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Experimental evidence that
nitrogen-fixing cyanobacterium
Trichodesmium spp. supplies
new nitrogen source to
marine phytoplankton
Shuang-Qing Li1,2, Yan Xiao3, Hai-Long Huang1,2, Zhen Luo1,
Tao-Ran Sun1, Hua-Yang Gao1, Xin-Wei Wang1,2*

and Hai-Bo Jiang1,2*

1School of Marine Sciences, Ningbo University, Ningbo, China, 2Southern Marine Science and
Engineering Guangdong Laboratory, Zhuhai, China, 3School of Life Sciences, Central China Normal
University, Wuhan, China
In oligotrophic oceans, primary productivity is widely limited by nitrogen

bioavailability. The broadly distributed and abundant nitrogen-fixing

cyanobacterium Trichodesmium plays an important role in the oceanic

nitrogen and carbon cycles by providing a “new” source of nitrogen to many

non-diazotrophic microbes, thereby driving new primary production in the

ocean. However, the underlying process and mechanism of nitrogen supply

from Trichodesmium to other phytoplankton remain unclear. Here, our results

demonstrated that the fixed nitrogen released by Trichodesmium could sustain

the growth of a non-nitrogen-fixing cyanobacterium Synechococcus sp. PCC

7002, including a mutant strain (Mut-ureA) that cannot use urea. However, the

growth rate of Mut-ureAwas approximately 20% lower than that of the wild strain

when Trichodesmium filtrate was used for nitrogen supply. This result was

consistent with the composition of the Trichodesmium exudate, in which urea

comprised more than 20% of the total fixed nitrogen that was released. It is

evident from the experiments that a fraction of the Trichodesmium-derived

nitrogen was not available to Mut-ureA. Our results suggested that

Trichodesmium produces dissolved organic nitrogen, especially a certain

amount of urea as a “new” nitrogen source, benefiting in particular populations

of surrounding phytoplankton species.
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Introduction

The diazotrophic marine cyanobacterium Trichodesmium is

ubiquitous in tropical and subtropical seas, where it fixes both

CO2 and N2, making it among the most biogeochemically

significant microorganisms in the ocean (Moisander et al., 2010;

Zehr, 2011; Walworth et al., 2018). It has been estimated that

Trichodesmium may release approximately 30 to 50% of its newly

fixed nitrogen (N), providing an important source of bioavailable N

to other non-diazotrophic phytoplankton species in the N-limited

subtropical marine ecosystems (Glibert and Bronk, 1994; Walworth

et al., 2018). The global N input via N2 fixation by Trichodesmium is

estimated around 60–80 Tg N annually (Capone et al., 1997;

Mahaffey, 2005; Carpenter and Capone, 2008), which contributes

substantially to the annual global marine N2 fixation estimated to be

around 223 ± 30 Tg N (Shao et al., 2023).

Although Trichodesmium is not the sole diazotrophic

cyanobacterium in the open ocean (Sohm et al., 2011; Gradoville

et al., 2020; Hutchins and Capone, 2022), it is the most intensively

explored cyanobacterium. Since it has been in culture from the early

1990s (Prufert-Bebout et al., 1993), numerous studies have focused

on the eco-physiological responses of Trichodesmium to different

environmental factors. Despite many studies emphasizing the

physiology and biogeographical distribution of Trichodesmium,

fewer have examined the fate of the N2 fixed by Trichodesmium

(diazotroph-derived N, DDN) in the ocean (Capone et al., 1997).

Some of these studies have reported that Trichodesmium blooms

may encourage the growth of other non-N-fixing organisms

(Padmakumar et al., 2010; Basu et al., 2011). For instance, the

abundance of bacteria and the growth of diatoms and

dinoflagellates were found to be significantly increased during

Trichodesmium blooms in the Eastern Arabian Sea (Padmakumar

et al., 2010; Basu et al., 2011). Both field and laboratory data

demonstrated that the co-occurrence of Trichodesmium spp. and

diatoms might be driven by the transfer of N fixed by

Trichodesmium spp. in the N-limited oligotrophic ocean (Chen

et al., 2011). Similarly, a previous study showed that a unicellular

dinoflagellate, Karenia brevis, could grow well in the culture

medium supplemented with Trichodesmium exudates as the sole

source of nitrogen (Mulholland, 2007).

In general, Trichodesmium helps sustain marine life via both the

active release of key nutrients such as carbon and nitrogen, and

passive release processes like cell death, virus-induced lysis, and

grazing by heterotrophs. Hence, it plays a crucial role in the

biogeochemical cycling of bioactive elements in contemporary

oceans (Capone and Carpenter, 1982; Capone et al., 1997).

However, it is unknown how the specific forms of nitrogen are

transferred by Trichodesmium to non-N-fixing organisms.

Moreover, there is a lack of quantitative information regarding

the concentrations, composition, and fate of DDN. With the

development of techniques such as nanometer scale secondary

ion mass spectrometry (nanoSIMS) coupled with 15N2 isotopic

labelling and flow cytometry cell sorting, researchers have

observed the transfer of DDN to the dissolved N pool and to

non-diazotrophic plankton such as diatoms, dinoflagellates, and

bacteria (Mulholland et al., 2004; Dore et al., 2008; Lenes and Heil,
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2010; Chen et al., 2011). Previous reports have shown that the DDN

transfer efficiency of Trichodesmium is higher compared to other

diazotrophic cyanobacteria, indicating that Trichodesmium blooms

are more efficient in promoting non-diazotrophic production in N-

depleted areas (Konno et al., 2010; Benavides et al., 2013; Berthelot

et al., 2016; Bonnet et al., 2016). However, this method based on

isotopic conversion does not allow for accurate discrimination of

nitrogen sources, as well as the assessment of the nitrogen

utilization efficiency of non-nitrogen-fixing marine phytoplankton.

In addition to nitrogen-fixing cyanobacteria, many non-nitrogen-

fixing cyanobacteria exist in nitrogen-deficient oceans, such as

Synechococcus and Prochlorococcus, which are among the most

abundant phytoplankton in the ocean (Flombaum et al., 2013).

However, it is unclear whether a substantial fraction of nitrogen

required for phytoplankton growth comes from DDN released by

Trichodesmium. Previous research has concluded that the transfer of

DDN to nearby plankton is mediated through the dissolved N pool, as

diazotrophs release a significant fraction of their fixed N (10–50%) in

the form of ammonium and dissolved organic nitrogen (DON)

(Glibert and Bronk, 1994; Mulholland and Bernhardt, 2005; Konno

et al., 2010; Benavides et al., 2013; Berthelot et al., 2015; Klawonn et al.,

2020; Benavides et al., 2022). These studies suggest that although more

than 50% of recently fixed N2 is released by diazotrophs as DON,

NH4
+ is the main pathway of DDN transfer from diazotrophs to non-

diazotrophs. However, NH4
+ may not accumulate in the surrounding

environment as it could be utilized by the diazotrophs themselves and

the surrounding organisms as soon as it is produced (Klawonn et al.,

2020). Instead, DON concentrations of 5 to 10 mM are common,

making it the most abundant form of dissolved nitrogen (Mulholland

et al., 2004; Benavides et al., 2013). This suggests that organic

compounds exuded by diazotrophs can fuel primary production,

and may have considerable effect on the composition of the

plankton community in the oligotrophic ocean. The dominant non-

nitrogen-fixing cyanobacteria in these ecosystems, including

Synechococcus and Prochlorococcus, possess pathways to take

advantage of DON sources, such as urea or dissolved free amino

acids (Ludwig and Bryant, 2012; Veaudor et al., 2019; Muñoz-Marıń

et al., 2020). However, the underlying potential mechanisms have

rarely been explored.

Trichodesmium often forms large macroscopic colonies and acts

as relatively nutrient-rich substrate for a diverse microbial

community through physical attachment and direct colonization

in tropical and subtropical oligotrophic oceans (Eichner et al.,

2023). A common feature of these associations is the passive

transfer of fixed nitrogen (N), such as ammonia, urea, and other

DON, from Trichodesmium to epibionts (Mulholland et al., 2004).

On the other hand, epibionts assist the host Trichodesmium in iron

and phosphorus acquisition, vitamin B12 exchange, small carbon

compound catabolism, and detoxification of reactive oxygen species

(Lee et al., 2017). Thus, it is difficult to maintain Trichodesmium in

culture and unsuccessful to establish stable axenic cultures, due to

its obligate dependency on associated organisms. In this study,

Trichodesmium erythraeum IMS 101 has been maintained in the

laboratory for decades and shown to harbor microbial communities

similar to natural microbial populations (Lee et al., 2017). Previous

meta-transcriptomics research has detected the community
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transcripts involved in the reduction of nitrate, nitrite, and nitrous

oxide, and suggested that the associated organisms may play an

important role in colony-level nitrogen cycling (Lee et al., 2018). To

understand the significance of fixed nitrogen released by

Trichodesmium to other non-diazotrophic microorganisms, it is

prudent to consider the entire Trichodesmium-epibiont assemblage

for the stable cohabitation of a diverse community within

Trichodesmium consortia.

Although previous studies have shown that Trichodesmium can

input nascent nitrogen sources into the habitat, there still lacks

direct experimental evidence on whether Trichodesmium can drive

phytoplankton growth (Glibert and Bronk, 1994; Mulholland et al.,

2004). To investigate under what conditions and in what form

Trichodesmium provides nitrogen sources for other cyanobacteria,

we studied the growth and nitrogen-fixing gene expression of

Trichodesmium under different nitrogen sources as well as

nitrogen concentration conditions. The types and amounts of

nitrogen sources secreted by the Trichodesmium symbiotic system

under nitrogen-deficient conditions were analyzed, and marine

Synechococcus sp. strain PCC 7002 was chosen to study the

specific forms of nitrogen sources provided by Trichodesmium to

other phytoplankton. We also validated this result using a mutant

strain that lacked some of the nitrogen source utilization functions.

Our results provide experimental evidence that the nitrogen-fixing

cyanobacterium Trichodesmium can provide a certain amount of

urea to the different species of marine phytoplankton around it, a

nitrogen source that has been previously overlooked.
Material and methods

Strains, culture conditions

Trichodesmium erythraeum IMS 101 (hereafter Trichodesmium

IMS 101) was originally isolated from the Atlantic Ocean (Prufert-

Bebout et al., 1993; Chen et al., 1998). Trichodesmium IMS 101 was

cultured semi-continuously in YBC-II medium at 28°C, 50 mmol

photons·m-2·s-1, and 12:12 L:D photoperiod. The axenic

Synechococcus sp. strain PCC 7002 (hereafter Synechococcus 7002)

originated from Jindong Zhao’s laboratory (Peking University,

China) and the Synechococcus 7002 ureA mutant strain was

constructed in our lab. The detailed methods have been described

in the previous study of Li et al. (2023). Synechococcus 7002 wild-

type and Mut-ureA were cultured in A+ medium under continuous

light of 100 mmol photons m-2 s-1, at 30°C, with a rotatory shaker at

110 rpm. All growth media, buffers and solutions used in the

experiments were autoclaved or filter sterilized.
Experimental setup

Five experiments were conducted in this study:

Experiment 1. Co-culture of Trichodesmium IMS 101 and

Synechococcus 7002 were conducted under nitrogen deficient

condition. Synechococcus 7002 cells at the logarithmic growth

stage were collected, centrifuged, washed and resuspended with
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artificially added nitrogen. Then 125 mL of Synechococcus 7002

(cell number about 1.6×107 cells/mL) and 125 mL of

Trichodesmium IMS 101 (cell number about 8×103 cells/mL)

cultured in N-free YBC II medium were added to 1 L conical

flasks. Synechococcus 7002 of the same cell number mixed with fresh

YBC-II medium without Trichodesmium IMS 101 served as a

control. To determine the nitrogen deficiency status of the cells

during long-term co-culture in an incubator with photoperiod

(12:12 L:D), the color change of Synechococcus 7002 was observed

every 2 days.

Experiment 2. Biomass growth and nifH gene expression were

determined during Trichodesmium IMS 101 cultivation in media

containing different nitrogen resources in varying concentrations.

The stock culture of Trichodesmium IMS 101 was prepared by

growing the cells in nitrogen-free YBC-II medium for 7 days. The

Trichodesmium cells were then transferred separately into 500 mL

flasks containing 300 mL of medium composed of NaNO3, NH4Cl,

or urea (with concentrations of 0, 20, 40 to 80 mM, respectively).

Culture samples (5 mL) were collected every 3 days for 12 days to

measure the biomass of Trichodesmium IMS 101. 100 mL sample of

each culture was collected onto a 10 micron polycarbonate (PC)

membrane after 24 hours of incubation, and quickly frozen in liquid

nitrogen for further analysis of nifH gene expression.

Experiment 3. A complete growth curve of Trichodesmium IMS

101 was drawed and the secreted nitrogen sources and concentrations

were measured. Cells were cultivated in nitrogen free YBC-II

medium, and the in vivo fluorescence was measured in every three

days for 24 days to measure changes in biomass. The culture filtrate

was collected on day 12th (late exponential growth phase) to measure

the concentrations of the secreted nitrogen sources.

Experiment 4. A nitrogen-deficient Synechococcus 7002 strain

was cultured for 10 days, and then its recovery was monitored in the

presence of various nitrogen sources. To do this, Synechococcus

7002 stock culture cells were collected during exponential phase and

centrifuged. Then the cells were resuspended and washed twice with

nitrogen-free A+ medium to ensure the removal of any dissolved

nitrogen sources outside of the Synechococcus 7002 cells. The cells

were then transferred to fresh nitrogen free A+ medium, and

maintained for 10 days to induce the nitrogen-deficient condition.

Finally, the nitrogen-deficient cells of Synechococcus 7002 were

collected by centrifugation. These cells were then transferred and

resuspended into A+ medium containing 150 mM of different types

of nitrogen source (NaNO3, NH4Cl, urea or glutamic acid). The

recovery rate of Synechococcus 7002 was monitored by determining

the biomass of Synechococcus 7002 in the culture suspensions in

every 2 days through turbidity measurement (OD730).

Experiment 5. Trichodesmium IMS 101 culture filtrate was used

as a sole nitrogen source for wild-type and Mut-ureA Synechococcus

7002 strains. The mutant strain could not utilize urea. The filtrate of

Trichodesmium IMS 101 culture was collected on day 12th using a

sterile PC membrane (0.22 mm) to remove the filamentous

Trichodesmium cells and the associated bacteria. Then a mixture

of filtrate and N-free medium (1:1) was used to cultivate wild-type

and Mut-ureA nitrogen-deficient Synechococcus 7002 strains at the

same time. The biomass contents of wild-type and Mut-ureA
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Synechococcus 7002 were measured at 0 th, 24 th, 36 th, 48 th, and 72th

hours. At the 72nd hour, 5 mL culture of each sample was collected

for Chl a measurement.
Growth determination

The growth curve of Trichodesmium IMS 101 was estimated by

measuring minimum yields of chlorophyll-a fluorescence (F0) of

the culture solution using a FIRe (Fluorescence Induction and

Relaxation) Chlorophyll Fluorescence Analyzer (Satlantic,

Canada). The biomass of Synechococcus 7002 wild type and

mutant strains were determined both by measuring the turbidity

(OD730) of individual culture using an ultraviolet-visible

spectrophotometer TU1810 (PERSEE, China) and by measuring

the cell counts using a CytoFLEX flow cytometer (Beckman Coulter,

America). F0 for Trichodesmium IMS 101 and turbidity (OD730) for

Synechococcus 7002 were highly correlated with cell counts, of R2

were 0.9931 and 0.9984, respectively (Supplementary Figures

S1A, B).
Measurement of Chla content

To determine chlorophyll a (Chl a) content, the absorption

peaks at 648.6 and 664.1 nm of 95% ethanol extracts were measured

using an ultraviolet-visible spectrophotometer TU1810 (PERSEE,

China) and calculated according to the formula: Chl

a =13.36×A664.1−5.19×A648.6, and the final results were

normalized based on the absorbance value of the algal solution at

730 nm (OD730), for details of the method refer by Li et al. (2023).
Detection of nitrogen sources secreted by
Trichodesmium IMS 101

The total nitrogen content was determined using the alkaline

potassium persulfate method (Hagedorn and Schleppi, 2000).

Briefly, an alkaline potassium persulfate solution was added to the

sample and digested at 120–124°C. The mixed solution was

decomposed to potassium bisulfate and atomic nitrogen under

high temperatures. The atomic nitrogen not only converts the

nitrogenous compounds to nitrate under high temperatures but

also oxidizes or decomposes other organic matter in the sample,

thus eliminating the interference caused by other nutrient sources.

Finally, the absorbance of nitrate was measured by UV-Vis

spectrophotometer (210 PLUS) at 220 nm and 275 nm, and the

corresponding total nitrogen content was calculated using a

standard curve (Supplementary Figure S2A).

The ammonia nitrogen content was measured by using

salicylate spectrophotometry (Le and Boyd, 2012). In an alkaline

environment (pH 11.7), NH4
+ will react chromogenically with

salicylate and hypochlorite to produce a blue compound under

sodium nitrosoferricyanide as catalyst. The absorbance of this

compound was measured at 697 nm, and the ammonia nitrogen
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content was calculated using a standard curve (Supplementary

Figure S2B).

Diacetylmonoxime spectrophotometric method was used

to determine the urea content (Chen et al., 2015). Diacetylmonoxime

was hydrolyzed under acidic conditions to form diacetyl, which

condensed the urea under acidic conditions to produce a red diazine

compound. The concentration of urea in the sample corresponded to

the color shade of the solution. The maximum absorbance at 525 nm

was measured and the urea content in the sample was calculated by

using the standard curve (Supplementary Figure S2C).
RNA extraction and nifH gene expression

Trichodesmium IMS 101 cells grown in YBC-II media

containing different nitrogen sources for 24 h were collected and

quickly frozen in liquid nitrogen. Each sample had three replicates

collected from three independent cultures. Total RNA was extracted

using the TRIzol reagent kit (Invitrogen, USA). Reverse

transcription (RT) was performed using the PrimeScript RT

reagent kit (TaKaRa, Japan). RNA extraction and RT-PCR were

performed as described previously (Jiang et al., 2012). To detect the

gene expression level of nifH, the real-time quantitative PCR was

conducted. The primers of nifH gene were as follows: 5’-

CAATACGCTCCAGAAGATAACCAA -3’ and 5’- GTAGGAA

TAGTTAGTTTTTCGTTGTTGATT-3’, which was designed

using Primer Premier 5.
Global distribution survey of
Trichodesmium and the co-
occurring phytoplankton

Biogeography of Trichodesmium IMS 101 16S gene sequence

was explored in a pan-oceanic collection of plankton metagenomes

using Tara ocean’s Microbiome Reference Gene Catalog

metagenomes (https://tara-oceans.mio.osupytheas.fr/ocean-gene-

atlas/). The 16S nucleic acid sequence of Trichodesmium IMS 101

was obtained from NCBI database (https://www.ncbi.nlm.nih.gov/).

The expected threshold was set at 1e-100. The abundance of

Synechococcus 7002 in each Trichodesmium IMS 101 distribution

site was also obtained from Tara ocean’s Microbiome Reference

Gene Catalog Metagenomes. Specific details have been previously

reported (Vernette et al., 2022; Villar et al., 2018).
Construction of Synechococcus 7002
urease mutant

Using the DNA of wild-type Synechococcus 7002 as a template,

PCR amplification was carried out with ureA-up-F/ureA-up-R and

ureA-DN-F/ureA-DN-R primers, respectively, to obtain upstream

homologous fragment (ureA-UP) and downstream homologous

fragment (ureA-DN) of ureA gene. The recombinant plasmid

NBU-KAN-Mut-ureA was obtained by inserting the ureA-UP and
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ureA-DN fragments into the upstream and downstream segments

of kanamycin resistance gene (KanR) of a pUC-MCS-KAN-MCS

plasmid vector, respectively, maintaining the orientation of gene

sequences. Then, the recombinant plasmid NBU-KAN-Mut-ureA

was transformed into the wild-type Synechococcus 7002 to obtain

the Mut-ureA strain.
Data statistics and analysis

All data were tested for homogeneity of variance and normal

distribution, and statistical analyses including Student’s t-test,

ANOVA, and Duncan’s multiple range test were performed using

the open-source statistical software SPSS 26.0. Values of p < 0.05

were considered statistically significant. Data with significant

differences are marked with different lowercase letters or ∗.
Results

Global distribution of Trichodesmium spp.
and co-existing phytoplankton in
Tara Ocean

To explore the potential co-existing phytoplankton with

Trichodesmium, we used the macro-genome database of Tara

Ocean to investigate the global distribution of Trichodesmium in

the sea and the composition of co-existing planktonic communities.

The results showed that Trichodesmium is distributed in low to

mid-latitude waters worldwide (Figure 1A), with its highest

abundance in several sites of southern Atlantic Ocean (e.g., T_68,

T_76, T_78).

Organisms co-existing with Trichodesmium belonged to various

phyla including Proteobacteria, Bacteroidetes, Firmicutes,

Cyanobacteria, Actinobacteria, Thermotogae, Planctomycetes, etc,

among Cyanobacteria, Synechococcus occupied the dominant co-

occurrence with Trichodesmium (Figures 1B–D), the abundance of

Synechococcus and Trichodesmium was very strongly correlated at

each station (R2 = 0.8343) (Supplementary Figure S3).

The ability of other phytoplankton to directly use the nitrogen

source fixed and released by Trichodesmium needed to be confirmed

through physiological experiments. As shown in Figure 1E, when

Synechococcus 7002 was monocultured with N-free medium, the cells

gradually turned yellow and eventually stopped growing, indicating

that Synechococcus cells underwent chlorosis. Such distinctive color

changes were considered typical of nitrogen deficiency in cyanobacteria

(Klotz et al., 2016). However, when Synechococcus 7002 was co-

cultured with Trichodesmium in the N-free medium, it is obvious

that the addition of Trichodesmium could help sustain the growth of

Synechococcus 7002 in N-free medium (Figure 1E). Due to the mixed

culture of the two cyanobacteria and the adhere of Synechococcus to

Trichodesmium filaments, we were unable to make a specific count of

cell numbers for both. But we observed a greater density of

Synechococcus 7002 cells as well as a greener cell color (Figure 1E).

Thus, we hypothesized that Trichodesmium might produce some

nitrogen sources and support the growth of Synechococcus 7002. In
Frontiers in Marine Science 05
this context, we conducted a series of experiments focused on what

forms of nitrogen sources in Trichodesmium N-free culture system

could support the growth of Synechococcus 7002.
Utilization of different nitrogen sources by
Trichodesmium IMS 101

Trichodesmium can not only obtain nitrogen source through

biological nitrogen fixation, but also directly uptake and assimilate

combined nitrogen. To understand the preference of Trichodesmium

for nitrogen sources and the influence of different nitrogen sources on

nitrogen fixation genes, we carried out the following research. As

shown in Figure 2, low concentrations of nitrogen (5 or 10 mM) did

not affect the cell growth of Trichodesmium IMS 101. However, high

concentrations of inorganic nitrogen (40 and 80 mM NaNO3 or

NH4Cl) significantly inhibited the growth of Trichodesmium IMS 101

(p < 0.05), especially in presence of NH4Cl in high concentration

(Figures 2A, B). In contrast, the addition of urea did not significantly

affect the cell growth compared with the control without any

nitrogen. The cell growth increased significantly at the high urea

concentration of 80 mM (p < 0.05) (Figure 2C).

When the nitrogen sources were added into the Trichodesmium

IMS 101 culture at lower concentrations (< 20 mM), no significant

difference in the growth of Trichodesmium was observed. However,

significant down-regulation of nifH gene expression in

Trichodesmium IMS 101 was observed with increasing nitrogen

concentration, indicating the relatively lower nitrogen fixation rate

of Trichodesmium IMS 101 under high nitrogen supply (Figure 3).

Although all the three added nitrogen sources inhibited the

expression of nifH gene, more inhibitory effects were observed after

the supply of inorganic nitrogen (NaNO3 and NH4Cl), as compared

with the organic nitrogen (urea) supply. NH4Cl exhibited the most

significant inhibiting effect on nifH gene expression, especially at high

concentrations, which was consistent with its inhibitory effect on the

growth of Trichodesmium IMS 101.
Types and concentrations of different
nitrogen forms present in the filtrate of
Trichodesmium IMS 101 cultured without
nitrogen supply

The growth curve of Trichodesmium IMS 101 cultured in YBC

medium (no N supply) included three growth phases: exponential

growth phase, plateau phase, and decline phase (Figure 4A). The

exponential growth phase lasted for 12 days with a specific growth

rate at ~0.1 d-1 (Figure 4A). The plateau phase lasted for 6 days and

sharply dropped into the decline phase (Figure 4A). In addition, the

results showed that the main form of nitrogen source present in the

culture filtrate at day 12th was DON, with urea accounting for a

relatively considerable proportion of DON (more than 25%) and

total nitrogen (around 20%). Other forms such as amino acids and

proteins accounted for the majority of DON. Inorganic nitrogen

forms, such as NH4
+, accounted for only a small proportion of the

total nitrogen, which was far less than urea (Figure 4B).
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Tolerance of Synechococcus 7002 to
chronic nitrogen deficiency and its
preference to use different types of
nitrogen sources

As shown in Figure 5A, Synechococcus 7002 cells cultured

without nitrogen showed chlorosis after day 10th. When nitrogen

deprivation was further prolonged, the cells of Synechococcus 7002

entered a dormant state and stopped growing and dividing.

However, upon encountering an external nitrogen source, the
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cells immediately initiated a recovery program (Figures 5A, B).

When nitrogen sources such as NO3
-, NH4

+, urea and glutamate

were provided to the nitrogen-deficient Synechococcus 7002, both

inorganic and organic nitrogen sources were absorbed and utilized

by Synechococcus 7002 for cell division and reproduction

(Figure 5C). Synechococcus 7002 preferred to use urea and NH4
+

as the nitrogen source rather than NO3
- and glutamate (Figure 5B).

These results indicate that Synechococcus 7002 may serve as

an ideal model to study the utilization of nitrogen secreted

by Trichodesmium.
B

C D E

A

FIGURE 1

(A) Global distribution of Trichodesmium spp. from Tara Ocean datasets; (B) Abundance of Synechococcus 7002 at all stations where
Trichodesmium spp. were present; (C) The co-existing phytoplankton at all stations; (D) Different species of cyanobacteria co-existing with
Trichodesmium at all sites; (E) The photo of a co-culture of nitrogen-deficient Synechococcus 7002 and Trichodesmium IMS 101. Tara Ocean sites
were analyzed using the partial 16S rRNA gene sequence. T_XXX (e.g., T_128) in the figure represents the station number, and the color of the
circles represents the abundance at a specific site.
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Effect of the nitrogen source secreted by
Trichodesmium IMS 101 on the growth of
wild-type and Mut-ureA strain of
Synechococcus 7002

After the addition of Trichodesmium IMS 101 filtrate to the

nitrogen-deficient Synechococcus 7002 culture, the growth curves and

growth rates of Synechococcus 7002 showed a significant increase

compared to the control treatment with the addition of nitrogen-free

YBC-II medium (Figures 6A, C). Moreover, the cellular Chl a content

of Synechococcus 7002 increased significantly (p < 0.01) after 72 h of

the addition of Trichodesmium IMS 101 filtrate, whereas the Chl a

content of Synechococcus 7002 added with nitrogen-free YBC-II
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medium decreased further, even though the cells could still grow

slowly (Figure 6E). These results suggest that the filtrate of

Trichodesmium IMS 101 can restore the growth of nitrogen-starved

Synechococcus 7002 in N-free medium.

To investigate whether the abundant urea in the Trichodesmium

filtrate can be utilized by Synechococcus 7002, a Synechococcus 7002

urease mutant strain (Mut-ureA) was obtained using a constructed

homologous double-exchange plasmid (Supplementary Figures

S4A–C). By using different types of nitrogen sources, it was

confirmed that Mut-ureA completely lost its urea utilization

ability but still had a normal ability to take up and utilize other

forms of nitrogen sources (Supplementary Figures S4D–F)

The growth curves and growth rates of chronic nitrogen-deficient

Synechococcus 7002 Mut-ureA strain were also measured after the

addition of the same Trichodesmium IMS 101 filtrate and the N free

YBC-II medium respectively. The result showed that the cells growth

and the pigment content of the Synechococcus 7002 Mut-ureA strain

(p < 0.01) were also increased significantly with the addition of

Trichodesmium filtrate. However, its total biomass was lower than

that of the wild-type strain (Figures 6B, D). Together, the results

indicated that there were multiple nitrogen sources from the

Trichodesmium filtrate could be used by Synechococcus 7002, but

urea contributed at least part of the total bioavaible nitrogen. Since

the Mut-ureA strain lost the urea utilization ability, its growth

restoration was slower compared to the wild type strain when they

using the N sources released by Trichodesmium IMS 101 filtrate. The

growth difference of 20% was consistent with the urea content

accounting for 20% of the total released nitrogen in Trichodesmium

IMS 101 filtrate (Figure 4B). Overall, these results indicate that the

nitrogen secreted by Trichodesmium plays a crucial role in supporting

the growth recovery of chronically nitrogen-deficient Synechococcus

7002, and urea might contribute a similar fraction of nitrogen source.
Discussion

Trichodesmium may fix dinitrogen (N2) in the oligotrophic near-

surface regions of ocean, alleviating N limitation and encouraging a

more diverse plankton community. The nitrogen fixed by
FIGURE 3

nifH gene expression in Trichodesium IMS 101 grown for 24 h in
YBC-II media supplemented with different nitrogen sources. The
error bar represents the standard deviation of the three replicates.
Significance analysis was based on Duncan’s multiple range test and
marked with lowercase letters, with different letters representing
significant differences in nifH gene expression between different
nitrogen source treatments, (p < 0.05).
B CA

FIGURE 2

The growth curves of Trichodesmium IMS 101 in presence of different nitrogen sources (n=3). (A–C) are the growth curves of Trichodesmium IMS
101 under different concentrations of NaNO3, NH4Cl, and Urea, respectively. The pictures of culture plates were taken on the 9th day of cultivation.
The error bar represents the standard deviation between the three replicates, (p < 0.05).
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Trichodesmium has been predicted to provide up to 50% of the new

nitrogen-supporting open-ocean food webs in the subtropical North

Pacific Gyre (Dore et al., 2002). Many reports have demonstrated that

Trichodesmium fixes nitrogen under nitrogen deficient conditions and

high concentrations of exogenous inorganic nitrogen in the

environment may significantly decrease the N2 fixation rate of

Trichodesmium (Holl and Montoya, 2005; Sandh et al., 2011;

Eichner et al., 2014; Walworth et al., 2018). To date, most
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diazotrophic nitrogen assimilation studies have focused on the

relationship between N2 fixation and uptake of nitrate, ammonia,

and amino acid (Ohki et al., 1991; Mulholland et al., 1999, Mulholland

et al., 2001). The absorption and utilization characteristics of

Trichodesmium for various nitrogen compounds are largely

unknown. In this study, the growth and expression of nifH gene

(encodes nitrogen-fixing enzymes of Trichodesmium) were analyzed in

the presence of different types of nitrogen sources in varying
B

C

A

FIGURE 5

Growth rates and photographs of nitrogen-deficient Synechococcus 7002 after addition of different nitrogen sources: (A) growth curves and
photographs of Synechococcus 7002 recovered by the addition of nitrogen after 10 days of nitrogen deficiency (added 12 mM NaNO3 on day 10);
(B) growth rates after supply of different nitrogen sources to nitrogen-deficient Synechococcus 7002; (C) photos of Synechococcus 7002 taken at
different days after supply of different nitrogen sources. Error bars represent the standard deviation of three replicates. Significance analysis was
based on Duncan’s multiple range test and marked with lowercase letters, with different letters representing significant differences between growth
rates obtained from different nitrogen sources supplied, (p < 0.05).
BA

FIGURE 4

The complete growth curve of Trichodesmium IMS 101 including exponential phase, plateaus and decline phase (A); and the types and
concentrations of different nitrogen forms secreted by Trichodesmium IMS 101 during late exponential phase (B). The error bar represents the
standard deviation of three replicates. Significance analysis was based on Duncan’s multiple range test and marked with lowercase letters, with
different letters representing significant differences between the contents of different nitrogen type, (p < 0.05).
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concentrations. The results demonstrated that urea (common DON in

the water) supply at a certain concentration had little effect on nifH

gene expression in Trichodesmium, as compared with the similar

concentration of NH4
+ and NO3

- (mainly dissolved inorganic

nitrogen (DIN) in the water) supply. Moreover, urea supply even

could promote the growth of Trichodesmium. Similarly, recent research

has demonstrated that carbon-, nitrogen- and phosphorus-rich

dissolved organic matters (DOMs) enhance N2 fixation rates and

nifH gene expression in natural Trichodesmium colonies (Stolte et al.,

2006; Letscher and Moore, 2015; Benavides et al., 2018). It was

speculated that in the presence of exogenous DON, Trichodesmium

could continue to fix nitrogen and release new nitrogen sources to

improve primary productivity in marine ecosystems.
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In this study, the results demonstrated that DON accounted for

the majority, while NH4
+ contributed to only a small proportion of

Trichodesmium derived N left in the filtrate in the late exponential

growth phase. This result was consistent with previous studies

reporting low DIN and high DON in the culture filtrate of

Trichodesmium (Mulholland et al., 2001; Glibert et al., 2008). It

must be noticed that whether in the lab culture or the field, we

should consider the entire Trichodesmium-epibiont assemblage as a

whole for the stable cohabitation of a diverse community within

Trichodesmium consortia. Thus, the main form of nitrogen source

present in the filtrate was DON after equilibrium between nitrogen

fixation by Trichodesmium and consumption of nitrogen source by

the Trichodesmium consortia. However, compared to the released
B

C D

E

A

FIGURE 6

(A, C, E) show the effects of Trichodesmium IMS 101 filtrate addition on biomass accumulation, growth rate, and Chl a content of nitrogen-deficient
Synechococcus 7002, respectively. (B, D) show the effects of Trichodesmium IMS 101 filtrate addition on nitrogen-deficient Synechococcus 7002 urease
mutant strain Mut-ureA on biomass accumulation and growth rate, respectively. Error bars represent the standard deviation of three replicates.
Significance analysis was based on Duncan’s multiple range test and marked with ∗ (∗ P < 0.05, ∗∗ P < 0.01, ∗∗∗ P < 0.001, n.s., not significant).
frontiersin.org

https://doi.org/10.3389/fmars.2024.1388725
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Li et al. 10.3389/fmars.2024.1388725
DON, the remaining NH4
+ concentration in the surrounding

environment of Trichodesmium was extremely low (Berthelot

et al., 2016). This phenomenon may be explained by the rapid

release and uptake of NH4
+ by the Trichodesmium community as a

potential major recycling intermediate of Trichodesmium-fixed N2

in the culture system, which facilitates the rapid turnover of the

nitrogen pool and leaves little residue in the culture medium

(Mulholland et al., 1999, 2001). Whereas DON was the main

nitrogen resource accumulated in the medium, contributing a

large fraction of the N pool that could be utilized by other

microorganisms in the surrounding environment.

Few studies evaluated the bioavailable proportion of

Trichodesmium-derived DON and the compounds within the

uncharacterized DON pool that were utilized by other

phytoplankton (Mulholland et al., 2004). DON has been largely

understood by extrapolating the data obtained from the studies of

dissolved organic carbon flow or through studies of individual

compounds, such as urea or dissolved free amino acids (Glibert

and Bronk, 1994; Mulholland et al., 2004; Finzi-Hart et al., 2009). In

the present study, the nitrogen forms released by Trichodesmium

were evaluated in the culture medium without exogenous N and the

proportion of urea in the total nitrogen was found to be more than

20%. These results indicate that urea may play an important role in

marine nitrogen cycle and serve as nitrogen resource for

transferring nitrogen to auto- and heterotrophic plankton

communities in the surrounding environment.

Many non-nitrogen-fixing cyanobacteria, such as Synechococcus

and Prochlorococcus, co-exist with nitrogen-fixing cyanobacteria in

nitrogen-deficient oceans (Flombaum et al., 2013; Masuda et al., 2022).

Synechococcus 7002, originally isolated from the mud of the Atlantic

coast, can be genetically manipulated and grown in axenic cultures.

Recent studies have shown that the distribution of Synechococcus in

coastal regions is far more extensive than previously thought (Lee et al.,

2017; Yong et al., 2023). By using the macro-genome database of Tara

Ocean, the presence of Synechococcus 7002 has been detected in the

sights where Trichodesmium exists. This shows that Trichodesmium

and Synechococcus 7002 (at least strains similar to Synechococcus 7002

due to the inaccuracy of bioinformatics prediction) possibly have a

close association in the oceans (Figure 1; Supplementary Figure S3). To

further reveal the potential interaction between Trichodesmium and the

“consumer” of its secreted nitrogen, Synechococcus 7002 was co-

cultured with Trichodesmium and its secreted filtrate was used as the

sole nitrogen resource. When Trichodesmium reached a dynamic

equilibrium with Synechococcus cells in the culture system, both in

terms of biomass and nitrogen turnover, chronically nitrogen-deficient

Synechococcus 7002 recovered from chlorosis to green cells (Figure 1E).

This implied that nitrogen fixation by Trichodesmium provided an

important source of nitrogen for the recovery of Synechococcus 7002. In

mono-cultures, both Synechococcus 7002 and Trichodesmium preferred

urea as a nitrogen source than other inorganic nitrogen sources (e.g.,

ammonium and nitrate). Inhibition of Trichodesmium growth was

observed at high dose of exogenous inorganic nitrogen (NO3
-, NH4

+),

but the growth increased at a higher concentration of urea.

Synechococcus 7002 showed good recovery after a prolonged period

of nitrogen deficiency, when exogenous nitrogen sources were

supplied. Among the added exogenous nitrogen sources, ammonium
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and urea were preferred by Synechococcus 7002, which was consistent

with the previous study reporting ammonia as the preferred microbial

nitrogen source for most, if not all, cyanobacteria (Walworth et al.,

2018). After the addition of Trichodesmium IMS 101 filtrate to

Synechococcus 7002 culture, the biomass of nitrogen-deficient

dormant Synechococcus 7002 also increased significantly (Figure 6).

These results suggest that the nitrogen source released by

Trichodesmium can be directly utilized by Synechococcus 7002 for

its growth.

Some studies investigated the transfer of diazotroph-derived

nitrogen to non-diazotrophic planktonic communities (Chen et al.,

2011; Sipler et al., 2013). For instance, Chen et al. (2011) conducted
15N tracing experiments and revealed the transfer of newly fixed N

from Trichodesmium to diatoms. Sipler et al. (2013) used the FT-ICR

MS method to detect the changes in DON concentration and the

composition of N compound showed that Trichodesmium sp.

provided a sufficient source of nitrogen to directly or indirectly

support Karenia brevis blooms. However, the potential mechanism

involved in the transfer of Trichodesmium-derived DON such as urea

and amino acids to non-diazotrophic plankton need to be further

studied at physiological and molecular level. In the present study, the

biomass of Mut-ureA strain was around 20% lower than the biomass

of the wild type Synechococcus. This result indicated that urea

provided a fraction of nitrogen source that Synechococcus could

obtain from Trichodesmium filtrate. The physiological study of

genetic mutants provided direct evidence that chronically nitrogen-

starved marine Synechococcus was able to access urea (produced

during nitrogen fixation by Trichodesmium) as the nitrogen source,

although other forms of nitrogen released by Trichodesmium also had

positive effects on the growth of Synechococcus, which account for

~80% of the biomass accumulation. A previous study examined the

transcriptional profile of cyanobacteria co-existing in Trichodesmium

populations, which was primarily dominated by Synechococcus (Lee

et al., 2018). The study reported that the cyanobacteria allocated more

of their transcriptional pool to ammonium (amtB) and urea (urtA)

transport, with protein products also detected during urea transport,

indicating the potential utilization of Trichodesmium-derived urea by

Synechococcus (Lee et al., 2018). In the present study, wild-type and

Mut-ureA strains of Synechococcus 7002 were used in this study to

understand the relationship between Trichodesmium and non-

nitrogen-fixing Synechococcus linked by the fixed and released

nitrogen of Trichodesmium. The results showed that the

Trichodesmium-derived urea contributed at least part of the

nitrogen source for the growth of phytoplankton populations. This

suggests that urea exuded by diazotrophs can fuel the primary

production and may have a considerable impact on the

composition of the plankton community in the oligo-trophic oceans.

Long-term evolution has led to the development of different

nitrogen uptake and utilization mechanisms as well as the nitrogen

source preferences of various marine phytoplankton. This may

challenge the potential of Trichodesmium as an important

supplier of nitrogen sources to promote marine primary

productivity (Moore et al., 2002; Zubkov et al., 2003; Esteves-

Ferreira et al., 2018; Li et al., 2023). This study emphasized the

crucial role of Trichodesmium-derived DON, especially urea, as new

nitrogen to support the growth of phytoplankton in the
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surrounding environment, represents an important pathway of N

and C export to the deeper parts of tropical and subtropical oceans.

Further studies are needed to investigate the fate of other dominant

Trichodesmium-derived N forms and to highlight the complex

interactions of diazotrophs with their environment.
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