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The combination of typhoon-induced storm surges and astronomical tides can

result in extreme seawater levels and disastrous effects on coastal

socioeconomic systems. The construction of an appropriate wind field has

consistently been a challenge in storm tide forecasting and disaster warning. In

this study, we optimized a nonlinear regression formula based on the C15 model

to determine the maximum wind radius. The simulation based on the

improvement showed good accuracy for storm tides during super typhoon

Mangkhut (WP262018), Saola (WP092023), and severe typhoon Hato

(WP152017). The correlation coefficients were in the 0.94–0.98 range, and the

peak bias was less than 5cm. The trough errors were significantly reduced

compared to other wind fields. Owing to the importance and lack of the

maximum wind radius (Rmax), we attempted to predict Rmax using an LSTM

(Long Short-Term Memory) neural network for forecasting storm tides during

strong typhoons. Constrained LSTM showed good performance in hours 6–48,

and effectively enhanced the forecasting capability of storm tides during strong

typhoons. The workflows and methods used herein have broad applications in

improving the forecasting accuracy of strong typhoon-induced storm tides.
KEYWORDS

storm tides, largest wind radius, parametric wind field, artificial intelligence, ADCIRC
1 Introduction

Strong winds and sudden changes in atmospheric pressure associated with the passage

of a tropical cyclone (TC) cause localised oscillation or nonperiodic abnormal rise (or

decrease) of the sea surface, referred to as a storm surge (Needham et al., 2015). Storm

surges coinciding with astronomical tides, especially astronomical high tides, often result in

severe coastal flooding disasters (Muis et al., 2016). As more than 600 million people
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worldwide reside in coastal areas (McGranahan et al., 2007), storm

tides can cause severe disasters to society (Hinkel et al., 2014). The

threat of storm tides has recently intensified owing to

anthropogenic disturbances, global climate change, and the

increased vulnerability of coastal lands. Therefore, the accurate

and timely prediction of typhoon-induced storm tides has become a

global concern for the development of early warning systems for

marine disasters. Increasing the forecasting accuracy for typhoon-

induced storm tides is crucial for marine forecasting (Kohno

et al., 2018).

The accuracy of storm tide simulations relies heavily on the

pressure and wind fields during TCs. Three typical methods exist

for reconstructing wind pressure fields: direct observation,

parametric wind models, and numerical models. Observational

data can provide the most accurate representation of typhoon

characteristics (Li et al., 2015; He et al., 2020); however, they are

limited to forecasting and warning for imminent storm tides.

Numerical models involve complex processes of heat, moisture,

and other transport during TC, which require large computational

power and data volumes (Bajo et al., 2017; Cyriac et al., 2018).

Parametric wind models, including symmetric (Willoughby

et al., 2006; Wang et al., 2015) and asymmetric ones (Olfateh

et al., 2017; Chang et al., 2020), have been developed to overcome

the shortcomings of the other two methods. These models typically

consist of gradient and background wind fields (Lin and Chavas,

2012; Fang et al., 2020). Deppermann (1947) first corrected the

Rankine vortex and applied it to TC wind fields. Jelesnianski (1965)

proposed a theoretical circularly symmetrical TC model. Holland

(1980) established an empirical Holland model to describe the

radial profile changes of TCs by incorporating shape parameter B

into the modified Schloemer (1954) formula. The Holland model is

currently the most widely used symmetric wind profile model.

Zhuge et al. (2024) combined the Holland model and an ERA5

wind field to study the nonlinear interactions between tides and

storm surges in South China Sea. Wu et al. (2018) used the Holland

model to study ideal wave effects on storm surges. Rego and Li

(2009, 2010 used the Holland model to drive FVCOM (Finite

Volume Community Ocean Model) and they analysed how

nonlinear terms and forward speed influence the storm surge

induced by Hurricane Rita. With continuous improvements in

parameterisation models, an increasing number of parametric

wind fields have been applied to storm tide simulations (Yang

et al., 2019; Ding et al., 2020; Pandey et al., 2021).

The construction of a parametric wind field depends on TC

characteristics, including TC intensity (maximum wind, Vmax, and

central pressure, Pres), TC internal size (radius of the maximum

wind, Rmax), TC translation speed, and TC location (longitude and

latitude). Following the advancement of observational techniques,

the modification of parametric wind fields using certain large wind

radii has gradually gained attention (Takagi and Wu, 2016; Vijayan

et al., 2021). Vmax and Rmax are the two most important parameters

controlling the peak surge of storm tides (Irish et al., 2008; Bass

et al., 2017). However, Rmax, which is mainly estimated by direct

calculation using simple empirical formulas, only underwent

systematic reanalysis starting in 2021 (Gori et al., 2023). The
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physical mechanisms underlying some TC parameters, such as

Rmax, remain unclear, resulting in substantial errors. Therefore,

Chavas et al. (2015; hereinafter referred to as C15) used a wind

radius simulation profile model that has been shown to closely

match observational results (Wang et al., 2022). Additionally,

Chavas and Knaff (2022) developed a physical empirical model

using a large wind radius to estimate the value of Rmax for North

Atlantic tropical cyclones. However, the large wind radius began

relatively late in operational forecasting, and its accuracy remained

low (Landsea and Franklin, 2013a, b; Sampson et al., 2018); the

challenge is obtaining it in practical forecasting.

Machine learning has been increasingly applied to forecasting-

related problems, including support vector machines (SVR),

decision trees, and neural networks (Mosavi et al., 2018; Le et al.,

2019; Giaremis et al., 2024). Ramos-Valle et al. (2021) used an

artificial neural network to make accurate storm surge predictions.

Lockwood et al. (2022) used ANN (Artificial Neural Network) to

forecast and assess the sensitivity of surge to storm characteristics

and found that hurricane translation speed can influence storm

surge levels. Severe typhoons or higher-intensity TC often result in

storm surge disasters in a very short time, making them a focus for

improving forecasting speed and accuracy. However, large errors in

machine learning storm tide prediction are often linked to high

intensity storms (Bruneau et al., 2020; Tadesse et al., 2020;

Tiggeloven et al., 2021). By combining a physical model with

artificial intelligence to construct a parametric wind field,

physically constrained and rapid numerical forecasting of storm

tides for strong typhoons may be achieved.

In this study, we optimised a nonlinear regression based on the

C15 model for storm tide simulation in the Pearl River Estuary.

Next, we compared this model with other types of wind fields

during super typhoon Mangkhut (WP262018) and severe typhoon

Hato (WP152017) using ADCIRC (ADvanced CIRCulation Model

for Oceanic, Coastal and Estuarine Waters). Additionally, we used

data from the C15 model to train an LSTM neural network for max

wind radius forecasting. Super typhoon Saola (WP092023) was

simulated to confirm the network’s forecast performance. In this

paper, the main findings are discussed and summarised, along with

an explanation of the network’s improvement and the applicability

of the large wind radius. The objective of this study is to incorporate

the large wind radius to improve the accuracy of extreme storm

tide predictions.
2 Materials and data

2.1 TC data

TC best-track data were collected from the Japan

Meteorological Agency (JMA) RSMC Tokyo-Typhoon Centre and

China National Meteorological Center (NMC). The JMA dataset

contained 27,611 sample points of TCs from 1977 to 2023,

including variables of the time, typhoon category, LON

(longitude), LAT (latitude), Pres (pressure), Vmax (maximum

wind speed), and R30 (the maximum and minimum radius of 30-
frontiersin.org
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knot winds). The NMC dataset contained the variables of time, TC

category, LON, LAT, Pres, Vmax, and mean R30 from 2015 to 2023.

The Multiplatform Tropical Cyclone Surface Winds Analysis

(MTCSWA) dataset provided by NOAA (National Oceanic and

Atmospheric Administration) was also used. The MTCSWA dataset

contained 4,383 sample points in the Northwest Pacific region from

2022 to 2023, including time, LON, LAT, Pres, Vmax, R34 (the radius

corresponding to the four quadrants of 34 knot winds), and Rmax.

Super typhoonMangkhut (WP262018), Saola (WP092023), and

severe typhoon Hato (WP152017), were selected in this study, as

they directly influenced the Pearl River Estuary (Figure 1). Figure 2

shows the statistics of TC intensity and R30 of the JMA dataset.

Figure 1 shows the model domain and tidal gauge station. Hong

Kong and Da Wan Shan were used for Hato and Mangkhut, and

Hong Kong and She Kou were used for Saola.
2.2 Comparative wind field calculations

Three represented wind fields, including (1) parametric, (2)

reanalysis (3) and numerical wind fields, were implemented to

evaluate the storm tide simulation, and to provide data for LSTM

training. In the following sections, the three wind fields are

described in detail.

2.2.1 Parametric wind field
TheWilloughby and Rahn (2004) formula (Equation 1, referred

to as Wil hereinafter) was used to calculate Rmax, which has been

developed successfully for storm tide simulation in the Pearl River

Estuary (Yang et al., 2019; Jian et al., 2021; Du et al., 2023). We then

constructed the dynamic Holland wind field for three TC based on

Fleming et al. (2008) method (Equations 1, 2). Other parameters

including LON, LAT, Pres and Vmax were obtained from the JMA

and NMC dataset. Another improved parametric wind field is

described in detail in section 3.1.
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Rmax = 51:6 � exp( − 0:0223 � Vmax + 0:0281 � LAT)

 B = 1:15�eV2
max

Penv−Pres

8>><>>: (1)

P(r) = Pres + (Penv − Pres)exp½−(Rmax=r)
B�

Vg(r) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
( Rmax

r )B − exp½1 − ( Rmax
r )B�V2

max +
r2f 2

4

q
− rf

2

8>>><>>>: (2)

where Penv is the atmospheric pressure, r is the distance to the

TC centre, P is the atmospheric pressure at a distance r from the TC

centre, and Vg is the wind velocity at a distance r from the

TC centre.

2.2.2 Reanalysis wind field
The fifth-generation ECMWF reanalysis for global climate and

weather data (ERA5) was applied for 10-m wind speed and sea level

pressure (https://cds.climate.copernicus.eu/cdsapp#!/dataset/

reanalysis-era5-single-levels?tab=form). This dataset has a temporal

and spatial resolution of 1 h and 0.25° × 0.25°, respectively. The

reanalysis data were interpolated to a grid resolution of 0.1° × 0.1°

using the natural neighbour method for further interpolation.

2.2.3 Numerical wind field
The Weather Research and Forecasting Model (WRF) was used

to produce numerical wind fields of Hato (2017) and Mangkhut

(2018). Our simulation contained 45 pressure levels and three

nested domains (d01, d02 and d03, shown in Figure 1). The

horizontal grid spacing was 18, 6, and 2 km for d01, d02, and

d03, respectively. Table 1 shows the parameterisation schemes used

in the WRF simulation. The microphysics scheme adopted the

WSM6-class, while the shortwave and longwave radiation were

obtained from the RRTMG. The boundary layer scheme followed

the MYJ, the convective parameterisation adopted the Grell–Freitas

scheme, the land surface scheme used the Noah scheme, and the
A B

FIGURE 1

Overview of the study area, the passage of the three typhoons, and model domain. (A) The corresponding three nested regions (d01, d02, and d03
marked by black rectangles) in the WRF simulation (red, white, and green dotted lines mark the paths of Hato, Mangkhut, and Saola, respectively),
the ADCIRC simulation (surrounded by bold red lines). (B) close-up of the estuary [marked by light yellow rectangle in (A), terrain (Colour bar) in and
near the PRE, and tide gauge stations (marked by red rectangles).
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surface parameterisation used the Eta Similarity scheme (Li, 2012;

Dong et al., 2021). The 0.25° × 0.25° NCEP-FNL data were used as

the initial field. The Hato simulation run from 21 August 2017 at

00:00 to 25 August 2017 at 00:00, and the Mangkhut simulation run

from 14 September 2018 at 00:00 to 18 September 2018 at 00:00.
2.3 Performance metrics

The root mean square error (RMSE), correlation coefficient

(CC), peak error, and trough error were used to evaluate the

simulation performance (Equations 3–5). Smaller values of RMSE

and peak/trough error and higher values of r indicated better

agreement. These metrics are defined as follows:

RMSE   =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N
i=1(Xmod − Xobs)

2

r
(3)

r   =   oN
i=1(Xobs − Xobs)(Xobs − Xmod)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

oN
i=1(Xobs − Xobs)

2oN
i=1(Xmod − Xmod)

2
q (4)

peak   error = max(Xt _ obs
obs ) −max(Xt _ obs

mod )

trough   error = min(Xt _ obs
obs ) −min(Xt _ obs

mod )

8>><>>: (5)
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where Xmod is the model value, Xobs is the observation value, and

f is Earth’s rotation parameter. The superscript of “t_obs” represents

the observation time.
2.4 Storm tide model

The Advanced Circulation (ADCIRC) model was applied to

establish a storm tide forecasting model. Our model domain

covered the Pearl River Estuary, the Guangdong coast, and the

adjacent shallow continental shelf (Figure 1). The model

consisted of 272,632 triangular grids and 155,219 nodes, and

was locally refined around the estuary. The water depths were

merged by the General Bathymetric Chart of the Ocean (GEBCO)

2023 dataset and nautical charts in the Pearl River Estuary. The

open boundary conditions including eight major tidal

components (K1, O1, P1, S1, M2, N2, K2, and S2) were extracted

from the TPXO9 tidal dataset (Egbert and Erofeeva, 2002). The

tidal simulations were validated against the observations at the

Hong Kong, Da Wan Shan and She Kou gauge station (Figure 3).

The RMSEs at the three stations were 4.2, 3.9, and 8.68 cm,

respectively, and all CCs were greater than 0.99. The good tidal

results obtained serve as a strong foundation for further storm

tide simulating.
2.5 Random forest and LSTM

Big-data-driven statistics and machine learning have been

applied to forecast storm tides in recent years (Ramos-Valle et al.,

2021; Lockwood et al., 2022; Tian et al., 2024). LSTM is a special

neural network that addresses gradient explosion and vanishing

problems in conventional RNNs (Gers et al., 2000; Pascanu et al.,

2013). Unlike typical feedforward neural networks, LSTM

particularly suits time-series prediction. LSTM contains four

units: memory cell state Ct, input gate it, forget gate ft, and output

gate ot (Equation 6), which are defined as:
TABLE 1 Parameterisation schemes used in WRF.

Microphysics WSM6-class

Shortwave and longwave radiation RRTMG

Boundary layer MYJ

Convective parameterisation Grell-Freitas

Land surface Noah

Surface parameterisation Eta Similarity
FIGURE 2

Statistics of different 30-knot wind radii and tropical cyclone grades from JMA TC track data (white ellipse marks the variation range of Mangkhut,
Saola, and Hato).
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ft = s (Wf ht−1 +Wf xt)

it = s (Wiht−1 +Wixi)

~Ct = tanh (WCht−1 +WCxt)

Ct = ftCt−1 + it ~Ct

ot = s(Woht−1 +Woxt)

ht = ot tanh (Ct)

8>>>>>>>>>>><>>>>>>>>>>>:
(6)

where xt , ht , eCt , W, and s represent the input data, hidden

state, temporary cell state, weight matrices, and sigmoid activation

function, respectively.

The Random Forest (RF) uses decision trees as estimators based on

a bagging algorithm. By combining multiple decision trees, the dataset

features are randomly selected or returned with replacements for

training (Brownlee, 2020). Here, the dataset was divided into training

and testing parts. The training data were split into n samples. Then a bag

and an out-of-bag set were constructed for each sample. A decision tree

was constructed for each sample, and the predictions were recorded. All

generated decision trees were combined to obtain the final RF model.
3 Results

3.1 Improvement of Rmax calculation

Rmax is an important parameter when constructing the Holland

wind field. In addition to Wil, we incorporated a large wind radius
Frontiers in Marine Science 05
into the Rmax calculation. Considering the TC as a rotating

background, the circulation system of the boundary layer air

flowed radially from the outer side to the centre (Riehl, 1954;

Wing et al., 2016). In this scenario, the equation for absolute

angular momentum (M) is as follows (Equations 7, 8):

M = RV +
1
2
fR2 (7)

Mmax =
Mmax

M34

� �
M34 (8)

R34 is related to M34 and Mmax. Rmax can be further determined

with known Vmax and LAT. Thus, R34 links to Rmax. A nonlinear

regression proposed by Chavas and Knaff (2022), known as Fcha, was

used to solve the C15 model (Equation 9). Here, we applied MTCSWA

data to determine the appropriate coefficients in the Northwest Pacific

region. An additional Vmax weighting coefficient µ was introduced to

improve the calculation of Rmax during strong TCs (Equation 10).

Equation 11 (referred to as F34 hereafter) is the modified formula.

ln
Mmax

M34

� �
= b0 + bVmax

(Vmax − (34=1:94)) + bVfR (Vmax

− (34=1:94))
1
2
fR34

� �
+ ϵ (9)

m = e
−   64ffiffiffiffiffiffi

V3max

p
(10)
B

C

A

FIGURE 3

Simulations (line) and observations (scatter) of tidal levels at the three tidal gauge stations. (A) Hong Kong (B) Da Wan Shan (C) She Kou Station.
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M34 = R34 � (34=1:94) + 1
2 fR

2
34

Mmax
M34

= 0:549   exp ½−0:00523(Vmax − V34)  −0:0031(Vmax − V34)(
1
2 fR34)�

Rmax =
Vmax
f (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 2fMmax

V2
max

q
− 1)  

8>>>><>>>>:
(11)

Compared with MTCSWA data, CC is 0.77 and RMSE is 17.7

km (Figure 4). The calculation fits well with the dataset practically

in the high-wind-speed range.

Some Asian agencies provide a 30-knot wind radius (15.5 m/s,

JMA), or a category-7 wind radius (13.9–17.1 m/s, CMA) equivalent

to the 30-knot wind radius. Therefore, R30 needs to be converted to

R34 based on certain functional relationships. Here, we implemented

the Rankine vortex scheme to determine the proportional

relationship between R30 and R34 (Equations 12–14). The scheme

consists of a solid rotating region with constant vorticity or angular

momentum at its centre surrounded by zero-vorticity circulation.

The angular momentum loss due to surface friction during typhoons

can be assumed to be less than one (Riehl, 1954). The values were set

to 0.5 after the typhoon landfall and 0.8 in the open sea.

v   = vmax(
r

rmax
)   r < rmax   or   v = vmax(

rmax

r
)x   r ≥ rmax (12)

V34

V30
= (

R30

R34
)x ≈ 1:133 (13)

R34 = 0:855 � R30 ,  TC on the sea

R34 = 0:779 � R30 ,  TC landfall

(
(14)
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To evaluate the performance on storm tide simulation, we

conducted simulations based on new F34 and previous Fcha data.

During Hato and Mangkhut, F34 yielded better results for peak

errors (Figure 5). The maximum error eliminated was up to 20 cm,

which indicates that the modified Rmax calculation can conduct

better simulations.
3.2 Storm tide simulations based on
comparable wind fields

In the previous sections, we described four ways to construct a

wind field during strong typhoons. Parametric wind fields based on

F34 andWil, numerical wind fields using WRF, and reanalysis wind

fields from ERA5 were then implemented into ADCIRC to carry out

the storm tide simulations. ERA5 and WRF wind data were

provided at hourly intervals. To avoid specific time errors caused

by different minute–averaging methods among JMA, C15, and

other dataset, Wil and F34 data, which have a longer time

interval, were provided every 6 h. To adjust tidal elevation, the

simulations ran for three days from a cold start. Subsequently, the

storm tides during super typhoon Mangkhut (15–18 September

2018) and severe typhoon Hato (22–25 August 2017) were

simulated based on well-adjusted tide data.

Figure 6 shows the simulated results and Table 2 shows the

performance metrics. During super typhoon Mangkhut, the CCs

between F34 and the observation both exceeded 0.94. F34 also shows

the smallest peak error (1.7 cm at Hong Kong and -3.46 cm at Da

Wan Shan) and trough error (13.31 cm at Hong Kong and 5.9 cm at
B

C

A

FIGURE 4

(A) Azimuthal wind speed (black) and absolute angular momentum (blue). (B, C) Comparisons between F34 calculated values and MTCSWA data. The
scatter colour in (B) represents Vmax.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1391087
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang et al. 10.3389/fmars.2024.1391087
Da Wan Shan). Conversely, the simulation based on WRF wind

shows a higher water level than the observation, with peak errors of

-22.6 and -25.7 cm at the two stations, respectively. The simulation

based on Wil wind resulted in a lower water level, with peak errors

reaching 27.7 and 14.15 cm at the two stations, respectively.

Additionally, both WRF and Wil showed poor performance during

the receding period, with much higher trough errors (Table 2).

During the severe typhoon Hato period, the performances of

F34 and Wil were similar. Both accurately simulated the water level

surge and recession closely matching the observations. In contrast,
Frontiers in Marine Science 07
WRF simulated relatively larger peaks and trough errors (Table 2).

Additionally, the simulation based on ERA5 showed poor

performance for both TCs, indicating that it is not suitable for

storm tide forecasting during strong TCs.

According to the metrics, F34 effectively reproduced the storm

tides during the two TC events. It not only outperformed other

wind fields (WRF and ERA5), but it also reduced the simulation

error compared to the commonly used Wil model. Although the

results for Hato showed good agreement with the observations, the

simulated results for F34 and Wil were almost identical.
B C DA

FIGURE 6

Comparisons between simulations and observations of WRF, Wil, ERA5, and F34. (A) Hong Kong (B) Da Wan Shan during Mangkhut and (C) Hong
Kong (D) Da Wan Shan during Hato.
B

C

D

A

FIGURE 5

Comparisons of water level between F34 and Fcha during the Mangkhut and Hato periods. (A, B) Mangkhut’s and (C, D) Hato’s peak water levels.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1391087
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang et al. 10.3389/fmars.2024.1391087
Figure 7 shows spatial distributions of peak and trough water

levels. The water level at Hong Kong changed approximately 2 h

faster than that at Da Wan Shan during Mangkhut. The time of

the extreme water level at Hong Kong was used as time reference.

The peak water level order is WRF > F34 ≈ Obs > Wil, and the

trough water level order is WRF< Wil< F34 ≈ Obs. This further

proves that F34 yields a more reasonable simulation. Therefore,

the introduction of large wind radius to calculate Rmax in strong

TCs is necessary to simulate storm tides using parametric

wind fields.
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3.3 Rmax forecasting based on LSTM

Due to the better constraint on Rmax calculation provided by the

C15 model, the Holland wind field using F34 exhibited the highest

performance. We calculated Rmax for TCs at 6-h intervals from 1977

to 2023 in the Northwest Pacific region using the F34 formula.

These calculated data were then used to train an LSTM network and

forecast Rmax for the next 6, 12, 24, 36, and 48 h separately

(Figure 8). The training data span from 1977 to 2014, comprising

22,655 samples. The validation data covered the period from 2015
TABLE 2 Performance metrics of Mangkhut and Hato.

WP262018
MANGKHUT

Hong Kong Da Wan Shan

wind field F34 Wil WRF ERA5 F34 Wil WRF ERA5

r 0.94 0.89 0.89 0.72 0.94 0.92 0.85 0.77

peak error/cm 1.7 27.7 -22.6 79.61 -3.46 14.15 -25.72 49.75

trough error/cm 13.31 49.11 78.89 64.15 5.9 38.49 79.17 68.89
WP152017
HATO

wind field F34 Wil WRF ERA5 F34 Wil WRF ERA5

r 0.96 0.95 0.85 0.80 0.98 0.98 0.95 0.97

peak error/cm 17.65 19.86 57.38 38.26 -2.54 -2.22 53.96 39.11

trough error/cm 11.03 11.02 10.18 18.41 6.13 5.87 14.16 18.87
B C

D E F

A

FIGURE 7

Spatial distribution of peak (A–C) and trough water levels (D–F) during Mangkhut in the Pearl River Estuary. The red box represents two
observation stations.
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to 2021 with 4,127 samples. The testing data included 903 samples

from 2022 to 2023.

The specific settings of our LSTM model were as follows:

The input layer included six parameters: LAT, LON, Pres, Vmax,

averaged R30, and Rmax. The outputs were Rmax for the next 6, 12,

24, 36, and 48 h. The hidden layer contained 128 neurons. The

number of epochs was set to 200, the activation function was ‘Relu’,

the initial learning rate was 0.005, the dropout value was 0.1, and the

training algorithm was the ‘Adam’ optimisation. Each network was

trained 10 times. The output of the LSTM model was compared

with testing data (Figure 9). The CCs were 0.994, 0.913, 0.740, 0.577,

and 0.434, respectively. The RMSEs were 3.64, 10.02, 16.17, 19.68,

and 21.75 km, respectively. These results indicate that the neural

network can accurately capture the patterns of Rmax and forecast its

future values.

To further test the applicability of our neural network, we

conducted a forecast experiment using JMA data during super

typhoon Saola. The forecasted Rmax was compared with F34, Wil,

and the ATCF Tropical Cyclone Database (Figure 10). At 6 and 12

h, the forecasted Rmax matched F34 very well, with only slight

differences observed at 24 and 36 h. However, the trend and

magnitude at 24 and 36 h fit well with ATCF. Although the bias

increased at 48 h, the values remained within a reasonable range.

We then simulated the storm tide during Saola based on the

forecasted Rmax. Figure 11 and Table 3 show the simulation results.

Compared with the observations, F34 still shows the best

performance, followed by the 6, 12, 24, 36, and 48-h forecasts,

with Wil showing the worst performance. For the 6-h forecast, the

CCs were 0.96 and 0.94 at the two stations, respectively, while the

RMSEs were 18.1 and 22.4 cm, respectively. The peak errors were

14.4 and 26.4 cm, respectively. As the forecasting hours increased,
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the errors grew. For the 48-h forecast, the CCs were 0.87 and 0.86,

the RMSEs were 32.05 and 39.80 cm, and the peak errors were 29.39

and 41.59 cm. This result not only confirms the improvement of

using the F34 method in simulating storm tide during strong TCs,

but also demonstrates that constraining the neural network with the

C15 model for prediction is feasible.
4 Discussion

The feature importance output from the RF can be used to

determine which input features are effective in predicting the target

variable (Brownlee, 2020). After filtering and excluding the data

from MTCSWA, a total of 1,719 valid timestamps were obtained.

Among these, 1,512 timestamps were used as the training data, and

207 timestamps were used as the test data. Our RF model comprised

100 decision trees, with a minimum number of five leaves per tree,

and performed regression calculation. The sum of the feature

importance values for all input features was equal to 1, where

higher importance values indicated greater significance of that

feature in the RF model (Pedregosa, 2011).

Figure 12 displays the feature importance coefficients and the

correlation coefficient matrix obtained by training the RF using five

input features: LON, LAT, Pres, R34, and Vmax. The impact of R34 on

Rmax was highest, exceeding 40%. LAT was the second important

feature, and Vmax was the third. The RF results suggest that the large

wind radius was closely related to Rmax and affected its prediction.

This conclusion explains why introducing the C15 model improves

the hindcast and LSTM forecasting performance for strong TCs.

The main reason is that the large wind radius is considered, unlike

in other formulas (Table 4). Additionally, the correlation between
FIGURE 8

LSTM network diagram.
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A B

D E

C

FIGURE 10

LSTM’s forecasting Rmax results during super typhoon Saola compared with F34, the Wil hindcast value, and the ATCF dataset. (A) 6-h (B) 12-h,
(C) 24-h, (D) 36-h, and (E) 48-h forecasts.
B C

D E

A

FIGURE 9

LSTM test data results in (A) 6-h (B) 12-h, (C) 24-h, (D) 36-h, and (E) 48-h forecasts.
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R34 and Rmax was positive, whereas the correlation between Vmax

and Rmax was negative. The F34 formula also aligned with these

correlation signs.

As mentioned in Section 3.2, the storm tide forecasting by

introducing the large wind radius has certain applicability

conditions. The improvement effectively increased the accuracy of

storm tide predictions during Mangkhut and Saola, but had little

impact on Hato. In the above study, we confirmed that R34 plays a

crucial positive role in Rmax estimation, and Rmax is important for
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storm surge prediction (Irish et al., 2008). However, few institutions

and datasets provide Rmax data in the Northwest Pacific region. Due

to the limited number of samples and the duration of MTCSWA, we

continued to use the same training and testing sets as those used for

the LSTM network training. Based on the input parameters of LON,

LAT, Vmax, and Pres, a regression prediction for R30 can be made.

The disadvantage, similar to other simple empirical formulas,

is that the RF’s training data or the model itself also lack

physical constraints.
TABLE 3 Performance metrics of Saola.

WP092023
SAOLA

Hong Kong

wind field F34 6h 12h 24h 36h 48h Wil

r 0.97 0.96 0.94 0.90 0.90 0.87 0.82

RMSE/cm 15.29 18.13 21.92 27.37 27.71 32.05 38.75

peak error/cm 8.24 14.41 18.14 22.96 25.09 29.39 39.35

trough error/cm -4.27 3.69 16.85 28.82 29.31 36.31 43.46
WP092023
SAOLA

She Kou

wind field F34 6h 12h 24h 36h 48h Wil

r 0.95 0.94 0.93 0.89 0.88 0.86 0.81

RMSE/cm 20.45 22.41 26.56 34.28 34.77 39.80 47.43

peak error/cm 19.47 26.41 29.91 35.13 37.26 41.59 51.59

trough error/cm -23.59 -15.04 5.25 22.08 24.79 33.58 46.54
BA

FIGURE 11

Simulated water level (line) during super typhoon Saola compared with observation data (scatter) in the (A) Hong Kong and (B) She Kou stations.
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Figure 13 shows the final training and testing results using the

RF model. Both sets of results exhibited a notable phenomenon:

the regression performed well when R30 was in the range of 100–

300 km; however, when it was larger than 300 km, the regression

consistently underperformed, predicting lower values than actual.

Similarly, when R30 was less than 100 km, the predicted results

tended to be higher than the target values. As Mangkhut began to
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affect the Pearl River Estuary at 8:00 a.m. on 16 September, the

Rmax calculated by F34 was 49 km, whereas Wil estimated it to be

only 30 km. Additionally, as Saola affected the Pearl River Estuary

at 2:00 p.m. on 1 September, the Rmax calculated by F34 was 16

km, while Wil estimated it to be 32 km. This situation aligns with

the results of the RF model, as Mangkhut is a rare large super

typhoon and Saola is a smaller one. The different ranges of large
TABLE 4 Empirical equations for calculating Rmax.

Empirical equation of Rmax

Rmax = 110:22 − 18:04 lnDP Lin and Fang, 2013

Rmax = 28:52 tanh½0:0873(∅−28)� + 0:2Vf + 12:22 exp
Pa − 1013:2

33:86

� �
+ 37:22

Graham, 1959

lnRmax = 5:510DP−0:117 + 6:707� 10−3 ∅ Fang et al., 2018

Rmax   =   2:097 + 0:019DP − 1:867� 10−4DP2 + 0:038∅ Vickery et al., 2000

lnRmax = 2:0633 + 0:0182DP − 0:00019008DP2 + 0:0007336∅2 Powell et al., 2005

Rmax = 1:119� 103DP−0:805 Jiang et al., 2008
A B C

FIGURE 12

(A) MTCSWA TC data in the Northwest Pacific during the period from 2022 to 2023. Importance (B) and correlation matrices (C) of several input
variables in the RF model.
BA

FIGURE 13

Random Forest training (A) and testing r (B). The coloured scatter marks the output data’s distribution density.
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wind radii resulted in noticeable differences in Rmax, ultimately

leading to higher errors in water level modelling using the Wil

method during the Mangkhut and Saola periods. Therefore, it is

necessary to incorporate a large wind radius into numerical

prediction by combining the empirical formula and artificial

intelligence as suggested in this study. It should be noted that

this study does not aim to comprehensively identify the best

parameter based on the C15 model with the highest accuracy.

Although our model improves the extreme storm tide forecasting,

the investigation of other physical parameters on storm tide

forecasting is a subject for future work.
5 Conclusions

In this study, we optimised a nonlinear regression based on the

C15 model for determining the maximum wind radius. We then

evaluated storm simulations using ADCIRC with a parametric wind

field based on the improved regression, along with other wind fields,

during super typhoon Mangkhut (WP262018) and severe typhoon

Hato (WP152017). Additionally, we attempted to forecast Rmax for

up to 48 h using an LSTM neural network. The forecasting

performance of the LSTM model was tested during super

typhoon Saola (WP092023).

As the large wind radius positively correlates with Rmax and

can better determine the TC size compared to other regular TC

parameters, the improved C15 model can accurately simulate

storm tides during strong TCs. Moreover, the modified formula

appears to be more suitable for the Northwest Pacific region

during strong typhoons. The physically constrained LSTM

effectively forecasts parameters during TCs, making the

numerical results more reasonable and reliable. Based on the

analysis in this study, we suggest that combing a physics-based

wind profile model with artificial intelligence is an effective good

method for forecasting storm tides induced by strong typhoons.

Given the significant improvement in storm tide forecasting for

strong TCs, it is necessary to apply this method in marine disaster

warning systems.
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