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Underwater image super-resolution is vital for enhancing the clarity and detail of

underwater imagery, enabling improved analysis, navigation, and exploration in

underwater environments where visual quality is typically degraded due to

factors like water turbidity and light attenuation. In this paper, we propose an

effective hybrid dynamic Transformer (called HDT-Net) for underwater image

super-resolution, leveraging a collaborative exploration of both local and global

information aggregation to help image restoration. Firstly, we introduce a

dynamic local self-attention to adaptively capture important spatial details in

degraded underwater images by employing dynamic weighting. Secondly,

considering that visual transformers tend to introduce irrelevant information

whenmodeling the global context, thereby interfering with the reconstruction of

high-resolution images, we design a sparse non-local self-attention to more

accurately compute self-similarity by setting a top-k threshold. Finally, we

integrate these two self-attention mechanisms into the hybrid dynamic

transformer module, constituting the primary feature extraction unit of our

proposed method. Quantitative and qualitative analyses on benchmark

datasets demonstrate that our approach achieves superior performance

compared to previous CNN and Transformer models.
KEYWORDS

underwater image, image super-resolution, local self-attention, sparse self-attention,
deep learning, visual transformer
1 Introduction

Underwater imaging poses distinct challenges owing to the natural attenuation,

scattering, and color distortion of light within aquatic environments. These factors

contribute to degraded image quality, thereby constraining the effectiveness of

underwater observation, exploration, and surveillance systems (refer to Figure 1).

Consequently, underwater image enhancement techniques, notably super-resolution,

have attracted considerable attention in recent years. Super-resolution aims to

reconstruct high-resolution images from low-resolution counterparts, thereby improving
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image clarity and detail. It holds immense potential for enhancing

the visual quality of underwater scenes, facilitating better analysis,

interpretation, and decision-making in various marine applications,

such as ocean-observation and offshore engineering (Liu

et al., 2024).

Despite recent advancements, underwater image super-

resolution remains an active area of research, with ongoing efforts

to develop robust and efficient algorithms capable of addressing the

specific challenges.

posed by underwater environments (Islam et al., 2020a). Early

efforts in underwater image super-resolution predominantly relied

on traditional interpolation algorithms such as bicubic and bilinear.

These approaches, while widely used in conventional image

processing tasks, often yielded suboptimal results when applied to

underwater imagery due to the unique characteristics of

underwater environments.

In recent years, significant strides have been made in leveraging

deep learning techniques, particularly convolutional neural

networks (CNNs), for underwater image super-resolution. Unlike

conventional interpolation methods, CNN-based approaches

harness the capabilities of deep learning to discern intricate

mappings between low-resolution and high-resolution image pairs

directly from data. Various architectures, such as SRCNN (Super-

Resolution Convolutional Neural Network) (Dong et al., 2015),

VDSR (Very Deep Super-Resolution) (Kim et al., 2016), and EDSR

(Enhanced Deep Super-Resolution) (Lim et al., 2017), have

demonstrated remarkable performance improvements over those

of conventional approaches. Subsequent research tends to focus on

developing larger and deeper CNN models to enhance learning

capabilities. However, due to the extensive number of network

parameters, the computational cost of these methods is

considerably high, limiting their applicability in real-world

underwater scenarios (Jiang et al., 2021).

Later, Transformer-based architectures (Vaswani et al., 2017)

have emerged as promising alternatives for underwater image

super-resolution, offering unique advantages over CNN-based
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approaches. Unlike CNNs, Transformers leverage self-attention

mechanisms to capture global dependencies and long-range

dependencies within the input data (Han et al., 2022). For

example, SwinIR (Liang et al., 2021) employs the window-based

attention mechanism to better solve image super-resolution.

Although the self-attention mechanism in the sliding window

approach enables the extraction of local features, the

discontinuity of the windows limits the ability to model local

features within each window. In other words, these window-based

image super-resolution methods are unable to aggregate

information from outside the window, thus limiting the capability

to model global information (Li et al., 2023a).

Indeed, the complexity and variability inherent in underwater

environments elevate the challenges associated with underwater

image super-resolution beyond those encountered in natural image

superresolution tasks. The Transformer model, renowned for its

adeptness in capturing global features, tends to introduce noticeable

redundancy during the modeling process. Regrettably, this aspect

has often been neglected in prior Transformer-based super-

resolution approaches (Xiao et al., 2024). Therefore, developing a

method to explore the characteristics of Transformers, aiming to

better integrate both local and global features for joint modeling to

achieve high-quality image reconstruction while reducing

computational costs, holds significant promise.

To this end, we develop an effective hybrid dynamic

Transformer (called HDT-Net) to solve underwater image super-

resolution. The proposed method combines dynamic local self-

attention with sparse non-local self-attention to synergistically

enhance the representation capability of the Transformer model.

The former dynamically explores local feature relationships based

on a fully CNN model, mitigating errors induced by discontinuous

windows. The latter aggregates features by selecting the most useful

similarity values, alleviating redundancy caused by small self-

attention weights. These strategies are carefully designed to

address the challenges of complex underwater environments,

thereby leveraging more effective feature information to improve

the quality of image super-resolution. Finally, experimental

validation on benchmark datasets confirms the effectiveness of the

proposed approach.

In summary, the main contributions of this paper are as follows:
• We propose a lightweight deep model based on a hybrid

Transformer for underwater image super-resolution tasks,

aiming to enhance the quality of image reconstruction by

jointly exploiting local and global features representation.

•We integrate a dynamic local self-attention and a sparse non-

local self-attention to enable better capture of local and

global feature information respectively, making the

Transformer more effective and compact in long-

range modeling.

• Experimental evaluation on commonly used benchmark

datasets for underwater image super-resolution

demonstrates that our method outperforms previous CNN

and Transformer-based approaches both quantitatively

and qualitatively.
FIGURE 1

The physical imaging process of underwater conditions.
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2 Related work

In this section, we present a review of recent work related to

underwater image super-resolution and vision transformer.
2.1 Underwater image super-resolution

Underwater image super-resolution is an uncertain task, and

numerous studies have been conducted to explore suitable methods

to address this challenge. Among the deep learning-based

underwater image super-resolution models, CNN is one of the

most common techniques. Shin et al. (Shin et al., 2016). proposed a

CNN-based framework for estimating environmental light and

transmission, featuring a versatile convolutional structure

designed to mitigate haze in underwater images. Wang et al.

(Wang et al., 2017). proposed a CNN-based underwater image

enhancement framework called UIE-Net, comprising two sub-

networks: CC-Net and HR-Net. CC-Net outputs color absorption

coefficients for different channels to correct color distortion

in underwater images. HR-Net outputs light attenuation

transmission maps to enhance the contrast of underwater images.

Li et al. (Li et al., 2017). proposed a novel generator network

structure that combines the underwater image formation process

to generate high-resolution output images. Subsequently, a dense

pixel-level model learning pipeline is employed to perform color

correction on monocular underwater images trained based on RGB-

D and their corresponding generated images. The methods describe

above address some aspects of underwater image super-resolution,

yet they still exhibit a lack of robustness when handling highly

complex underwater scenes.

Li et al. (Li et al., 2019). constructed an underwater image

enhancement benchmark dataset, which provides a large-scale

collection of real underwater images along with their

corresponding reference images. This benchmark dataset

facilitates comprehensive research on existing underwater image

enhancement methods and enables easy training of CNNs for

underwater image enhancement. But it lacks novelty in terms of

algorithmic advancements compared to other methods. Guo et al.

(Guo et al., 2019). proposed an underwater image enhancement

method based on GAN. Additionally, the introduced MSDB

combined with residual learning can improve network

performance, while multiple loss functions can generate visually

satisfactory enhancement results. Islam et al. (Islam et al., 2020b).

proposed a simple yet effective underwater image enhancement

model based on conditional genetic algorithms. This model

evaluates image quality by incorporating global color, content,

local texture, and style information to establish a perceptual loss

function. Additionally, they provided a large-scale dataset

consisting of paired and unpaired underwater image collections

for supervised training. Chen et al. (Chen et al., 2020). proposed an

improved deep reinforcement convolutional neural network based

on deep learning principles. The main innovation involves

incorporating wavelet bases into turbulence-based deep learning

convolutional kernels, introducing an improved dense block
Frontiers in Marine Science 03
structure. Further investigation is needed to assess the

generalization of the methods utilized in the aforementioned

studies to different underwater conditions.

Recently, Li et al. (Li et al., 2021). proposed a deep underwater

image enhancement model. This model learns feature

representations from different color spaces and highlights the

most discriminative features through channel attention modules.

Additionally, domain knowledge is integrated into the network by

utilizing inverse media transmission maps as attention weights. Li

et al. (Li et al., 2023b). proposed a novel method for realistic

underwater image enhancement and super-resolution called

RUIESR. Its purpose is to obtain paired data consistent with

realistic degradation for training and to accurately estimate dual

degradation to assist in reconstruction. In deep-sea or heavily

polluted waters, the degradation characteristics may differ from

those observed in the training data, potentially affecting the

performance of the above methods. Dharejo et al. (Dharejo et al.,

2024). investigated the integration of a typical Swin transformer

with wave attention modules and reversible downsampling to

achieve efficient multiscale self-attention learning with lossless

downsampling. As a potential improvement over SwinIR, this

model allows for faster training and convergence, as well as

greater capacity and resolution. The computational complexity

and resource requirements of this Transformer-based method

may pose challenges.
2.2 Vision transformer

Vision Transformer (ViT) (Vaswani et al., 2017) is a model

based on the Transformer architecture, initially proposed by

Dosovitskiy et al. (Dosovitskiy et al., 2020). in 2020 to address

image classification tasks in the field of computer vision. The

introduction of ViT signifies the expansion of Transformer

models from the domain of natural language processing to

computer vision, ushering in a new paradigm for image

processing tasks. Liang et al. (Liang et al., 2021). proposed

an image restoration model called SwinIR. This model consists of

three modules: shallow feature extraction, deep feature

extraction, and HR reconstruction. It emphasizes the content-

based interaction between image content and attention weights,

achieved through a shifting window mechanism for long-

range dependency modeling. The IPT (Chen et al., 2021)

employs a multi-head, multi-tail, shared transformer body design,

aiming to maximize the potential of the transformer architecture in

serving various image processing tasks such as image super-

resolution and denoising. The high computational complexity

arising from this Transformer design may limit scalability to

high-resolution images.

DRSAN (Park et al., 2021) proposes a dynamic residual network

solution for lightweight super-resolution systems, leveraging

different combinations of residual features considering input

statistics. Additionally, it introduces residual self-attention, which,

in collaboration with residual structures, enhances network

performance without adding modules. Zamir et al. (Zamir et al.,
frontiersin.org
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2022). introduced Restormer, an image restoration transformer

model known for its high computational efficiency in handling

high-resolution images. They made critical design adjustments to

the core components of the transformer block to enhance feature

aggregation and transformation. To integrate the robustness of

CNNs into the Transformer model, Restormer incorporates deep

convolutions for encoding spatial local context. ELAN (Zhang et al.,

2022) utilizes shift convolution (shift-conv) to effectively extract

local structural information from the image. Subsequently, it

introduces an intra-group multi-scale self-attention (GMSA)

module to leverage the long-range dependency of the image.

Further acceleration of the model’s computation is achieved by

employing a shared attention mechanism. In the task of image

super-resolution, the effectiveness of integrating local and global

feature representations in the aforementioned methods still requires

further improvement.

Diverging from current approaches, we introduce a lightweight

deep model rooted in a hybrid dynamic Transformer (HDT-Net).

The goal is to bolster the quality of image reconstruction by

synergizing local and global feature representations.
3 Proposed method

In this section, we first describe the overall pipeline of the

model. Then, we provide details of the hybrid dynamic transformer

module (HDTM), which serve as the fundamental building modules

of the approach. HDTM is composed of four identical hybrid

dynamic transformer blocks (HDTBs) connected end to end, as

illustrated in the Figure 2. The HDTB mainly comprises three key

elements: dynamic local self-attention (DLSA), sparse non-local

self-attention (SNSA), and feed-forward network (FFN).
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3.1 Overall pipeline

Figure 2 illustrates an overview of the proposed HDT-Net for

underwater image super-resolution. Specifically, the low-resolution

underwater image is first processed through a convolutional layer

with a filter size of 3×3 pixels for shallow feature extraction.

Subsequently, the feature information is sequentially processed

through six identical HDTMs for deep feature extraction and

fusion, both locally and globally. Within each HDTM, four

internal HDTBs are connected end to end for processing, and the

extracted features are finally passed to the next module through a

3 × 3 convolution. After the completion of HDTM processing, the

features are further projected using a convolutional layer with a

filter size of 3 × 3 pixels. Following that, high-resolution image

reconstruction is performed through a 3 × 3 convolution and

upsampling operation using PixelShuffle (Shi et al., 2016).

The process of the overall pipeline can be represented as

Equations 1-4:

X
0
= Conv3�3(X), (1)

HDTMs = HDTM6(… (HDTM1(X
0))), (2)

Xlow = X0 +HDTMs(X
0), (3)

Xhigh = P(Conv3�3(Xlow)), (4)

where X,Conv3� 3,  P( · ),Xlow,Xhigh represent the input features

and 3 × 3 convolution, upsampling operation using PixelShuffle,

low resolution image features and high resolution image features,

respectively. The process of HDTM in the overall pipeline can be

expressed as Equations 5, 6:
FIGURE 2

The overall architecture of the proposed network.
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HDTBs = HDTB4(… (HDTB1(X))), (5)

HDTM = X + Conv3�3(HDTBs(X)) (6)
3.2 Hybrid dynamic transformer block

We propose a hybrid dynamic transformer block consisting of

DLSA, SNSA, and FFN. By combining DLSA and SNSA, the hybrid

self-attention mechanism effectively weights each position against

others in the input data, facilitating the integration of global

information into each position’s representation. Moreover, it

enables the capturing of both global and local feature

relationships at different positions in the image, allowing the

model to capture long-range dependencies in the data. After each

self-attention computation, the representation at each position

undergoes non-linear transformation through FFN, mapping it to

a new representation space to enhance the model’s expressiveness.

Formally, given the input features of the (l − 1)-th block Xl−1, the

encoding of the HDTB process can be represented as Equations 7–

10:

Xd
l = Xl−1 + DLSA(LN(Xl−1)), (7)

Xf
l = Xd

l + FFN(LN(Xd
l )), (8)

Xs
l = Xf

l + SNSA(LN(Xf
l )), (9)

Xl = Xs
l + FFN(LN(Xs

l )), (10)

where LN denotes the layer normalization, Xd
l . d Xs

l represent the

outputs of DLSA and SNSA, Xf
l . d Xl represent the outputs of FFN,

which are described below.

3.2.1 Dynamic local self-attention
To enhance the extraction and fusion of local features, we

introduce a DLSA method aimed at capturing spatial

relationships within an image, while also accommodating variable

receptive fields. In contrast to conventional self-attention

mechanisms, DLSA functions uniformly across the entire image.

This dynamic approach empowers each spatial location to

selectively attend to its nearby regions based on contextual cues.

Specifically, given input features Xin ∈ RH�W�C generated by layer

normalization, 1 × 1 convolution is performed for feature

aggregation. Similar to (Li et al., 2023a), we introduce a squeeze

and excitation network (SENet) (Hu et al., 2018) as our dynamic

weight generation network, which has no normalization layers and

non-linear activations. Additionally, we employ a 3×3 depth-wise

convolutional layer in SENet to encode features, ensuring better

calculation of dynamic attention for local attention.

The proposed dynamic weight generation formula is as

Equations 11-13:

X1 = DCo n v3�3 ( C o n v1�1 ( Xi n )), (11)
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X2 = C on v1�1 ( X1 ), (12)

W (x) = R( X2 ), (13)

where R( · ) represents the reshaping function. In DLSA, we utilize

learnable dynamic convolutions. Unlike traditional fixed kernels,

learnable dynamic convolutional kernels offer greater flexibility and

adaptability. Each pixel has a corresponding K × K dynamic kernel

for dynamic convolution. We divide the number of feature channels

intoG heads, and learn separate dynamic weights in parallel. For the

generated pixel-wise weights W, we obtain the aggregated features

using the following formula as Equation 14:

DLSA(X) = W⊛Xin, (14)

where ⊛ denotes the dynamic convolution operation using weight

sharing across each channel.

3.2.2 Sparse non-local self-attention
Due to the fact that the dynamic estimated features generated by

DLSA are based on fully convolutional operations, the efficiency of

modeling global features is relatively low. To better perceive global

features, we revisit the standard dot-product self-attention in

Transformer (Zamir et al., 2022). However, this algorithm

calculates attention maps based on fully connected operations for

all query-key pairs. In our work, we develop SNSA to replace it,

which leverages sparsity by selecting the top-k tokens (Chen et al.,

2023) most relevant to the query, thus obtaining the most crucial

information for computation. This approach avoids involving

irrelevant information in the feature interaction process.

Specifically, we first perform feature aggregation by applying a

1 × 1 convolution, followed by a depthwise convolution with filter

size of 3×3 pixels to encode per-channel contexts. This allows for

self-attention computation across the three dimensions of query Q,

key K, and value V, rather than spatial dimensions. Utilizing

channel-wise similarity helps reduce memory consumption for

efficient inference. Next, we compute the similarity between all

pairs of queries and keys, and employ a selection strategy to

mask out values with lower similarity, retaining those with

higher similarity.

As shown in the Figure 2, k represents an adjustable parameter

for dynamically setting the sparsity level. When k=70%, only the top

70% of elements with the highest scores are retained for activation,

while the remaining 30% of elements are masked as 0. Finally,

softmax is applied to normalize elements larger than the top-k,

ensuring the output is a probability distribution. For elements with

scores less than top-k, we use a scatter function to replace their

probability at the given index with 0. This dynamic selection results

in attention following a sparse distribution. Finally, matrix

multiplication is used to multiply softmax with Value, which is

then connected to the input residual through feature projection to

obtain the final result.

The derivation formula for SNSA is as Equation 15:

SNSA(Q,K,V) = S Mk⊙
QK⊤

l

� �
V, (15)
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where S( · ) represents the softmax operation, l is an

optional temperature factor defined by l =
ffiffiffi
d

p
. Typically, multi-

head attention is applied to each of the k new Q, K, and V,

resulting in d = C/k channel dimension outputs, which are

then concatenated and projected linearly to obtain the final result

of all heads.

½Mk�ij =
1, Mij ∈  top − k (row j) 

0,  otherwise 
,

(
(16)

where Mk denotes the top-k selection operator in Equation 16.
3.2.3 Feed-forward network
To extract sophisticated features from both the local and global

self-attention data of the model and facilitate the learning of

abstract representations, we introduce the FFN following

the DLSA and SNSA modules. Specifically, we design two

branches based on gating mechanisms. It first uses 1×1

convolutions for feature transformation and then employs 3 × 3

depth-wise convolutions to encode information from spatially

adjacent pixel positions. One branch is used to expand feature

channels, while in the other branch, it is activated along with the

Gelu nonlinearity to reduce the channels back to the original input

dimension and search for nonlinear contextual information in the

hidden layers.

The FFN is formulated as Equations 17-19:

X1 = GELU(Conv3�3(Conv1�1(X))), (17)

X2 = Conv3�3(Conv1�1(X)), (18)

X̂ = Conv1�1(X1 ⊙X2) + X : (19)

In general, FFN plays a distinctly different role compared to

self-attention. It controls the flow of information passing through

various levels of our pipeline, allowing each level to focus on

complementary contextual information to other levels.
3.3 Loss function

Building upon existing methods, we adopt the L1 loss function

as the loss function for our model. The expression for the L1 loss

function is defined as Equation 20 :

L =
1
No

N

i=1
║ yi − ŷ i ║1, (20)

where N is the number of samples in the dataset. yi represents the

ground truth value for the i-th sample. ŷ i represents the predicted

value for the i-th sample.

The L1 loss function calculates the mean absolute error between

the predicted values and the ground truth values, providing a

measure of the average magnitude of the errors.
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4 Experiments

In this section, we first introduce the implementation details,

datasets and evaluation metrics. Then, we compare the proposed

HDT-Net with 10 baseline methods, including bicubic, SRCNN

(Dong et al., 2015), DSRCNN (Mao et al., 2016), SRGAN (Ledig

et al., 2017), SRDM-GAN (Islam et al., 2020a), RFDN (Liu et al.,

2020), LatticeNet+ (Luo et al., 2020), SMSR (Wang et al., 2021), IPT

(Chen et al., 2021), and SwinIR (Liang et al., 2021). Finally, ablation

experiments are conducted to validate the effectiveness of the

proposed method. The experiments are trained on a server with

two NVIDIA GeForce RTX 3090 GPUs.
4.1 Experimental settings

4.1.1 Implementation details
In the proposed SNSA, the threshold for top-k is set to 70%.

We will analyze its impact in the ablation study. During the

training, the batch size and patch size are configured as 16 and

64, respectively. The number of multi-head self-attention is set to be

6, and the number of feature is set to be 90. We utilize the

Adam optimizer (Kingma and Ba, 2014) with default parameter

configurations to train our model. The initial learning rate is

established at 5 × 10−4, employing a multi-step scheduler over

500K iterations.

4.1.2 Datasets and evaluation metrics
We validate the performance of various methods using

the classic underwater image super-resolution benchmark

datasets, USR-248 and UFO-120 (Liu et al., 2024). Each

dataset showcases distinct underwater degradation characteristics,

enabling comprehensive evaluation across diverse underwater

imaging scenarios. Consistent with previous studies, we utilize

PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural

Similarity Index) scores (Wang et al., 2004) to quantitatively

compare the restoration results of different algorithms, enabling

performance evaluation. In addition, we conduct evaluation

calculations on the model parameter quantities of different

deep networks.
4.2 Quantitative evaluation

Following (Dharejo et al., 2024), Table 1 presents the

quantitative results of various methods on the USR-248 and

UFO-120 datasets, including experimental setups with three

different super-resolution scaling factors: ×2, ×4, and ×8.

As shown, the experimental results demonstrate that our

proposed HDT-Net consistently achieves the best quantitative

performance. Compared to the state-of-the-art method

SwinIR (Liang et al., 2021), our approach shows an average

improvement of 0.5dB in PSNR, with a reduction in parameters

by 58%. This indicates that our proposed hybrid transformer,
frontiersin.org
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as opposed to window-based transformers, can better capture

feature correlations. Particularly challenging is the task of image

super-resolution at a scaling factor of ×8. In contract, our proposed

solution, leveraging the efficient fusion of local and global

information, exhibits robust performance advantages in complex

underwater scenes.
Frontiers in Marine Science 07
4.3 Qualitative evaluation

Figures 3, 4 illustrate the visual comparison results of different

methods on the USR-248 and UFO-120 datasets, respectively. Note

that we do not compare RFDN (Liu et al., 2020) and LatticeNet+

(Luo et al., 2020) as their visual results are not available. It is evident
TABLE 1 Quantitative comparisons of different methods on the USR-248 and UFO-120 datasets.

Methods

USR-248 UFO-120 Average

Params(M)Scale PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic x2 26.78 0.8263 27.01 0.8465 26.89 0.8364 –

SRCNN x2 27.89 0.8467 27.12 0.8654 27.50 0.8560 0.067

DSRCNN x2 28.12 0.8584 27.88 0.8731 28.00 0.8657 0.361

SRGAN x2 28.41 0.8612 28.54 0.8815 28.47 0.8713 1.54

SRDM-GAN x2 28.51 0.8592 28.58 0.8823 28.54 0.8707 0.586

RFDN x2 28.72 0.8633 28.81 0.8841 28.76 0.8737 0.528

LatticeNet+ x2 28.74 0.8714 28.85 0.8854 28.79 0.8784 0.75

SMSR x2 28.88 0.8712 28.91 0.8862 28.89 0.8787 0.985

IPT x2 29.33 0.8831 29.05 0.8921 29.19 0.8876 11.3

SwinIR x2 29.88 0.9018 30.01 0.9021 29.94 0.9019 11.45

Ours x2 31.23 0.9217 31.54 0.9168 31.38 0.9192 4.71

Bicubic x4 25.07 0.7823 25.12 0.8165 25.09 0.7994 –

SRCNN x4 25.17 0.7978 25.21 0.8157 25.19 0.8067 0.067

DSRCNN x4 25.78 0.8064 26.81 0.8177 26.29 0.8120 0.361

SRGAN x4 26.09 0.8178 26.14 0.8188 26.11 0.8183 1.54

SRDM-GAN x4 26.19 0.8211 26.51 0.8247 26.35 0.8229 0.586

RFDN x4 26.66 0.8216 26.81 0.8350 26.73 0.8283 0.528

LatticeNet+ x4 26.78 0.8239 26.85 0.8245 26.81 0.8242 0.75

SMSR x4 27.07 0.8296 27.15 0.8310 27.11 0.8303 0.985

IPT x4 27.11 0.8626 27.16 0.8632 27.13 0.8629 11.3

SwinIR x4 27.18 0.8634 27.27 0.8644 27.22 0.8639 11.45

Ours x4 27.69 0.8712 27.82 0.8745 27.75 0.8728 4.71

Bicubic x8 23.46 0.7684 23.84 0.7781 23.65 0.7732 –

SRCNN x8 24.07 0.7877 24.12 0.7981 24.09 0.7929 0.067

DSRCNN x8 24.12 0.7987 24.18 0.8031 24.15 0.8009 0.361

SRGAN x8 24.22 0.8021 24.29 0.8024 24.25 0.8022 1.54

SRDM-GAN x8 24.41 0.8162 24.47 0.8178 24.44 0.8170 0.586

RFDN x8 24.55 0.8178 24.67 0.8218 24.61 0.8198 0.528

LatticeNet+ x8 25.08 0.8321 25.11 0.8324 25.09 0.8322 0.75

SMSR x8 25.16 0.8344 25.23 0.8354 25.19 0.8349 0.985

IPT x8 25.22 0.8353 25.34 0.8411 25.28 0.8382 11.3

SwinIR x8 25.82 0.8555 26.04 0.8559 25.93 0.8557 11.45

Ours x8 26.37 0.8662 26.48 0.8655 26.42 0.8658 4.71
Bold indicates the best results.
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that effectively enhancing image resolution quality in complex

underwater environments presents a formidable challenge

compared to natural images. We find that the restoration results

of most Transformer-based approaches tend to smooth out the

details and textures of the images, which is attributed to the dense

pattern of self-attention mechanisms. Furthermore, window-based

self-attention global modeling methods fail to effectively aggregate

information outside the window, thus affecting the quality of the

restored images, as observed in SwinIR (Liang et al., 2021). In

contrast, our proposed method achieves better image restoration by

exploring the aggregation of local and global information. These

quantitative and qualitative results indicate the effectiveness of the

proposed hybrid dynamic Transformers, providing new insights

into the challenging task of underwater image super-resolution.
4.4 Ablation study

In this section, we conduct a further analysis of the impact of

the components proposed in our method and compare it against

baseline models. To ensure a fair comparison, we employ the same

settings used to train all baseline models as those of the proposed

method. Here, we conduct ablation experiments with ×2 super-

resolution on the USR-248 dataset. Specifically, the ablation study

includes (1) effectiveness of the DLSA and SNSA, (2) effect of top-k

values in the SNSA, and (3) effect of the number of HDTMs.
Frontiers in Marine Science 08
4.4.1 Effectiveness of the DLSA and SNSA
First, we analyze the effectiveness of the two key components

proposed in the method, including DLSA and SNSA. To do this, we

separately remove one of the components for comparative analysis.

Table 2 presents the quantitative results of different variant models. It

can be seen that our approach combining DLSA and SNSA achieves

the best performance. Figure 5 illustrates the visual comparison results

of different ablation models. It can be observed that, compared to

using only a single self-attention mechanism for feature modeling, our

proposed method can better restore the structure and detail regions of

underwater images. The combination of local and non-local self-

attention mechanisms enables the model to strike a balance between

enhancing local details and preserving the overall scene context,

resulting in more accurate and coherent super-resolved images.

4.4.2 Effect of top-k values in the SNSA
Next, we analyze the impact of the top-k value in SNSA.

Regarding the choice of sparsity value, it also plays a crucial role

in determining the performance of the model. A smaller sparsity

value may result in a dense attention map, which could lead to
FIGURE 3

Image super-resolution comparisons for different methods on the USR-248 dataset.
FIGURE 4

Image super-resolution comparisons for different methods on the UFO-120 dataset.
TABLE 2 Quantitative comparison of ablation results about the
effectiveness of DLSA and SNSA.

Models w/o DLSA w/o SNSA Ours

PSNR/SSIM 30.48/0.9060 29.63/0.8958 31.23/0.9217
f
rontiersin.org

https://doi.org/10.3389/fmars.2024.1389553
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


He et al. 10.3389/fmars.2024.1389553
increased computational overhead and potential overfitting to noisy

or irrelevant features. On the other hand, a larger sparsity value may

cause the model to miss important global context or relevant

features. Therefore, selecting an optimal sparsity value, such as

k=70% in Figure 6, strikes a balance between capturing sufficient

global information and maintaining computational efficiency,

ultimately contributing to improved performance in underwater

image super-resolution tasks.

4.4.3 Effect of the number of HDTMs
Finally, we analyze the impact of the number of HDTMs in the

network backbone. Figure 7 presents the quantitative results using

different numbers of HDTMs. It can be observed that when the

number ranges from 6 to 8, the growth of PSNR value gradually

converges. Therefore, to balance model efficiency and performance,

we ultimately choose N = 6 as the configuration for the

final network.
4.5 Limitations

While our proposed method demonstrates superior

performance on classical underwater image super-resolution

datasets (visible data) (Liu et al., 2024), its applicability is
Frontiers in Marine Science 09
currently somewhat limited. The model’s performance is

significantly affected in scenarios with low light conditions, such

as deep-sea environments or areas with poor visibility, where

methods utilizing sonar (Yang, 2023; Zhang et al., 2024) for

detection are more prevalent. To adapt our method to a wider

range of underwater scenarios, we will explore the potential

applications of the proposed method in sonar images.
5 Conclusions

In this paper, we have proposed an effective hybrid dynamic

Transformer for underwater image super-resolution. We demonstrate

the crucial importance of jointly exploring local features and global

information in underwater image reconstruction for achieving high-

quality results. At the technical level, we integrate dynamic local self-

attention and sparse non-local self-attention to stack into the hybrid

dynamic transformer module, forming the backbone of our proposed

method. The former effectively captures details in underwater image

regions, while the latter aids in the recovery of global image structure

and color. Our proposed method achieves satisfactory reconstruction

results on benchmark datasets. In future work, we will explore the

extension of this hybrid transformer approach to other navigation-

related visual tasks.
FIGURE 5

Visual comparison of ablation results about the effectiveness of DLSA and SNSA.
FIGURE 6

Comparison of ablation results about the effect of top-k values in
the SNSA.
FIGURE 7

Comparison of ablation results about the effect of the number
of HDTMs.
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