean

(Langley et al., 2009; Zhu et al., 2010; Muhling et al., 2018;

Woodworth-Jefcoats and Wren, 2020). Owing to this research gap,

we developed a new method to explore the validity of the “critical

period” hypothesis for bigeye tuna in the Indian Ocean. The median

phytoplankton size (MD50) was used as a proxy for the larval food

quality (Barnes et al., 2011). A higher MD50 signifies larger

phytoplankton and, in turn, more food available for the

zooplankton upon which larval bigeye tuna feed. Since it is unclear

whether the relationship between food availability and recruitment

can be explained by linear or nonlinear regression due to the

complexity of the real world, we examined the relationship between

MD50 and the environment-related parameter, b, of the Beverton–

Holt stock–recruitment function (B–H function) (Beverton and Holt,

1957). If there was a relationship betweenMD50 and the parameter b,
the B–H function could describe the relationship between food

availability and recruitment of bigeye tuna. Regional differences in

the relationship were also considered based on the spatial

stratification of the stock assessment model for bigeye tuna (Fu,

2019). The findings of this study could refine the estimation of bigeye

tuna recruitment and elucidate the factors affecting its variation,

thereby advancing stock assessment and management practices.
2 Materials and methods

2.1 Study region

Spatial structures, critical in stock assessments and fisheries

management, take into account the differences in exploitation levels

and fishery operations (Vincent and Hampton, 2018). The research

area of this study spans the entire Indian Ocean and was divided

into four regions based on the spatial structure used in the current

bigeye tuna stock assessment (Figure 1): the south-western

equatorial region (R1S), the north-western equatorial region

(R1N), the eastern equatorial region (R2), and the southern

region (R3) (Fu, 2019).
2.2 Beverton–Holt stock–
recruitment function

The B–H stock–recruitment function describes the relationship

between the recruit abundance and the spawning biomass of the

stock (Miller and Brooks, 2021). The basic function is as follows:

R
S
=

1
aS + b

(1)

where R represents the number of recruits, and S is the

spawning stock biomass. The parameters a and b are related to

two types of mortality: a is mainly linked to density-dependent

mortality rates, whereas b pertains to the mortality caused by
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external (or density-independent) factors, such as temperature,

wind, currents, and food availability (Beverton and Holt, 1957;

Miller and Brooks, 2021). This study focuses on the relationship

betweenMD50 and b; if there is any monotonic relationship between

the two, the B–H function may be used to describe the relationship

between MD50 and recruitment.

An alternative form of the B–H function was introduced by

Mace et al. (1988) in terms of steepness D, equilibrium unexploited

recruitment R0 or spawning biomass S0, and the unexploited

spawning biomass per recruit S0/R0 (also defined as j0). Francis

(1992) denoted the steepness as h, which is more frequently used

nowadays. The parameters h, R0, and S0 were extracted from the

bigeye tuna stock assessment, conducted by the Stock Synthesis

model version 3.24z (SS3) (Fu, 2019). The B–H function was

defined in the SS3 model as follows:

Ry

Sy
=

1
5h−1
4hR0

· Sy +
(1−h)   S0
4hR0

(2)

where Sy and Ry are the spawning stock biomass and the

recruitment in season y, respectively. Comparing Equation (2) to

the basic function Equation (1), a can be calculated as (Equation 3):

a =
5h − 1
4hR0

(3)

Assuming that b is a vector of random effects, its seasonal values

can be back-calculated according to the observed Sy and Ry time

series (Equation 4).
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b =
Sy
Ry

− aSy (4)

The seasonal Sy and Ry data from 1975 to 2018 have been

estimated in the stock assessment model (Fu, 2019). To be

consistent with the stock assessment, the same seasonal setting

was used in the present study: January–March (season 1), April–

June (season 2), July–September (season 3), and October–

December (season 4). The spatial structure of SS3 allows the

calculation of b for each region and season from 1975 to 2018.
2.3 Environmental data

The MD50 (cell size) in equivalent spherical diameter in mm is

derived from the cell mass (MB50), which is calculated as follows

(Equation 5):

log10 MB50ð Þ = 0:929 log10 (chla)ð Þ − 0:043(SST) + 1:340 (5)

where chla denotes chlorophyll-a in mg/m3, while SST is sea

surface temperature in °C (Barnes et al., 2011). Then, MB50 can be

converted to MD50 as follows (Equation 6):

MD50 = 2:138(MB50)
0:355 (6)

(Menden-Deuer and Lessard, 2000; Polovina and

Woodworth, 2012).

Since there was limited continuous chlorophyll-a record before the

year 2000, monthly chlorophyll-a data from 2000 to 2018 were obtained
FIGURE 1

Study area of the stock assessment of the bigeye tuna in the Indian Ocean (Fu et al., 2019).
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from NASA’s Moderate-resolution Imaging Spectroradiometer

(MODIS) Terra Chlorophyll Data (Terra/MODIS) with a 9-km spatial

resolution (NASA Goddard Space Flight Center, 2018) (https://

oceandata.sci.gsfc.nasa.gov/directdataaccess/). Therefore, the research

period covered the years from 2000 to 2018. The monthly SST data

with 1° resolution from 2000 to 2018 were sourced from NOAA

Extended Reconstructed SST v5 (Huang et al., 2017) (https://

psl .noaa.gov/data/gridded/data.noaa.ersst.v5.html). The

chlorophyll-a and SST data were then computed seasonally and

averaged over each region to calculate the MD50, aligning with the

spatial and temporal stratifications of b. The quarterly MD50 and b
from 2000 to 2018 for four regions were then used to analyze the

relationship between food availability and recruitment of

bigeye tuna.
2.4 Statistical analysis

As the variables followed normal distributions, linear regression

analysis was used to evaluate the relationship between MD50 and b.
As previously stated, tuna larvae demonstrate a rapid growth in

their early life history, becoming juveniles within the first month of

life. To validate the significance of food availability at the egg-

hatching stage, the time-lag effects were disregarded in this study

since new recruitments were defined in the stock assessment model

as occurring every season (Fu, 2019).
2.5 Z score transformation

Given that the metrics of the data sets are distinct, Z-score

standardization was applied to normalize individual distributions.

The Z-score formula is (Equation 7):

Z =
X − X

s
(7)

where X is the original data value, X and s are the mean and the

standard deviation, respectively. A converted Z will result in a

distribution with a mean of 0 and a variance of 1.
3 Results

The distributions of b and MD50 for each region can be

visualized in Figure 2. Given that b represents density-

independent mortality in the B–H function, the negative

monotonic relationship observed between b and MD50 implies

that lower food availability would lead to higher mortality and,

consequently, diminished recruitment levels. According to Figure 2,

the majority of MD50 is negatively related to b as hypothesized,

although there are some outliers. The outliers with lower MD50

values but still lower b mean that there is less food availability but

higher recruitment compared to other points. When plotting b
against MD50 by season, it appears that most outliers arise from the
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same season. In the regions R1N, R2, and R3, outliers

predominantly occurred in season 2 (April–June). In the region

R1S, outliers were primarily attributed to season 3 (July–

September). We referred to these seasons as anomalous seasons,

which make it more difficult to find mean patterns. Therefore, for

each area, two comparisons were carried out between b and MD50

time series: one using the original datasets and the other with the

anomalous seasons associated with the outliers removed and only

containing the normal season. In all regions, the time series of b and

MD50 have significant opposite trends, especially when the

anomalous seasons were excluded (Figure 3).

Model 1 was developed using data from all seasons, while model

2 utilized the data excluding anomalous seasons. The results of

linear regression are presented in Table 1, and the Pearson

correlation coefficients are shown in Table 2. According to model

1, MD50 showed significant negative linear relationships with b in

regions R1S (p = 0.003, r = -0.333), R2 (p < 0.001, r = -0.371), and

R3 (p < 0.001, r = -0.546). However, no significant correlation was

found in region R1N (p = 0.152, r = -0.166). Upon the removal of

the anomalous season, model 2 exhibited enhanced correlations. b
andMD50 had significant correlations (p < 0.001) in all regions, with

correlation coefficients being -0.544 in R1N, -0.561 in R1S, -0.665 in

R2, and -0.677 in R3, respectively. The residual diagnostics of the

linear regression models were shown as Q–Q plots in Figure 4.
4 Discussion

The results highlight that food availability plays a crucial role in

bigeye tuna recruitment, thereby supporting the hypothesis of the

“critical period”, which posits that the survival rate of newly hatched

larvae is highly sensitive to feeding conditions during the first

feeding stage (Hjort, 1914). A noteworthy negative relationship is

observed between b and MD50 fit across all regions. It is generally

believed that the eastern Indian Ocean (R2) serves as the principal

spawning area, and the temperate region (R3) functions as the

feeding grounds for bigeye tuna (Reglero et al., 2014; Muhling et al.,

2017; Fu, 2019). Accordingly, the highest values of correlation

coefficients were discovered in the R3 and closely followed by R2.

It is worth mentioning that tuna larvae exhibit a marked preference

for warmer waters (Garcıá et al., 2013; Alvarez et al., 2021), and R3

is located in the temperate Indian Ocean where the temperature is

presumably cooler for bigeye tuna spawning or larval survival. The

high correlation coefficient in R3 could be ascribed to the increased

metabolic demands in lower-temperature environments. The

results of this study indicate that, in addition to temperature

reported by literature, food availability also strongly influences

recruitment success. The “critical period” hypothesis was also

borne out in the study of Woodworth-Jefcoats and Wren (2020).

In their study, MD50 was identified as an environmental driver of

bigeye tuna recruitment and can be an informative predictor of

bigeye tuna catch rates in Hawaii’s deep-set longline fishery with a

4-year forecast window, aligning with the results of our study. The

importance of food availability on recruitment is also found in other
frontiersin.org
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marine fishes, e.g., Pomacentrus amboinensis (Jones, 1986), Sardina

pilchardus (Guisande et al., 2001), and North Sea cod (Olsen et al.,

2011). Regional differences should also be noticed in this study.

Across the four regions, we observed different correlation

coefficients between food availability and recruitment. This

heterogeneity emphasized the importance of spatially structured
Frontiers in Marine Science 05
stock assessment. Accurately accounting for population structure in

stock assessments can improve model performance and reduce bias

(Punt, 2019).

A strong seasonal pattern was evident in the results. The

recruitment is lower during seasons 1 and 4 and corresponds to

the lowerMD50 in all regions. Recruitment is higher during seasons 2
FIGURE 2

Scatter plots of Z-transformed MD50 and b with fitted linear regression lines in four regions. The figures on the left include all-season data, while the
figures on the right exclude anomalous seasons. R1N_exs2, excluding season 2 data in R1N; R1S_exs3, excluding season 3 data in R1S; R2_exs2,
excluding season 2 data in R2; R3_exs2, excluding season 2 data in R3.
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and 3. However,MD50 are relatively lower in season 2 in R1N, R2, and

R3. Based on the previous hypothesis that more food could bring

more recruitment, season 2 with opposite trends may be anticipated

to be the spawning season. Despite the insufficient food supply,

numerous eggs may also contribute to higher recruitment. Besides

this, spawning seasons often coincide with optimal environmental

conditions that support egg development and survival. Some

researchers have shown that the lipid composition of egg improved
Frontiers in Marine Science 06
due to the alteration of habitat that adults are exposed to during the

spawning seasons (Navas et al., 1997; Yanes-Roca et al., 2009). A

higher lipid composition of fish eggs enhances their survival and

development by providing energy reserves, essential fatty acids for

structural integrity, and resilience against environmental stressors

(Singh et al., 2021). Consequently, high-quality eggs generally lead to

higher hatching rates, improving the recruitment success (Kjørsvik

et al., 2003; Ienaga et al., 2021). However, very limited studies verified
FIGURE 3

Time series of Z-transformed MD50 (blue) and b (green) from 2000 to 2018. The figures on the left include all-season data, while the figures on the
right exclude anomalous seasons. R1N_exs2, excluding season 2 data in R1N; R1S_exs3, excluding season 3 data in R1S; R2_exs2, excluding season 2
data in R2; R3_exs2, excluding season 2 data in R3.
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the egg quality of bigeye tuna in the Indian Ocean, more efforts still

need to be conducted. It is also challenging to explain why the

spawning season in R1S deviates from expectations. Furthermore,

previous studies have demonstrated that bigeye tuna spawn in the

western Indian Ocean between January and April and in the eastern

Indian Ocean from December to January and in June (Nootmorn,

2004; Zudaire et al., 2022), which is not consistent with the findings of

this study. Given that the model time step is arbitrarily divided, it may

lack the flexibility to accurately reflect the complex spawning

behavior in nature. In addition, if there are inaccuracies in the

growth function estimation, the recruitment timing may also

be biased.

There is also considerable uncertainty associated with

recruitment estimates obtained from tuna stock assessment

models. While growth, selectivity, and natural mortality are

typically assumed to be constant over time in stock assessments,

recruitment exhibits considerable temporal variations owing to the

egg production and the subsequent larvae survival being highly

sensitive to both biotic and abiotic factors (Maunder and Thorson,

2019). Most tuna stock assessments (including the Indian Ocean

bigeye tuna stock assessment) recognize the concurrent existence of

the process and observation errors. The Stock Synthesis model

modeled recruitment deviations as log-normally distributed and

estimated based on a stationary B–H relationship using a penalized

likelihood approach. However, researchers have found that,

compared to the penalized likelihood approach, the marginal

likelihood approach possesses superior statistical properties

(Maunder and Deriso, 2003; Valpine and Hilborn, 2005). Apart

from that, estimating the parameters and variance of the stock–

recruitment remains a complex task. In the Indian Ocean bigeye

tuna stock assessment, the steepness is usually set at 0.7, 0.8, and 0.9,

and the CV (sR) is fixed at 0.6. Several studies have pointed out that
sR is frequently overestimated, and there are still controversies
Frontiers in Marine Science 07
regarding the setting of sR in tuna stock assessments (ISSF, 2011;

Kolody et al., 2019). Fishery-independent recruitment monitoring

programs are desirable to increase the precision of population

estimation and reduce management uncertainty and risk.

However, due to the high cost and logistical challenges, they

remain rare in tuna management (Kolody et al., 2019).

Environmental covariates have been integrated into recruitment

estimation in various ways. Galindo-Cortes et al. (2010) explored the

effect of environmental variables on the Pacific sardine (Sardinops sagax)

stock–recruitment (S–R) relationship by incorporating these variables

into the S–R function as the additive random errors. Crone et al. (2019)

proposed including environmental information in the integrated stock

assessments to inform the S–R dynamics. Both methods generated

relatively high-quality estimates, either by including environmental

covariates as an additional component of the S–R function or by

fitting covariates in the model as a survey index of recruits outside the

S–R function. These methods could potentially pave the way for

incorporating chl-a data into the bigeye tuna S–R function.

More and more research continue to illustrate that the effects of

climate change and environmental drivers on fisheries cannot be

overlooked. There has been an increased interest in incorporating

environmental factors in recruitment forecasting models (Haltuch

et al., 2019), and a variety of models have been developed to explore

the feasibility of the approach—for example, Langley et al. (2009)

developed a generalized linear model (GLM) to predict the variation

in yellowfin tuna (Thunnus albacares) recruitment across the

western and central Pacific Ocean in relation to a multitude of

environmental variables. They reported that integrating the recent

GLM recruitment indices into stock assessment may enhance the

precision of estimates of the current and projected (in the next 1 to 2

years) biomass and exploitation. Miller et al. (2016) proposed a

state-space approach that treats environmental covariates (the mid-

Atlantic cold pool) as stochastic processes and estimated the effects

of the environment variables on southern New England yellowtail

flounder (Limanda ferruginea) recruitment. Although the results

suggest that the cold pool was an important predictor of

recruitment, the projections were less than ideal due to the

uncertainty associated with the projected cold pool. Haltuch et al.

(2019) suggested that environmentally informed recruitment

forecasting would be more successful for species whose

population dynamics are dominated by recruitment and where

recruitment is driven by strong environmental factors. Since the

results of this study indicated a strong correlation between food
TABLE 2 Correlation coefficients between b and MD50 in four regions.

Dataset 1 (r) Dataset 2 (r)

R1N -0.166 -0.544

R1S -0.333 -0.561

R2 -0.371 -0.665

R3 -0.546 -0.677
Dataset 1 covered all-seasons data, and in dataset 2 the anomalous season was removed.
TABLE 1 Summary of regression analysis on b and MD50 in four regions.

Model 1 Model 2

Regression equation SE DF p Adjusted-r² Regression equation SE DF p Adjusted-r²

R1N b = −0:17MD50 0.11 74 0.152 0.014 b = −0:63MD50 + 0:4 0.13 55 < 0.001 0.28

R1S b = −0:33MD50 − 0:9 0.11 74 0.003 0.1 b = −0:49MD50 + 0:3 0.1 55 < 0.001 0.31

R2 b = −0:37MD50 + 0:16 0.11 74 < 0.001 0.13 b = −0:64MD50 + 0:35 0.09 55 < 0.001 0.43

R3 b = −0:55MD50 + 0:14 0.09 74 < 0.001 0.29 b = −0:59MD50 + 0:24 0.08 55 < 0.001 0.45
SE, standard error; DF, degrees of freedom. Data in model 1 covered all-seasons data, and in model 2 the anomalous season was removed.
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availability and bigeye tuna recruitment, future research could

concentrate on forecasting recruitment by incorporating MD50

data and identifying more informative environmental predictors.

5 Conclusion
This paper attempts to investigate the relationship between food

availability and the recruitment success of bigeye tuna in the Indian

Ocean based on the available data of IOTC. The median
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phytoplankton size (MD50) was used as a proxy for the larval food

quality. We examined the connection between MD50 and the

environment-related mortality parameter (b) of the Beverton–

Holt stock–recruitment function and also considered the spatial

differences in the Indian Ocean. We observed that the time series of

b and MD50 exhibits significant opposite trends. MD50 was

negatively related to b, suggesting that larger MD50 could bring

lower mortality and therefore higher recruitment. This research

strongly suggests the importance of incorporating environmental

oceanographic variables, such as those related to pre-recruit
FIGURE 4

Residual diagnostics of linear regression models as Q–Q plots. R1N_exs2, excluding season 2 data in R1N; R1S_exs3, excluding season 3 data in R1S;
R2_exs2, excluding season 2 data in R2; R3_exs2, excluding season 2 data in R3.
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feeding, into recruitment estimates in the stock assessment of bigeye

tuna in the Indian Ocean.
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Balart, E. F. (2010). How do environmental factors affect the stock–recruitment
relationship? The case of the Pacific sardine (Sardinops sagax) of the northeastern
Pacific Ocean. Fish. Res. 102, 173–183. doi: 10.1016/j.fishres.2009.11.010
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