
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Il-Ju Moon,
Jeju National University, Republic of Korea

REVIEWED BY

YoungHo Kim,
Pukyong National University, Republic of
Korea
Dong-Hoon Kim,
Jeju National University, Republic of Korea

*CORRESPONDENCE

Bataa Lkhagvasuren

bataa@chonnam.ac.kr

RECEIVED 08 February 2024
ACCEPTED 27 May 2024

PUBLISHED 02 July 2024

CITATION

Choi B-J, Jin HS and Lkhagvasuren B (2024)
Applications of the Fourier neural operator in
a regional ocean modeling and prediction.
Front. Mar. Sci. 11:1383997.
doi: 10.3389/fmars.2024.1383997

COPYRIGHT

© 2024 Choi, Jin and Lkhagvasuren. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Methods

PUBLISHED 02 July 2024

DOI 10.3389/fmars.2024.1383997
Applications of the Fourier
neural operator in a regional
ocean modeling and prediction
Byoung-Ju Choi1, Hong Sung Jin2 and Bataa Lkhagvasuren2*

1Department of Oceanography, Chonnam National University, Gwangju, Republic of Korea, 2Department
of Mathematics and Statistics, Chonnam National University, Gwangju, Republic of Korea
In this paper, we apply the Fourier neural operator (FNO) paradigm to ocean

circulation and prediction problems. We aim to show that the complicated non-

linear dynamics of an ocean circulation can be captured by a flexible, efficient,

and expressive structure of the FNO networks. The machine learning model

(FNO3D and the recurrent FNO2D networks) trained by simulated data as well as

real data takes spatiotemporal input and predicts future ocean states (sea surface

current and sea surface height). For this, the double gyre ocean circulationmodel

driven by stochastic wind stress is considered to represent an ideal ocean

circulation. In order to generate the training and test data that exhibits rich

spatiotemporal variability, the initial states are perturbed by Gaussian random

fields. Experimental results confirm that the trained models yield satisfactory

prediction accuracy for both types of FNO models in this case. Second, as the

training set, we used the HYCOM reanalysis data in a regional ocean. FNO2D

experiments demonstrated that the 5-day input to 5-day prediction yields the

averaged root mean square errors (RMSEs) of 5.0 cm/s, 6.7 cm/s, 7.9 cm/s, 8.9

cm/s, and 9.4 cm/s in surface current, calculated consecutively for each day, in a

regional ocean circulation of the East/Japan Sea. Similarly, the RMSEs for sea

surface height were 2.3 cm, 3.5 cm, 4.2 cm, 4.6 cm, and 4.9 cm, for each day. We

also trained the model with 15-day input and 10-day prediction, resulting in

comparable performance. Extensive numerical tests show that, once learned, the

resolution-free FNO model instantly forecasts the ocean states and can be used

as an alternative fast solver in various inference algorithms.
KEYWORDS
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1 Introduction

The dynamics of the ocean is modeled by the fluid equations such as Navier–Stokes,

Boussinesq, primitive and quasi-geostropic equations depending on the assumption and

simplification (Pedlosky, 1979; Cushman-Roisin and Beckers, 2011). These partial

differential equations (PDE) are solved by finite element, finite volume, and finite

difference methods. Often, such methods rely on finer discretization to capture the
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underlying physical processes in details. When the discretization

domain is large, such traditional methods are slow, inefficient, and

sometimes not possible. In addition, the modern data assimilation

techniques require ensemble solutions (ensemble Kalman filter) to

alleviate the difficulties caused by the instability and intrinsic

variability of the turbulent flow. To obtain the ensemble

solutions, thousands of evaluations of the forward model may be

needed. Fortunately, in recent years, artificial neural networks (NN)

have emerged as an alternative solver to the traditional solvers. NNs

can approximate highly non-linear functions in an arbitrary degree

by adjusting their weights and structure based on universal

approximation theorem. In addition to their tremendous success

in speech recognition, natural language processing, and robotics,

NNs are capable of learning entire dynamics of a specific PDE. In

the context of PDE learning by NNs, the process of learning can be

purely data-driven or physics-informed (Raissi et al., 2019). In

physics-informed NNs, the loss function includes the physical

equations and boundary conditions as constraints. They are very

accurate and have been used in a variety of tasks. However, when

the physical equations are not known a priori, data-driven methods

may be only the feasible solution. Furthermore, the classical NNs

are designed for approximating a map in finite dimensional spaces

and depends on a specific discretization. To alleviate these

problems, the so-called neural operators have emerged as a new

line of research (Fan et al., 2019; Bhattacharya et al., 2020; Li et al.,

2020b, 2021; Lu et al., 2021; Nelsen and Stuart, 2021; Tripura and

Chakraborty, 2023). The remarkable property of neural operators is

that they are mesh-independent, meaning that neural operators

trained on one mesh can be evaluated on another mesh. Other

advantage is that the neural operators do not require the underlying

PDE; therefore, they are purely data-driven NN. The neural

operators that are inspired by the convolutional integral operators

are Fourier neural operator (FNO) (Li et al., 2021) and Wavelet

neural operator (WNO) (Fan et al., 2019; Tripura and Chakraborty,

2023). FNO parameterizes the integral kernel directly in the Fourier

domain allowing expressive and efficient architecture.

Recent studies involving deep learning applications to Earth

sciences largely centered around atmospheric and weather

prediction problems (Pathak et al., 2022; Bi et al., 2023; Lam et al.,

2023). Since the atmosphere and the oceans are interconnected and

influence each other deeply, they are equally important in Earth

sciences study. However, the research in data-driven modeling and

predictions of ocean circulations is still in its infancy. In the data-

drivenmodels of the oceans, additional difficulties arise due to the land

boundaries, internal variability, surface forcing, and complex

topography. The long short-term memory (LSTM) models are

widely used for time-series forecasting. In this line of study, Choi

et al. (2023) developed a method for predicting high water

temperature events using historical sea surface temperature data for

the Korean Peninsula and Alan et al. (2023) applied the LSTM deep

learning network to the predictability of the tsunami and

enhancement of its early warning time. Chattopadhyay et al. (2023)

introduced an FNO-based system (OceanNet) that predicts the sea

surface height for Gulf Stream. Surface currents are predicted based on

sea surface height, sea surface temperature, and wind stress by Sinha

and Abernathey (2021).
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In this paper, we apply the FNO to ocean circulation modeling

and prediction tasks by considering three challenging and

important variables: horizontal velocity components (u,v) and sea

surface height (z). We start by training the FNO3D network for the

idealized double gyre ocean model with stochastic wind stress

forcing and apply RFNO3D to the regional ocean circulation

model in the East/Japan Sea (EJS). The rest of the paper is

organized as follows. In Section 2, we recall the basic FNO

structure, and Section 3 describes the data preparation, training,

and testing processes for the double gyre ocean model. Finally,

Section 3 presents the application of FNO to a regional ocean

circulation in the EJS.
2 Operator learning by the Fourier
neural operator

The Fourier neural operator (FNO) was first introduced by Li

et al. (2021), based on the authors’ previous works (Li et al., 2020a,

b). The superiority of FNO in operator learning is recorded in

numerous literature, and it is expanding continuously. The FNO,

proposed in Li et al. (2021), is composed of several layers v0 ↦ v1
↦…↦ vT , where each vj is calculated iteratively (see, Figure 1).

First, the input function a(x) is lifted to a higher-dimensional

space by a neural operator P as v0(x) = P(a(x)). Next, the iterations

vt ↦ vt+1 are performed by the non-linear maps

vt+1(x)  = s (Wvt(x)  + Kvt(x)), (1)

where s is the non-linear activation function, W is the linear

transformation, and K is the Fourier multiplier operator defined by

Kvt(x)  =  F−1(R ·  (Fvt)), (2)

where R is some function in the Fourier domain and F and F−1

are the Fourier and inverse Fourier transform, respectively. For the

discrete case, R is expressed by the weight tensor R ∈ Ckmax�dv�dv

and the multiplication is written efficiently as

(R · (Fvt))k,l =o
dv

j=1
Rk,l,j(Fvt)k,j,  k ∈ Zd ,   kj

�� �� ≤ kmax,j, (3)

where the number of Fourier modes in the jth direction is cut by

kmax,j. Thus, the neural operator is parameterized by the tensor R in

the Fourier domain and by W in the space domain. Lastly, the

output is the linear transformation of vT by u(x) = Q(vT(x)). Since

the Fourier modes are cut and parameterized in frequency domain,

the FNO is independent of input sizes.

For the purpose of solution operator learning of partial

differential equations with time variable, two types of FNO

architecture can be considered. The first type of FNO

architecture, denoted by FNO3D, assumes all the variables

equally. That is, the map a(x,t0) → u(x,t) is learned by FNO3D in

the space and time domains and the detailed explanation is given in

Section 3. The next architecture type is the so-called recurrent FNO

network and denoted by RFNO2D. The RFNO2D propagates along

the time direction while performing the convolution operation in

the space domain. In this paper, we chose two dimensions for the
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space domain so that FNO3D and RFNO2D perform Fourier

transforms in 3D and 2D dimensions. Its full explanation is given

in Section 4.

When the input is assumed periodic data, the FNO naturally

processes it, as the Fourier transform (FT) is designed for periodic

inputs. However, most of the data we encounter is non-periodic in

nature. In the case of non-periodic inputs, the FNO networks adjust

the bias term Wvt(x) to the boundary values Equation (1) and learns

the solution operator with high accuracy (Li et al., 2021). Note that the

size of W is dv × dv and it is independent of the size of actual input a

(x). Moreover, the input data are padded for the FNO networks if the

non-periodic boundary condition is considered. Padding extends the

input data dimensions by specific numbers (p) and sets the extended

data portions to zero. After the main transforms (Fourier layers in our

case) are performed, the extended dimensions are reduced back to its

original dimensions. In this sense, for FNO networks, the padding

helps to learn the boundary data. Therefore, zeros are padded to the

extended grid points outside of the boundary in three dimensions for

FNO3D networks and in two dimensions for RFNO2D. The effect of

padding and its length is discussed in Section 5.

In the sequel, the root mean square error (RMSE), relative root

mean square error (RRMSE), and anomaly correlation coefficient

(ACC) are used to quantify the prediction performance and they are

defined as:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N

i=1
(fi − oi)

2

s

RRMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oN

i=1(fi − oi)
2

oN
i=1o

2
i

s

ACC =

1
No

N

i=1
(fi − ci)(oi − ci)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
No

N

i=1
(fi − ci)

2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N

i=1
(oi − ci)

2

s
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where N is the number of spatial points, fi is the forecasted

value, oi is the observed value and ci is the daily climatological mean

value during the training period.
3 Double gyre ocean model and data
acquisition for FNO learning

The simulation of the double gyre ocean circulation became

the standard test bed for the number of purposes in

oceanography and computational fluid dynamics. Starting

from the very crude models (Stommel, 1948; Munk, 1950;

Veronis, 1966), the double gyre ocean circulations have been

studied extensively in the literature and they are rich enough in

dynamics (Jiang et al., 1995; Pedlosky, 1996; Chang et al., 2001;

Moore et al., 2004; Pierini, 2011). In order to prepare a large

amount of simulation data in ocean circulations, we used the

Regional Ocean Modeling system (ROMS). ROMS is a free-

surface, terrain-following, primitive-equation ocean model

widely used by the scientific community for a diverse range of

applications (Haidvogel et al., 2000; Wilkin et al., 2005). In our

simulations, most of the ROMS configurations and options were

adapted from the test case reported in Moore et al. (2004). The

ocean model is configured in the form of a flat-bottomed,

rectangular ocean basin 1,000 km in longitude, 2,000 km in

latitude, and 500 m in depth. The model consists of four equally

spaced vertical levels of thickness 125 m. The primitive

equations were solved on a mid-latitude b plane centered at

45°N with two different horizontal resolutions of 37 km and 18.5

km. With the Coriolis parameter b = 2 · 10−11 m−1 s−1 and

horizontal eddy viscosity 10 m2 s−1, the model circulation was

forced by a stochastic wind forcing of the form

tx = (1 + ϵr̂ (t))( − t0)cos (2py=Ly), (4)

where t0 = 0.05 Nm−2, Ly = 2,000 km is the meridional extent of

the basin, and r̂ (t) = r(t)=sr is wind-noise with unit variance. With
FIGURE 1

FNO architecture: a(x) and u(x) are input and output functions, P and Q are linear transformations, R and W are parameterization tensors and v(x) is
computed by Equations (1)–(3).
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the standard deviation sr, r(t) is the solution of the Ornstein–

Uhlenbeck stochastic differential equation

dr
dt

= −ar + bh, (5)

where h is a Gaussian white noise with unit variance and zero

mean and a and b are positive constants. In order to discretize the

Equation (4), we need to discretize the Equation (5). The discretized

version of Equation (5) is written as

rk+1 = ark + bhk, (6)

where a = (1 − aDt) and b = bDt. It is known that the solution

of Equation (6) with a = 0 is a Gaussian white noise whereas a = 1

corresponds to a Wiener process. One can obtain different

realizations of a red noise by adjusting the parameter a in the

range (0,1]. To include the atmospheric variability in our model,

we choose the values a = 0.9, ϵ = 0.025, and b = 1 with Dt = 1 day.

These parameter values are chosen based on the study of

coherence resonance in a double gyre model by Pierini (2010).

In addition, to generate non-linear instability and different

turbulent regimes, the initial values of the velocity components

u,v and w were generated by the Gaussian random fields, in which

the random perturbations are given in the Fourier domain as

depicted in Evensen (1994). Starting from the random initial state,

the model was run for 1,800 days as shown in Figure 2. The same

simulation was repeated 40 times resulting in different final states

caused by the random initial states, the atmospheric variability,

and the turbulent nature of the flow. Furthermore, the 1,800 days

of each simulation was divided into 30 intervals of length 60 and

we obtain a total of 1,200 instances. Thus, our data have the

dimension 1,200 × 3 × m × n × 60, where three features are

horizontal velocity components (u,v) of the upper layer and the

ocean surface height (z) and m × n is the number of horizontal

grids. Since FNO learns mapping from a(x) to u(x), the data are

divided into two sets of the shapes 1,200 × 3 × m × n × Tin and

1,200 × 3 × m × n × Tout, where Tin and Tout are the input and

output time dimensions and the conditions Tin + Tout ≤ 60 and Tin

≤ Tout are satisfied. The latter condition is to satisfy a precondition

for solution operator mapping. That is, given the point a(x) = u(x,

t0), FNO3D gives the latter values of solutions u(x) = a(x,t) for t ≥

t0. Out of 1,200 instances, the first A FNO3D network 1,000 are

taken as training data and the remaining 200 are used for testing

and validating. In each simulation, the first 10 days are the spin-up

time for the model’s circulation to reach a physical solution.

The overall FNO3D structure is presented in Figure 3A, and the

hyperparameters are Tin = 10, Tout = 40, dv = 20, k = 128, and kmax,j
= (14,28,8). The input data have the shape b×f ×m×n×Tin and; for

simplicity, the notation (A,B) indicates that A is the input and B is

the output of the component, so the overall output of the FNO3D

network is of the shape b × f × m × n × Tout. It means that the

FNO3D network predicts the last Tout time data snapshots based on

the previous Tin data. Note that, although it is not explicitly shown

in the flow diagram, the input data are accompanied by the spatial

and temporal grid information.
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3.1 Training and testing FNO model for
double gyre ocean circulations

In this section, we present the results of training and testing

processes of FNO3D models. Two horizontal grid systems m × n =

27 × 54 and m × n = 54 × 108 are considered for testing the mesh

independence property of the FNO3D model, and we denote them

by FNO3D27×54 and FNO3D54×108 the corresponding neural

networks. Four Fourier layers with the ReLU activation as in

Figure 3A were chosen, and the Adam optimizer with the

RRMSE loss function, learning rate 0.001, step 100, number of

epochs 500, and batch size of 20 was set. We chose 3D padding as

(6,6,6). Putting kmax,j = (14,28,8) and dv = 20 yields 120,427,177

learnable parameters for both FNO3D27×54 and FNO3D54×108. All

the computations are carried out on a computer with NVIDIA

A100 80GB GPU housed at the Korea Institute of Science and

Technology Information center (www.kisti.re.kr).

For the steady wind case (ϵ = 0), the final achieved test errors

(RRMSE) of FNO3D27×54 and FNO3D54×108 are 0.009 and 0.020,

respectively. All the presented error values are combined over the

features u,v,z and averaged over the batch number and the

training or test samples. Note that the error from the model

trained on finer resolution data is slightly higher than the lower-

resolution model. It may be seen in contrast with the traditional

solvers such as finite difference and finite element methods, where

numerical models with finer discretization yield lower errors. This

is because the number of learnable parameters is the same for both

FNO3D27×54 and FNO3D54×108 models. Therefore, when the

resolution of the training data is increased, it is expected that

the model needs to learn more turbulent flow dynamics. The same

applies to RFNO2D models. However, when the stochastic wind

force is introduced (ϵ = 0.025), the RRMSE of FNO3D27×54 and

FNO3D54×108 models are 0.032 and 0.026, respectively. These

errors, which are in contrast with the steady wind case, tend to

grow as the intensity of randomness ϵ increases. Since the same

randomness and intensity is applied to both models, it is observed

that lower-resolution model FNO3D27×54 resolves less variability

so the error becomes slightly higher than that of the higher-

order model.

Recall that, in our simulation, the input data into the FNO3D

network have the dimension 3 × m × n × 10 (excluding batch) and

the output has the shape 3 × m × n × 40. In Figure 4, we present the

visual comparison of actual values and the output of trained nets for

the last snapshot (i.e., 40th). Figure 4B shows the output of

FNO3D54×108, and Figure 4C shows the output of FNO3D27×54,

which is trained on 27 × 54 resolution data and applied to 54 × 108

resolution. The comparison of u,v and z for the same time point is

given in Figures 4D-F. We almost cannot find the differences

visually between the predicted and the actual solution. For this

resolution-free comparison, the RRMSE of the prediction by

FNO3D27×54 and FNO3D54×108 are 0.065 and 0.033, respectively.

While the approximate time spent on obtaining 40-day snapshots

by ROMS at four parallel processes is 36.8 s, the same 40-day

evaluation of FNO3D takes 0.00596 s.
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There is not much variation in the kinetic energy of the double

gyre model after 1,200 days (Figure 2). However, out of 1,200

instances, 1,000 instances were used for training, as detailed in the

beginning of Section 3, whereas the remaining 200 instances were

reserved for testing. These 200 instances contain approximately six

sets of double gyre ocean state evolutions. Each set includes ocean

states from the initial state on day zero to the end of simulation on

day 1,800. Consequently, the reported test set RRMSEs are averaged

over the entire evolutions of double gyre ocean circulation,

including both non-equilibrium states and quasi-steady

states (Figure 2).
Frontiers in Marine Science 05
Finally, we give the brief comparison of FNO3D and RFNO2D

for the double gyre ocean circulation learning task. The full

description of RFNO2D is given in Section 4.2 by Equations (7)–

(11). Overall, the performances of FNO3D and RFNO2D are

comparable with the same learning parameters and 2D padding

(6,6). For the viscosity nh = 10 m2/s, the RRMSEs of the 10-day

input and 40-day output (10d–40d) predictions of RFNO2D27×54

and RFNO2D54×108 are 0.039 and 0.041, respectively.

While the training time for the RFNO2D network is longer than

the FNO3D counterpart, the number of learnable parameters of the

RFNO2D network is significantly less than that of the FNO3D
B

C

A

FIGURE 2

(A, B) ROMS simulation snapshots of the sea surface height z (color shading in meters) and horizontal current vectors (u,v) of the upper layer of the
double gyre circulations at different times (axis unit: 105 m). (C) Variation of basin-integrated kinetic energy change in simulations 7 and 40.
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network. We present the averaged RMSE comparison of FNO3D

and RFNO2D networks for the first 50 instances of the test set in

Figure 5. For both FNO3D and RFNO2D networks, the prediction

errors of velocity components are higher than that of the ocean

surface height and continue to increase as the time increases.

However, the errors for the ocean surface height remain relatively

stable. This supports the fact that the flow velocity is more

challenging to model compared with other ocean variables. We

see that the performance of RFNO2D is slightly better than that of

FNO3D. Another advantage of the RFNO2D network compared

with FNO3D is that it requires less memory for the implementation,
Frontiers in Marine Science 06
since it advances by one time step whereas FNO3D saves whole

time interval data in the memory. Although not shown in this

paper, from another comparison, we found that the prediction

accuracy of RFNO2D was better than that of the persistence model.
4 Predictions of a circulation in the
East Sea by FNO networks

In this section, we apply RFNO2D networks to the prediction of

a regional ocean circulation in the EJS.
B

A

FIGURE 3

The data flow diagram of FNO networks. (A) FNO3D network and (B) RFNO2D network.
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4.1 Data acquisition and processing

Bounded by Japan, Korea, and Russia, the EJS is of great

scientific interest as a semi-enclosed “small ocean”. Its basin-wide

circulation pattern, boundary currents, subpolar front, mesoscale

eddy activities, and deepwater formation are similar to those in an

open ocean. The HYCOM.org provides access to near-real-time

global ocean prediction system output. The HYCOM data are

essentially reanalysis dataset that is the result of optimal

combination of observation and numerical ocean model (data

assimilation). Although several combinations of ocean prognostic

variables are available, we select three important and challenging

variables: ocean current velocities u and v at 10 m below from the

ocean surface and sea surface height z. The data have 0.08° lon ×
Frontiers in Marine Science 07
0.08° lat resolution and covers the 1994–2022 time interval.

Although it is possible to consider the whole domain of EJS in

our computation, the most circulation dynamics are occurring in

the southern region, where the subpolar front is formed and

fluctuating. Moreover, including the whole EJS in the learning

task increases the grid dimension inefficiently as greater part of it

consists of land.

Extracting only ocean grid cells in the EJS part by converting 2D

data to 1D data may be considered; however, we observed that

doing so loses spatial dependence significantly and results in poorer

performance for our FNO learning task. Therefore, we chose the

southern part of EJS enclosed by 36.48°N–40.76°N, 128.96°E–

139.12°E coordinates as our computation domain (Figure 6). For

the land part of the domain, we set the velocity components to zero
B C

D E F

A

FIGURE 4

Comparison of u,v and z values on 54 × 108 mesh for nh = 10 m2 s−1 (axis scale ×106 m). (A, D) The actual solution. (B, E) The output of
FNO3D54×108, which is trained and applied to 54 × 108 resolution. (C, F) The output of FNO3D27×54, which is trained on 27×54 resolution but applied
to 54×108 resolution. (A-C) Contour lines of z. (D, E) Quiver plot of u,v and z values (colored).
frontiersin.org

https://doi.org/10.3389/fmars.2024.1383997
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Choi et al. 10.3389/fmars.2024.1383997
and z to the value �z = 0:065, the mean over the considered domain.

The time variability of the considered variables at the coordinate 38°

E, 132°N, is depicted in Figure 7. The mean values of velocity

components are �u = 0:036 m=s and �v = 0:013 m=s, and the

three variables (u,v,z) fluctuate in the ranges of −1.11–1.17,

−1.39–1.18, and −0.61–0.81, respectively. The seasonal variability

of z is more evident than that of other variables. The time interval

ranging from 1994/01/01 to 2022/12/31, that is, 10,592 days, is

divided to the 50-day interval with the 5-day stride thus excluding

the last 2 days. Thus, our data have the shape 2,109 × 3 × 128 × 64 ×
Frontiers in Marine Science 08
50, where it indicates 50 days, 128 × 64 spatial resolution, three

features (u,v,z), and 2,109 instances of data. Out of 2,109 instances,

the first 1,900 instances are chosen as the training set and the last

200 instances are taken as the test-1 set (see Table 1). On 18/02/

2020, HYCOM discontinued the grid GLBv0.08 that had the

resolution 0.08° lon × 0.08° lat. While the data after 2020/02/18

for test 1 are interpolated to match the original resolution, the test 2

data are prepared for the new resolution 0.08° lon × 0.04° lat to

check the resolution-free evaluation of FNO networks. Since the

training and test sets are not overlapped, the evaluation result of a
BA

FIGURE 6

(A) Distribution of currents (u,v) at a depth of 10 m and sea surface height (z) in the East/Japan Sea on 2018/12/07. (B) The domain of
study (magnified).
FIGURE 5

RMSE comparison of FNO3D and RFNO2D predictions for the first 10 instances of test data (nh = 10 m2 s−1, m × n = 54 × 108).
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trained model on test sets can be seen as the prediction of the future

states of the EJS.
4.2 Training and testing

For the prediction task of EJS model variables, we use the

recurrent version of the original FNO networks with the additional

features and the data flow diagram of RFNO2D is given in

Figure 3B. First, the RFNO2D network with the three features u,

v,z takes the t consecutive days data as input and predicts the next-

day states. The RFNO2D network performs Fourier transform

along the spatial domain (2 in our case); hence, the name

RFNO2D is given. The output of the RFNO2D is augmented to

the input of the next prediction. With the notation Fk = (uk,vk,zk),
the recurrent RFNO2D network propagates along time dimension

as depicted in Equations (7)–(11). Thus, given the input data
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(F1,F2,…,Ft), the recurrent RFNO2D network predicts the next s

day states (~Ft+1,~Ft+2,…,~Ft+s). Let us denote the above task td-sd

prediction in the sequel.

For t = 5, s = 5, the computation flow is as follows:

~F6 = FNO2D(F1,F2,F3,F4,F5) (7)

~F7 = FNO2D(F2,F3,F4,F5, ~F6) (8)
TABLE 1 Training and test data for the prediction of the regional ocean
circulation in EJS.

Dataset Date range Days Shape of data

Train 01/01/1994–18/02/2020 9,545 1,900 × 3 × 128 × 64 × 50

Test 1 19/02/2020–29/12/2022 1,045 200 × 3 × 128 × 64 × 50

Test 2 01/01/2022–31/12/2022 365 64 × 3 × 128 × 108 × 50a

Total 01/01/1994–29/12/2022b 10,590 2109 × 3 × 128 × 64 × 50
aSince 19/02/2020, the HYCOM grid resolution changed.
b50-day interval extracted with the 5-day stride.
FIGURE 7

Time series of daily mean u,v and z at 38°E, 132°N in the East/Japan Sea from 01/01/1994 to 31/12/2022.
TABLE 2 Parameter selection of RFNO2D for the regional ocean
circulation predictions in the southern EJS.

Parameter Value

Number of Fourier layers (n) 4

dv 20

kmax,j 32, 16

k 128

2D padding (6,6)

Epoch number 500

Batch size 20

Learning rate (Adams) 0.001

Step size (Adams) 100

g (Adams) 0.5

Loss function (Adams) RRMSE
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~F8 = FNO2D(F3,F4,F5, ~F6, ~F7) (9)

~F9 = FNO2D(F4,F5, ~F6, ~F7, ~F8) (10)

~F10 = FNO2D(F5, ~F6, ~F7, ~F8, ~F9) (11)

The parameter selection is presented in Table 2, and the training

process is stopped after the test 1 error started to increase with

patience number 10. First, in order to determine the performance

dependence of the input length and the output length, we

considered three types of prediction tasks: T = 10, T = 25, and T
Frontiers in Marine Science 10
= 30, where we denote by T the total length of time T = Tin +Tout.

For T = 10, three different models with 5d–5d, 7d–3d, and 9d–1d

are trained and the test errors are given in the Table 3A. Comparing

these three types of prediction tasks, there is no significant

performance gain for increasing input and decreasing output with

a fixed total number of days T = 10. It means 5-day input is the

optimal setting for the chosen RFNO2D structure and parameters,

since smaller number of days as input can make a longer prediction

with similar performance as applying more days as input. Second,

we tested the error dependence on the total time T. For the case T =

25 as shown in Tables 3B–D, the best configuration was for 15d–
TABLE 3 Mean RMSE of u, v and z for the test 1 dataset.

A T = 10 days

5d–5d 7d–3d 9d–1d

Day 1 Day 2 Day 3 Day 4 Day 5 Day 1 Day 2 Day 3 Day 1

u 0.049 0.065 0.076 0.085 0.090 0.050 0.066 0.076 0.049

v 0.051 0.070 0.083 0.093 0.099 0.053 0.072 0.083 0.051

z 0.023 0.035 0.042 0.046 0.049 0.023 0.036 0.042 0.020

B T = 25 days

5d–20d

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9

u 0.064 0.071 0.080 0.088 0.092 0.094 0.097 0.100 0.101

v 0.069 0.078 0.088 0.096 0.102 0.104 0.108 0.111 0.113

z 0.036 0.040 0.044 0.047 0.050 0.051 0.054 0.056 0.057

C T = 25 days

10d–15d

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9

u 0.060 0.070 0.079 0.086 0.091 0.094 0.096 0.099 0.101

v 0.065 0.076 0.087 0.095 0.100 0.104 0.107 0.110 0.112

z 0.033 0.040 0.045 0.048 0.050 0.050 0.053 0.056 0.056

D T = 25 days

15d–10d

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9

u 0.053 0.067 0.076 0.085 0.090 0.093 0.096 0.099 0.101

v 0.056 0.072 0.084 0.093 0.099 0.103 0.106 0.110 0.112

z 0.027 0.037 0.043 0.047 0.048 0.049 0.053 0.055 0.056

E T = 30 days

20d–10d

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9

u 0.055 0.068 0.077 0.085 0.090 0.093 0.096 0.099 0.101

v 0.058 0.073 0.085 0.093 0.099 0.102 0.106 0.109 0.111

z 0.029 0.038 0.044 0.047 0.049 0.050 0.053 0.055 0.056
T is the sum of input and output days.
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10d. Increasing the input length as in Table 3E to Tin = 20 does not

improve the error. In general, the test error increases as T is

increased. Therefore, we prefer 5d–5d configuration for short

time prediction and 15d–10d for longer time prediction. In the

sequel, we considered the 15d–10d prediction task and denoted the

trained model by RFNO2D128×64. Here, 128 × 64 is the horizontal

spatial dimension on which the RFNO2D is trained.
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We present the RMSE and the ACC in Figure 8 for the trained

RFNO2D128×64 validated on the test 1 dataset. The RMSEs in

surface currents (u and v) show a rapid increase from the first

prediction day to the fifth day, after which the rate of increase

gradually diminishes (Figure 8A, Table 3). Similarly, the RMSE in

sea surface height (z) exhibits a rapid increase from the first

prediction day to the fourth day. Additionally, the ACC follows a
B

A

FIGURE 8

(A) The RMSE and (B) the ACC of surface current (u and v) and sea surface height (z) predicted by the RFNO2D128×64 with 15-day input and 10-day
output (15d–10d) in the southern EJS for the test 1 dataset. The horizontal axis denotes test number for 200 instances (Table 1).
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similar tendency: as the prediction day progresses; the ACCs

linearly decrease for the initial 4–5 days (Figure 8B). There are

extreme peaks in RMSEs in the prediction of surface currents on

specific dates, such as 27/08/2020 (test number 38), 08/08/2021 (test

number 108), and 05/09/2022 (test number 187). On those day,

Typhoons Bavi, Lupit, and Hinnamnor traversed the Yellow Sea,

the East China Sea, and the EJS, respectively, with strong winds

prevailing over the EJS. Given that the RFNO2D128×64 network does

not incorporate the effects of extreme winds caused by typhoons

during the prediction process, it is likely that prediction errors are

significant during these periods.

Next, the forecasting ability of RFNO2D128×64 is compared with

that of the persistent and vector auto-regression (VAR) models,

which are assumed as baseline models. For the 15d–10d prediction

task, the persistent model assumes that the next 10 days’ values are

the same as the last input day’s value. That is, given the 15-day input

F1,F2,…,F14,F15, the prediction of next 10 days is

~F16 = ~F17 = … = ~F25 = F15:
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The VAR is a statistical model that captures the linear

relationship of multiple variables as they change over time. In our

notation, the VAR(p) model with p lags is written as

~Ft = c + A1Ft−1 + A2Ft−2 +… + ApFt−p + et ,

where c is a constant vector with dimension 3, Ak is the time-

invariant 3 × 3 matrix, and et is the error term. The VAR(p) model

estimates next days’ values by propagating along time dimension

similarly as in Equations (7)–(11). We chose the Fk = (uk,vk,zk)
values at the coordinate 38°E, 132°N in the EJS as depicted in

Figure 7. For the fair comparison, the maximum lag should be less

than 15. The Adfuller test confirmed the stationarity of our time

series, and, surprisingly, the Akaike information criterion (AIC)

took the minimum value at lag p = 15 when tested for optimal lag in

the range from 1 to 20. The performance comparisons of

RFNO2D128×64, persistent, and VAR(15) models are shown in

Figure 9 where the prediction RMSE is averaged over the test 1

set and graphed against the prediction days from 1 to 10. Generally,

RFNO2D128×64 outperforms these baseline models. The persistent
B

C

A

FIGURE 9

Performance comparison of RFNO2D128×64, persistent, and VAR(15) models for 10 prediction days. RMSE in (A) u, (B) v, and (C) sea surface height.
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model prediction, as expected, yields higher error than the other

two methods for all the variables. While the prediction ability of the

u component by RFNO2D128×64 is persistent along the prediction

days, starting from the sixth day, RFNO2D128×64 and VAR(15)

perform similarly on the v component. We believe the reason is that

surface currents generally flow eastward or northeastward and the v

component carries more uncertainty than the u component. For the
Frontiers in Marine Science 13
z variable, the two models RFNO2D128×64 and VAR(15) are in

competitive manner or on par with each other.

In Figure 10, the comparison of 15d–10d prediction on the 1st,

2nd, 4th, 7th, and 10th days starting from 17/08/2022 is given in the

form of surface current field and sea surface height z. The East

Korea Warm Current (EKWC) is vigorously meandering with four

wave crests (troughs) extending from the west to east. The surface
FIGURE 10

Comparison of truth and predicted variables for 17/08, 18/08, 20/08, 23/08, and 26/08/2022. Color represents the sea surface elevation in m, and
black vectors are currents at a depth of 10 m. Contour interval is 0.2 m.
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current at a depth of 10 m predominantly flows northeastward

toward the Tsugaru Strait (Figure 10). Anti-cyclonic eddies tend to

form to the south of the EKWC, whereas cyclonic eddies typically

develop in the northwest region of the domain. During the initial 2

days of the prediction, the surface current speed and the

meandering patterns of surface currents and the locations of

eddies in the predictions closely match the truth. However,

starting from day 4 (20/08/2022), the surface current speed

appears slightly weaker in the prediction compared to the truth,

despite similar meandering patterns of surface currents and the

locations of eddies. These differences may originate from relatively

strong southwesterly winds from August 19 to 20, with daily speed

of 5.1 m/s–6.3 m/s. From August 17 to 18, daily wind speeds

measured at Ulleung Island (130.90°E, 37.48°N) were 1.4 m/s to 2.1

m/s. It is noteworthy that the FNO model does not have

information on wind for the prediction.

Note that the model RFNO2D128×64 is trained on 128 × 64

resolution data. Since the FNO networks are independent of input
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grid size, we evaluated the RFNO2D128×64 network on test 2 dataset,

which has a 128 × 108 grid system, and the differences between the

predicted values and the truth are given in Figure 11. This

demonstrates the resolution-free property of the FNO network.

Even when surface currents and sea surface height are predicted on

a finer grid system, errors remain relatively small during the initial 2

days. However, the errors (predicted – truth) increase for all

variables from the first prediction day to the fourth day. The

errors in v did not propagate horizontally but instead statically

grew over time. The differences in u gradually increased from the

first day to the fourth day. Afterward, the error in u oscillated in

time from the 7th day to the 10th day.
5 Discussion and conclusion

In this paper, we applied the deep learning algorithm inspired

by the FNO to the ocean prediction problem in the framework of
FIGURE 11

Horizontal distribution of daily error (predicted-truth) in u,v and z from 07/11 to 16/11/2022. The model RFNO2D128×64 was trained on the 128 × 64
grid and evaluated on a 128 × 104 resolution for 15d–10d prediction. Units of velocity components (u and v) and sea surface height (z) are m/s and
m, respectively.
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the double gyre ocean circulation model and a regional circulation

model for the East/Japan Sea. For the double gyre ocean

circulation model, the FNO network learns the solution

operator of the governing primitive equations forced by the

stochastic surface wind stress in the form. To prepare a large

amount of training and testing samples, we run the Regional

Ocean Modeling System with the initial data generated by the

random Gaussian fields. Extensive numerical tests show that, once

learned, the FNO3D and RFNO2D networks predict the ocean

states with a high accuracy and it can process any data with

different resolutions and they have comparable performances with

each other.

The learning task for the FNO model with the real ocean

circulation data is more challenging compared with the double

gyre model. The first reason is that the dynamics of a real ocean is

not only governed by intrinsic variability within the ocean but also

affected by external forcing such as open boundary input and

atmospheric forcing (Choi et al., 2009, 2018) and the second

reason is that we considered only three variables: the horizontal

velocity components and the sea surface height. Incorporating wind

stress, water temperature, and salinity into the model can improve

the performance of FNO model at the expense of computational

cost, and it will be in our future research. We found that, for short-

and long-time prediction, the recurrent RFNO2D network with 5d–

5d and 15d–10d prediction task is the optimal setting for the

considered EJS model. In our forthcoming research, we intend

to compare the performance of FNO-based models with that of

LSTM neural networks specifically for the regional ocean

prediction problem.

To determine the optimal padding lengths for both the double

gyre and EJS models, while fixing the other learning parameters,

we tested 2D and 3D padding of the shape (p,p) and (p,p,p),

respectively, with p = 0 (no padding),2,4,6,8 and p = 10. Although

the final test errors differ little from each other (in the order of

10−3), we found that the number p = 6 is the optimal one

considering its generality. Given that the boundary conditions

are quite different for the double gyre model with closed lateral

boundary and the EJS model with open lateral boundary, the FNO

network learns the boundary data with satisfactory results for the

considered settings.

The decrease in surface current speed in the EJS may be

attributed to the absence of wind forcing and the truncation of

high wavenumber patterns in the current fields during FNO

learning (Figure 10). The RFNO2D uses dominant modes in

wavenumber space, which may lead to the omission of high

wavenumber patterns without high-frequency forcing (Qin et al.,

2024). The decrease in energy at high wavenumbers due to the

recursive application of RFNO2D is not thoroughly studied. Further

investigation into this matter is necessary in future studies. Despite

these limitations, the FNO network outperforms persistence and

VAR models (Figure 9).
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In conclusion, the FNO networks can learn from history data

for ocean prediction problems. Once learned, the FNO networks

can yield prognostic variables instantly. If many instances of

solutions are needed such as in ensemble Kalman filter, one can

benefit largely from the FNO network predictions. In the same

direction, we plan to improve the performance of the prediction

tasks by considering other ocean parameters and another deep

learning network based on wavelet transform.
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