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Leonori I (2024) Modeling of the habitat
suitability of European sprat (Sprattus sprattus,
L.) in the Adriatic Sea under several climate
change scenarios.
Front. Mar. Sci. 11:1383063.
doi: 10.3389/fmars.2024.1383063

COPYRIGHT

© 2024 Palermino, De Felice, Canduci,
Biagiotti, Costantini, Centurelli, Menicucci,
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The Mediterranean Sea represents the lower latitudinal limit of the European sprat

range, where it is considered a sentinel species favoring temperate–cold

temperatures. Sprattus sprattus is a plankton feeder that plays an important

ecological role in contributing to the transfer of energy from lower to higher

trophic levels, but climate-driven increases in sea temperatures may reduce the

suitability of the pelagic habitat and threaten the tropho-dynamic role of sprat in

areas such as the Adriatic Sea. The latter is an enclosed basin characterized by

shallow waters and high annual temperature variations. Here, to investigate present

and future habitat suitability areas for sprat, we applied four species distribution

models (SDMs) using fishery-independent data collected from 2004 to 2021, along

with remotely sensed and modeled environmental variables. A set of nine

environmental predictors was tested, and the resulting best model was averaged

in an ensemble model approach. The best ensemble models revealed good to high

accuracy (sensitivity and specificity ≥ 0.8). The sea surface temperature and

chlorophyll concentration emerged as the main explanatory variables in predicting

the potential habitat of sprats, followed by bathymetry. The resulting probability of

occurrence maps revealed that the species is bounded in the northern Adriatic Sea,

where a longitudinal shift of high-suitability habitats from inshore to deeper and

colder waters was detected between early and late summer. Future projections

under IPCC representative concentration pathway (RCP) scenarios 4.5 (intermediate

emission) and 8.5 (high emission-warm) underline small changes along with a gain

of new areas in late summer in the short-term period up to 2050. Conversely, the

temperature increase projected for the end of the century is predicted to cause a

loss of suitable habitat area for sprats of up to 88% under a high emission-warm

scenario relative to current habitat occupancy throughout the basin.
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1 Introduction

Anthropogenic activities are the most important drivers of

ocean biome change. The high level of greenhouse gas emissions

is leading to global climate change, which affects marine organisms

(Yu et al., 2018; Kanamori et al., 2019). The shift in climate regime is

attributed to changes in sea temperature, salinity, and circulation,

which are controlled by regional atmospheric variations and large-

scale teleconnections (Cheung et al., 2009; Shaltout and Omstedt,

2014). Such changes result in a northward shift of fish populations,

with unpredictable consequences for regional communities and

food-web structure (Brander, 2010; Cheung et al., 2013; Chust

et al., 2013). Enclosed basins are more susceptible to climate

change, including the Mediterranean Sea, which is regarded as a

climate change hotspot particularly vulnerable to the rise in sea

temperatures (Shaltout and Omstedt, 2014).

In this context, studies on the distribution of fish species in

relation to environmental conditions are of particular interest for

ecosystem-based management strategies (Effrosynidis et al., 2020;

Schickele et al., 2021). Several species play a key role in mediating

severe community changes due to environmental variations (Azzurro

et al., 2022). Cold-favoring (boreal) species such as sprats (Sprattus

sprattus) can be used as sentinels as they are highly sensitive to

increases in sea temperatures (De Felice et al., 2021).

Sprat, S. sprattus (Linnaeus 1758) is one of the main clupeids

species found in the Mediterranean Sea, along with Sardina

pilchardus and Sardinella aurita (Froese and Pauly, 2023). Since

sprat is a boreal species, it is mainly distributed in the northern part

of the Mediterranean basin in northern Spain (GFCM Geographical

Sub-Area (GSA) 6), in the Gulf of Lion (GSA 7), and in the northern

Adriatic Sea (GSA 17), where it is found in shallow waters up to a

depth of 50 m, see Figure 1 (Froese and Pauly, 2023). As a cold-
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favoring species, it may be threatened by rising sea temperatures,

leading to an overall alteration of the pelagic ecosystem (Schickele

et al., 2021). In addition to temperature, an ensemble of abiotic and

biotic factors have been shown to affect the life cycle and

distribution of sprat, such as wind, dissolved oxygen

concentration, ocean circulation, salinity, and nutrient

concentrations (Voss et al., 2008; Ojaveer and Kalejs, 2010;

Tsikliras et al., 2019). The distribution of sprat in the Adriatic Sea

depends on migration between the more productive feeding area

close to the Po River Delta (44.950°N–12.417°E) and the spawning

grounds in the eastern Adriatic (Tičina et al., 2000; Tičina, 2003;

Piccinetti et al., 2012). In fact, sprat is a multiple (batch) spawning

species that reaches the peak of its spawning activity in the winter

months in the Adriatic Sea (Tičina et al., 2000).

Sprat is the third species in terms of landings by weight in the

General Fisheries Commission of the Mediterranean (GFCM) area

(Mediterranean Sea and Black Sea) (FAO, 2023). It is a target

species of purse seine and pelagic trawl in the Black Sea, while in the

western Mediterranean Sea and Adriatic Sea, it is a by-catch species

with low commercial value, which contributes with a very small

percentage (less than 1%) to pelagic trawl landings being more

frequently discarded (Tičina, 2003; FAO, 2023). Nevertheless, in the

pelagic ecosystem, sprat plays an important tropho-dynamic role

both by exerting top-down controls on zooplankton and by being

an abundant prey resource for piscivorous species (Peck et al., 2012;

Fanelli et al., 2023). The first stock assessment models carried out

for sprat in the Mediterranean Sea have shown a pessimistic

situation for the stock (Angelini et al., 2021) confirming the

decline in biomass registered by acoustic surveys in the Adriatic

Sea (Leonori et al., 2021).

Despite its importance, sprat habitat suitability has never been

assessed at a regional scale in the Mediterranean Sea (De Felice
FIGURE 1

GFCM Geographical Sub-Area (GSA) division of the Western and Central Mediterranean Sea on top. Below is the map of the Adriatic Sea with the
acoustic transects annually carried out in the western and eastern parts of the basin in the framework of the Mediterranean International Acoustic
Survey (MEDIAS) project.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1383063
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Palermino et al. 10.3389/fmars.2024.1383063
et al., 2021; Schickele et al., 2021), unlike sardine and anchovy,

which have been extensively studied through the application of

species distribution models (SDMs) (Giannoulaki et al., 2011;

Tugores et al., 2011; Giannoulaki et al., 2013). Habitat loss, along

with exploitation, is considered one of the main causes of target and

nontarget fish species’ local extinctions (Dulvy et al., 2003). SDMs

are powerful tools for understanding species distribution patterns in

response to environmental factors and predicting habitat loss under

climate change scenarios (Guisan and Zimmermann, 2000; Guisan

and Thuiller, 2005). They allow spatially explicit predictions of

habitat suitability areas to be derived from the statistical

relationships between environmental drivers and occurrence data

for a given species (Guisan and Zimmermann, 2000). A large

number of statistical approaches have been developed for SDMs

including regression-based methods such as Generalized Linear

Models (GLM) and Generalized Additive Models (GAM) and

machine learning methods such as Random Forest (RF) and

Generalized Boosting Models (GBM). RF uses an ensemble of

decision trees, created by randomly resampling data from the

original dataset, which are combined to classify suitable habitats.

At the end of the run, the grid cell is categorized based on

probability into favorable and nonfavorable habitats. GBM on the

other hand, combines the use of regression trees with boosting,

which is another ensemble method based on the generation of

sequential trees, that attempts to explain the variation that cannot

be explained by existing trees so that each new tree minimizes a loss

function (Marmion et al., 2009; Quinci et al., 2022). Therefore, they

are more suitable when only presence data are available or when

pseudo-absence data are included in the computations (Gomez and

Cassini, 2015; Effrosynidis et al., 2020). Conversely, when enough

real absence and presence data are available, regression models are

usually preferred (Lauria et al., 2015; Bonanno et al., 2016; Ebango

et al., 2020). Binomial GLM is a generalization of the linear

regression model making the function of the variance of each

measurement dependent on its predicted value. However, GAM

can account for nonlinear relationships between environmental

variables and species occurrence or abundance being a flexible

and powerful method that provides more realistic interactions

and nonlinearities being more similar to machine learning

methods (Marra and Wood, 2011; Albo-Puigserver et al., 2016).

The use of different models to estimate the habitat of a species can

result in a large variability of predictions, leading to possible biases

linked to the choice of the model. For this reason, results from

different SDMs are usually combined in an ensemble model,

averaging their assessments to enhance the robustness of the final

forecast (Robinson et al., 2017; Araùjo et al., 2019).

In this study, we examined the long-term potential range shift of

the species to evaluate any possible implications for the ecosystem

and small pelagic fish resources management in the Adriatic Sea.

We employed 18 years of data collected during national and

international acoustic surveys in the Adriatic Sea along with a

combination of present and future modeled environmental

variables with the aim of investigating the environmental

processes that lead to sprat’s habitat suitability. Four different

SDMs in an ensemble model approach were applied to predict

present and past habitat suitability maps of sprat and project its
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future distribution in the Adriatic Sea under two IPCC climate

change Representative concentration pathway (RCP) scenarios, 4.5

(intermediate emission) and 8.5 (high emission-warm), derived

from the POLCOM-ERSEM model (Kay, 2020) in short-, mid-,

and long-term periods.
2 Materials and methods

2.1 Biological data

Presence/absence data were obtained from over 1,200 sampling

hauls conducted during several acoustic surveys in the Adriatic Sea.

Specifically, we scrutinized data collected on board R/V G

Dallaporta and R/V BIOS DVA performed in early summer and

late summer between 2004 and 2021, in the framework of national

(ECHOADRI and PELMON) and Mediterranean International

Acoustic Survey (MEDIAS) projects (Leonori et al., 2021), as

shown in Table 1. The survey design consists of systematic

parallel line transects perpendicular to the coastline or adapted to

the geomorphology of the survey area, conducted during the

daytime in bathymetry between 10 m and 200 m, as shown in

Figure 1 (MEDIAS, 2021).

In parallel to acoustic sampling, routine biological sampling was

carried out to enable identification of echo traces of fish schools and

to obtain a biological sample. Therefore, pelagic trawl hauls were

made on-demand at a vessel speed of ~ 4 knots for 30 min at

different locations within the survey area, adapting the sampling

intensity to the occurrence of echo traces and fish schools in each

area. Biological sampling was performed by the two research vessels

equipped with the same type of four-seam pelagic trawl net ~ 15 m

horizontal and ~ 11 m vertical opening with an 18-mm stretched

mesh size cod-end suitable for catching the small pelagic fish

schools of juveniles and adults that are the survey’s target species.

On the R/V G. Dallaporta, however, the net behavior is currently

monitored in real time owing to the SIMRAD FX80 trawl sonar

system, whereas on the R/V BIOS DVA, the net positions are

monitored using the SIMRAD ITI system. Once on board, the total

catch is weighted, and in the event of very abundant catches, a

subsample is collected for further analysis.
TABLE 1 List of acoustic surveys and the corresponding number of
pelagic trawl hauls scrutinized in the present study.

Area Month Year Survey Sampling effort
(No. of hauls)

Western
Adriatic Sea

September 2004–
2008

ECHOADRI 149

Western
Adriatic Sea

September 2009–
2014

MEDIAS 242

Western
Adriatic Sea

June-July 2015–
2021

MEDIAS 235

Eastern
Adriatic Sea

September 2009–
2012

PELMON 108

Eastern
Adriatic Sea

September 2013–
2021

MEDIAS 516
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In this study, any haul holding at least 10 sprat specimens was

designated as a sprat presence location (1); otherwise, it was deemed

absent (0). Several thresholds were attempted during preprocessing

scrutinization. A threshold of 10 specimens was selected based on

the expertise of the authors of the present work and the available

dataset dealing with the minimum sample size needed for the

analysis (Hernandez et al., 2006), yielding a data matrix

encompassing 215 presence and 1,035 absence points (see map in

Supplementary Figure S1).
2.2 Environmental data

The Adriatic Sea is an enclosed basin characterized by an

extensive continental shelf that, with the exception of Pomo/

Jabuka Pit, does not exceed the 200-m isobath in the north-mid-

part as shown in Figure 1 (Russo and Artegiani, 1996). The shallow

waters, together with the characteristic cyclonic (anticlockwise)

circulation, cause high-seasonal and annual temperature

variations, while the nutrient load is strongly influenced by the

Po runoff in the northern part of the basin, which could lead to

strong variations affecting the primary production. The freshwater

inflow determines more pronounced eutrophic conditions for the

western Adriatic Sea compared to the eastern Adriatic (Giani

et al., 2012).

Despite the fact that the small pelagic fish biomass and

distribution in the Mediterranean Sea can be affected by the

Atlantic Multidecadal Oscillation (AMO) and North Atlantic

Oscillation (NAO) (Tsikliras et al., 2019), the most important

environmental drivers for the sprat life cycle in semi-enclosed

basins, like the Adriatic and Baltic seas, are temperature, primary

production, depth, salinity, and oxygen concentration (Ojaveer and

Kalejs, 2010; Tsikliras et al., 2019; Schickele et al., 2021). The feeding

success of sprat larvae can be affected even by wind and cloud

coverage, but temperature emerged as the main driver for

ontogenesis and sprat growth (Petereit et al., 2008; Voss et al.,

2008; Frisk et al., 2015). For these reasons, in this work, we focused

on the factors that most commonly affect the distribution of small

pelagic fish that may be relevant to the study area and the target

species (Fernández-Corredor et al., 2021). Specifically, satellite data

derived chlorophyll-a concentration (CHL in mg m−3), sea surface

water potential temperature (SST in °C), bottom seawater potential

temperature (BST in °C), dissolved oxygen (O2 in mmol m−3), net

primary production (NPP in mol m−3), phytoplankton

concentration (PHYC in mol m−3), sea surface salinity (SSS in

PSU), and sea-level anomaly (SLA in m) were downloaded from the

Copernicus Marine Services (Escudier et al., 2020; Clementi et al.,

2021; Cossarini et al., 2021), in the period 2004–2021, while depth

in meters was downloaded from the MARSPEC database (Sbrocco

and Barber, 2013). The POLCOM-ERSEM model (Kay, 2020) of

total chlorophyll-a concentration (CHLT in mg m−3) and sea

surface water potential temperature (SSTF in °C) under IPCC

RCP 4.5 and 8.5 scenarios were downloaded from the Climate

Data Storage for the contemporary period (2006–2021), short-term

projections (2029–2049), mid-term projections (2054–2074), and

long-term projections (2079–2099). All environmental variables
Frontiers in Marine Science 04
were downloaded at the maximum resolution, and only the layer

at 5 m depth was retained for computations except for BST and SLA

(see Supplementary Table S1 for more details).

When available, daily values encompassing years and months in

which the surveys were conducted, (June, July, and September from

2004 to 2021) were processed in the Q-GIS environment using the

SAGA plugin to obtain seasonally averaged regular grids (Conrad

et al., 2015). Early summer raster files were derived from daily

values for June and July, while late summer values were obtained by

averaging September values. Subsequently, satellite environmental

maps were interpolated through a cubic-spline interpolation and

aligned to obtain a finer grid of 0.031° E (approximately one

nautical mile) for each explanatory variable.
2.3 Modeling framework

The environmental variables and the response variable were

treated as late summer (data from the western Adriatic Sea from

2004 to 2014 and the eastern Adriatic Sea from 2009 to 2021) and

early summer (data from the western Adriatic Sea from 2015 to

2021), merging data from different years and areas. Each dataset

was randomly split into training (70% of the total hauls) and

validation datasets (30% of the total samples), ensuring a balance

was maintained to avoid any bias in model performance (Fielding

and Bell, 1997). Since CHL and PHYC had shown a non-normal

distribution, they were logarithmically transformed to achieve a

normal distribution of the data. Depth was similarly transformed

using a cubic root. Before applying the models, we assessed the

correlation between independent environmental variables by

means of the Pearson coefficient. Any variables exhibiting a

significant correlation, characterized by a Pearson correlation r

greater than 0.7 and less than −0.7, were independently selected

(Bosch et al., 2018). Accordingly, from any possible combination

of uncorrelated variables, four and three predictor sets were

defined for early summer and late summer, respectively

(see Table 2).

Using presence/absence data as response variables and the

predictor sets as explanatory variables, four modeling techniques

were fitted in the “biomod2” package in R (Thuiller et al., 2023),

including two regression models, GAM and GLM, and two machine

learning models, RF and GBM. This package has the advantage of

being able also to compute an ensemble model consisting of the

average of the fitted individual models. As is customary for

presence/absence data, the two regression models were fitted to

the training dataset assuming a binomial error distribution and a

logit link function selecting the best model on the basis of Akaike’s

information criteria (AIC), and deviance explained (Marra and

Wood, 2011). GAM models were computed using the

“GAM_mgcv” algorithm assuming a binomial error distribution

and a logit link function, while the degree of smoothing, expressed

as the number of knots k, was automatically selected (Wood, 2017).

The two machine learning methods were set using the default

settings of tuning and fitting parameters given in the biomod2.

Finally, an ensemble model was computed through the weighted

mean technique (EMwmean), where the probabilities derived from
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the chosen models are assigned weights based on their respective

evaluation true skill statistic (TSS) scores.
2.4 Predictor selection and
model validation

The combination of two datasets, predictor sets, four modeling

techniques, and ensemble models led to 70 fitted models. Firstly, we

evaluated the variable importance through the method used in the

biomod2 package. It adopts a machine-learning approach after the

models have been trained. It randomly perturbs one of the variables

in each permutation and calculates a correlation score between the

standard prediction and the new prediction. This score is regarded

as an estimate of the variable’s significance within the model. The

higher the score, the greater the importance of the predictor variable

in the model. It is important to note that this method does not

consider interactions between variables that have been previously

assessed through a correlation matrix (Thuiller et al., 2023). Only

environmental variables that reached a variable importance score of

0.3 in at least one of the four models were retained for the following

steps. The obtained refined predictor sets were fitted for a second

run of the individual models. Next, an ensemble model was

performed for each refined predictor set. The predictive

performance of each model was validated by validation with the

independent test dataset and quantified based on the TSS, the area

under the curve (AUC), and accuracy (sensitivity and specificity)

values. In particular, the TSS value was used to choose the model

with the best performance, characterized by the lowest level of

potential prediction error for sprat-habitat suitability projection.

The model cannot accurately discriminate if the AUC is less than

0.5; an AUC of 0.7 indicates satisfactory discrimination; an AUC of

0.8 indicates good discrimination; and an AUC of 0.9 or more

indicates very good discrimination (Hosmer et al., 2013). TSS is a
Frontiers in Marine Science 05
measure of agreement between the predicted and observed values.

Values between 0.0 and 0.4 indicate slight to fair model

performance; values between 0.4 and 0.6 indicate moderate

model performance; values between 0.6 and 0.8 indicate

substantial model performance; and values between 0.8 and 1.0

indicate almost perfect model performance (Somodi et al., 2017).

Accuracy is determined by sensitivity and specificity, which

measure the model’s ability to properly identify the values

correctly assigned as presence (positive) and absence (negative),

respectively. We calculated the aforementioned metrics by

comparing the predicted values to the observed values using a

threshold criterion based on equal sensitivity and specificity with

the exception of AUC, which is a threshold-independent measure.
2.5 Current and past projections

Based on the validation process, the best ensemble models were

used to predict the habitat suitability map of sprat in early summer

and late summer for the entire period (from 2004 to 2021) in the

Adriatic Sea. Specifically, we plotted the probability of occurrence of

the species over a grid mesh size of 0.031°. Rare, occasional,

preferential, and persistency habitat allocation maps were created

by applying a threshold to the mean probability values: areas with a

probability of occurrence< 0.25 were set as rare; areas with a

probability of occurrence between 0.25 and 0.5 were set as

occasional; areas with a probability of occurrence > 0.5 and< 0.75

were designated as preferential; areas with a probability of

occurrence > 0.75 were set as persistency (Giannoulaki et al.,

2017). The average seasonally mean environmental values of each

selected variable were used to predict the annual habitat suitability

map over the time series and seasons, providing information on the

distribution of the species during seasons and areas where acoustic

surveys had not been conducted.
2.6 Future projections

Since there is often a noticeable shift in the scale of the IPCC-

style model variables when compared to observed satellite

oceanographic conditions, we compared the temperature and

chlorophyll-a concentration between the hindcast (Copernicus)

and model (POLCOM-ERSEM) in the overlapping period (2006–

2021). Hence, we calculated the differences between the two datasets

and adjusted the model-derived variable following the delta model

bias correction approach described in Hare et al. (2012). The

difference between hindcast T° (SST) and model T° of the

overlapping period (SPTP) (DTijk) was computed for each year

(i), season (j), and RCP (k). Next, we computed the mean delta of

the overlapping period (�Djk) where n is the number of years.

DTijk   =   SPTPijk  −   SSTijk

  �DTjk   =
oDTijk



n

TABLE 2 Predictor sets used during model computations.

Predictor set Selected
variables

Discarded
variables

Early summer

P1 CHL, O2, SST, depth O2

P2 BT, O2, SST, SSS, depth O2

P3 BT, O2, SST, SSS, SLA SLA

P4 CHL, O2, SST, SLA SLA, O2

Late summer

P1 CHL, SST, SLA, depth SLA

P2 O2, CHL, SLA, depth SLA

P3 BT, O2, SSS, depth, SLA SLA
The single variables are listed in Table 2, while discarded variables are the variables rejected
after the first run of each model due to the variable importance threshold set at 30%. CHL,
chlorophyll-a concentration (mgm−3); SST, sea surface water potential temperature (°C); BST,
bottom sea water potential temperature (°C); O2, dissolved oxygen (mmol m−3); SSS, sea
surface salinity (PSU); SLA, sea-level anomaly (m).
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Accordingly, the difference between satellite CHL and modeled

CHLTP (DCHLijk) was computed through the ln difference.

  ln(DCHLijk)   =   ln(CHLTPijk)  −   ln(CHLijk)

= ln(CHLTPijk=CHLijk)

  �DCHLjk = o
ln(DCHLijk)



n

Successively, the mean values for the future SST(SPTFjk) and

CHL(CHLTFjk) were computed across three distinct time spans to

encompass short-term periods (2029–2049), mid-term periods

(2054–2074), and long-term periods (2079–2099). Finally, the two

variables were corrected for each period (l) as follows:

SPTjkl   =   SPTFjkl  −     �DTjk

ln(CHLTjkl)   =   ln(CHLTFjkl)  −     �DCHLjk

After the treatment of the future environmental dataset, the best-fit

ensemble models identified through the validation process for

predicting the sprat-habitat suitability (hindcast) were employed for

forecasting the sprat-habitat suitability under the new environmental

conditions in (i) early and late summer, (ii) RCP 4.5 and 8.5, and (iii)

short-, mid-, and long-term periods. Finally, we quantified the

difference in the extension of the habitat suitability map of the species

comparing current end future projections in terms of percentage gain

and loss of area through the “BIOMODRangesize” function.
3 Results

3.1 Model results

The environmental factors describing the primary production

of CHL, PHYC, and NPP were significantly correlated with each

other (r > 0.9; p-value< 0.0001) in both seasons. Moreover, NPP has
Frontiers in Marine Science 06
a strong negative correlation with SSS and a strong positive

correlation with BT (r > 0.75; p-value< 0.0001). Therefore, only

CHL was retained as a proxy for primary production during the

computations of the single and ensemble models GLM, GAM, RF,

GBM, and EMwmean (the correlation matrix can be found in

Supplementary Figures S2, S3). Four sets of predictor variables for

early summer and three for late summer were used, as listed in

Table 2. Since SLA and O2 consistently had a score< 0.3, these

variables were discarded, and a second run for each single and

ensemble model was performed using only the selected variables

from Table 2.

The best ensemble model performance was obtained with

predictor set 1 (P1) in both seasons, as shown in Figure 2.

Therefore, the variables used in the final EMwmean for early and

late summer present, past, and future projections are SST, CHL, and

depth. Individual model evaluation metrics shown in Table 3

indicated that the model performs better for early summer

predictions than for the late summer model. Nevertheless, in both

seasons, the sensitivity scores ≥ 0.90 indicate a very low probability

of obtaining false absence values, and the specificity ≥ 0.80 proves a

high accuracy in detecting presence values. Moreover, the machine

learning methods RF and GBM gave more accurate results than

regression models GAM and GLM. Overall, SST and CHL resulted

as the main explanatory variables for sprat, followed by depth in

both seasons, as shown in Figure 3.

According to response curves shown in Figure 4, areas

characterized by shallow waters and elevated primary production,

as measured by the chlorophyll-a concentration (mg m−3) in early

summer, had a greater likelihood of harboring sprat. CHL is the

main driver in late summer too, when there is a shift in the

preferential depth of the species to deeper waters. It is interesting

to note the discrete thermal niche of sprat in early summer, when

the species in the Adriatic Sea is mainly found between

temperatures of 23°C and 24°C, as opposed to late summer, when

the probability of occurrence increases at temperatures of

approximately 21°C (Figure 4).
FIGURE 2

True skill statistic (TSS) score values for each combination of predictor set and modeling technique. The environmental variables in each predictor
set (P1–P4) and modeling technique (GLM, GAM, RF, GBM, and EM) are described in Table 3. EM depicts the weighted mean ensemble model.
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3.2 Current and past projections

The habitat suitability maps depicted in Figure 5 show a

persistency area located in front of the Po Delta in the eastern part

of the basin during early summer, followed by a reduction in late

summer. The overall suitable areas are concentrated in the

northeastern coastal waters during early summer, with an occasional

presence up to the mid-Adriatic Sea. In late summer, these areas split

into two main preferential spots, one on the western side of the basin

and the other around the early summer persistency area.

Along the time series, past predictions of the sprat-habitat suitability

map reveal a fluctuating extent of suitability area. The area associated

with a high probability of sprat presence extended further south and

offshore in both seasons in 2007, 2010, and 2014 (Supplementary

Figures S4, S5). Early summer is characterized by a general increase

in the suitability region across the time series, with the exception of 2017

and 2018, when the suitability range was limited to the north Adriatic

Sea (Supplementary Figure S4). An opposite trend was observed in late

summer, when the last 6 years of the studied time series (2015–2021)

were characterized by a shrinkage of suitable sea grounds for sprat,

which is particularly evident in 2018, along with a reduction in the

western Adriatic Sea in 2011 (Supplementary Figure S5).

3.3 Future projections

The goodness-of-fit results of the ensemble models under the long-

term RCP 8.5 scenario presented in Table 3 underline a good to high

accuracy and a moderate to good performance of the final ensemble

model in forecasting the habitat suitability of sprat between 2079 and

2099. The robustness of the models under other scenarios is presented

in Supplementary Table S2. Our projections indicate in early summer a

loss of habitat of up to 94% for the warming scenario RCP 8.5 and up to

51% for the stabilization scenario 4.5 in the long-term period (2079–

2099), as shown in Table 4 and Figure 6. Conversely, in the short-term

period (2029–2049), we observed a spread of sprat-suitability habitat

toward the Croatian waters, which are characterized by lower SST

(Figures 7, 6). The same shift was detected also in the mid-term period

(2054–2074), when, however, the habitat loss in the northeastern

Adriatic Sea overtook largely the gain (Figure 6; Table 4). Late
frontiersin.or
TABLE 3 Model evaluation of four modeling techniques and the derived
ensemble model predicting the distribution of sprat-habitat suitability.

Statistic GLM GAM RF GBM Ensemble

TSS late summer present

Threshold 0.59 0.46 0.23 0.34 0.3

Sensitivity 0.73 0.88 0.96 0.98 0.94

Specificity 0.85 0.77 0.97 0.83 0.82

Evaluation
score

0.53 0.53 0.62 0.59 0.59

TSS late summer RCP 8.5 long-term scenario

Threshold 0.46 0.50 0.28 0.43 0.35

Sensitivity 0.86 0.86 0.98 0.98 0.92

Specificity 0.65 0.79 0.98 0.91 0.87

Evaluation
score

0.44 0.50 0.57 0.56 0.51

ROC’s late summer present

Threshold 0.60 0.47 0.23 0.34 0.3

Sensitivity 0.73 0.88 0.96 0.98 0.94

Specificity 0.86 0.78 0.97 0.83 0.80

Evaluation
score

0.84 0.84 0.83 0.85 0.84

ROC ate summer RCP 8.5 long-term scenario

Threshold 0.46 0.50 0.28 0.43 0.36

Sensitivity 0.86 0.86 0.98 0.98 0.93

Specificity 0.65 0.79 0.98 0.91 0.88

Evaluation
score

0.83 0.83 0.91 0.90 0.84

TSS early summer present

Threshold 0.48 0.43 0.22 0.45 0.34

Sensitivity 0.86 0.93 0.96 0.96 0.96

Specificity 0.79 0.76 0.93 0.88 0.80

Evaluation
score

0.70 0.72 0.74 0.72 0.71

TSS early summer RCP 8.5 long-term scenario

Threshold 0.55 0.40 0.22 0.39 0.29

Sensitivity 0.75 0.91 1 1 0.95

Specificity 0.77 0.67 0.97 0.89 0.77

Evaluation
score

0.59 0.62 0.60 0.65 0.63

ROC early summer present

Threshold 0.48 0.44 0.23 0.45 0.34

Sensitivity 0.86 0.93 0.96 0.96 0.96

Specificity 0.79 0.76 0.93 0.88 0.80

(Continued)
TABLE 3 Continued

Statistic GLM GAM RF GBM Ensemble

ROC early summer present

Evaluation
score

0.93 0.92 0.93 0.94 0.93

ROC early summer RCP 8.5 long-term scenario

Threshold 0.56 0.50 0.22 0.39 0.30

Sensitivity 0.75 0.91 1 1 0.95

Specificity 0.77 0.67 0.97 0.89 0.79

Evaluation
score

0.84 0.86 0.84 0.88 0.88
GLM, Generalized Linear Model; GAM, Generalized Additive Model; RF, Random Forest;
GBM, Generalized Boosting Model; Ensemble, weighted mean ensemble model.
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summer is generally characterized by a predicted migration of the

species from persistency areas to deep and offshore waters. In this

season, we registered a severe drop in habitat suitability wideness in the

long-term period, albeit smaller compared to early summer, with a

peak for RCP 8.5 of −43% (Table 4).

4 Discussion

4.1 Model robustness

Habitat suitability modeling is an effective technique for predicting

species distribution for Ecosystem-Based Management (EBM)

purposes, as it enables the prediction of species distribution by

examining the nonlinear interactions between species and

environmental variables (Araùjo et al., 2019). The present study used

an ensemble model to present a comprehensive analysis of the past,

present, and future habitat suitability maps of a sentinel species, sprat,

in the Adriatic Sea in line with the good practice in SDMs (Araùjo et al.,

2019), unlike previous studies conducted on sprat at a regional scale

(Voss et al., 2008; De Felice et al., 2021). One of the main advantages of

this approach is the characterization of model uncertainty. Along with

the modeling technique, the main strength of this study comprises the

amount and quality of presence/absence data employed to train and
Frontiers in Marine Science 08
test the model. For this purpose, we used two decades of data collected

during acoustic surveys in the Adriatic Sea (Leonori et al., 2021). These

comprise a higher number of presence values at the local scale

compared to the publicly available dataset used by Schickele et al.

(2021) to forecast sprat distribution in the Mediterranean and the

Atlantic seas. The use of a fishery-independent dataset may reduce the

uncertainty due to the fishery behavior and make available a real

absence dataset instead of pseudo-absence data which are usually

applied in basin scale studies and may affect model results (Pennino

et al., 2016; Schickele et al., 2021). We obtained good to high

performance and accuracy of the single models and the ensemble

under current and future scenarios (see Table 3), which validates the

robustness of the data. As demonstrated by other authors, machine

learning methods resulted in being the most accurate ones (Quinci

et al., 2022). Conversely, we obtained a similar evaluation score

between regression models and machine learning methods, which

means that both approaches are able to provide good predictions of

sprat-habitat suitability (Čengić et al., 2020).

Nevertheless, some bias may persist due to the consistency

between present and future environmental data and variables

selection. The delta model bias correction approach is considered

one of the best methods for bias correction of coastal data, dealing

with any possible shift in scale between climate models and current
FIGURE 3

Variable importance boxplot results from the modeling techniques GLM, GAM, RF, GBM, and EMwmean, which depict the weighted mean ensemble
model. The medians (horizontal lines), percentiles (box borders), and 5%–95% percentiles (vertical lines) are shown. Early summer on top; late
summer below.
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environmental variables (Hare et al., 2012). However, the choice of

bias correction method could influence the spatial and temporal

variability of the future projection (Pozo Buil et al., 2023). The nine

environmental parameters considered in the present study may not

adequately explain the whole variability in sprat-habitat suitability

since other authors demonstrated the influence of other parameters

such as currents, distance from the coast, wind, and cloud coverage

(Petereit et al., 2008; Voss et al., 2008; Frisk et al., 2015; Tsikliras

et al., 2019). However, we ended up with seven sets of parameters

composed of up to four environmental variables and final ensemble

models with three main explanatory variables, which explained over

40% of the model’s deviance according to GAM and GLM.
4.2 Habitat suitability

CHL was assessed as the main driver of sprat distribution, as

suggested for other clupeid species (Fernández-Corredor et al.,

2021). Primary production has seldom been linked to sprat

presence. Nevertheless, De Felice et al. (2021) demonstrated a

significant positive correlation in the Gulf of Lion as well as for
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SLA in the Adriatic Sea, in contrast to this work, where SLA did not

show any significant influence on sprat distribution. This strong

positive correlation may be mostly attributable to the diet of sprat,

which consists primarily of copepods that are particularly abundant

when CHL concentration levels are high (Tičina et al., 2000; Chust

et al., 2014). Therefore, a clear link through food web between

primary producers (CHL as a proxy of phytoplankton abundance)

and secondary producers (zooplankton) as sprat’s prey and sprats is

an important factor in sprat’s habitat suitability. SST, as expected, is

the second key factor in determining sprat population dynamics

since it is a cold-favoring species (Petereit et al., 2008; Peck et al.,

2012). SST is an important factor affecting the main pelagic fish

species worldwide (Lanz et al., 2009; Giannoulaki et al., 2013;

Ebango et al., 2020). It affects the sprat adult growth rate and

fecundity, as well as the rate of larval development and survival

(Peck et al., 2012; Frisk et al., 2015). Our findings indicate an

optimal thermal niche between 23°C and 24°C in early summer,

which decreases to less than 22°C in late summer. Depth is the third

factor that affects sprat-habitat suitability. Our results indicate that

sprat are more likely to be found at depths between 35m and 65 m

but not deeper than 125 m, as already demonstrated by other
FIGURE 4

Response curve showing the variables that account for more than 30% of determining the distribution of sprat in early summer on top and late
summer below. Logarithmically transformed chlorophyll-a concentration (CHL in mg m−3), sea surface water potential temperature (SST in °C), and
cubic root transformed bathymetry. The color lines denote the four individual modeling techniques, GLM, GAM, RF, and GBM, and the weighted
mean ensemble model, EMwmean. The shadow areas depict the confidence intervals at p = 0.05. The density of points for different variable values is
indicated by the rug present beneath the plots displaying single variable effects.
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studies (Dänhardt et al., 2007; Voss et al., 2008). The importance of

depth in determining the sprat’s habitat suitability might be related

to the cooler and more dense water mass present in deeper areas,

below the thermocline, and eventually to the species’ feeding

behavior, which involves feeding on zooplankton and small

crustaceans found in the mid-water layers (Tičina et al., 2000). In

fact, the most northern part of the Adriatic Sea is an area where

North Adriatic Dense Water (NAddW), the densest Mediterranean

water, is generated by extreme surface layer cooling by winter cold

winds, eventually driving the thermohaline circulation, ventilating

the deep layers, and changing the biogeochemical properties of the

Adriatic Sea (Pranić et al., 2024).

The habitat suitability maps presented here indicated that the

sprat distribution area is concentrated in the northern Adriatic Sea,

while the suitability decreased toward the southern regions.

Moreover, our investigation reveals a west-east migration from
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the shallow feeding area near the Po delta in June and July to deeper

waters in September for the reproductive season, where a further

drop in temperature during the winter months will determine the

start of the spawning season for the species in the Adriatic Sea

(Dulčić, 1998). The temperature shift could be responsible for the

migration from coastal to offshore and deeper and colder waters

(see Supplementary Figures S7, S9) that we recorded in Figure 5.

The specific cyclonic circulation of the Adriatic Sea, influenced by

river inflow and strong seasonal winds, could lead to a breakdown

of the thermocline and mixing of the water layers in the late

summer (Raicevich et al., 2015). The unique characteristics of the

Adriatic Sea and the studied period could also justify the

nonsignificant influence of salinity and water circulation

dynamics considered in this study through SSS and SLA, unlike

other studies conducted in the Mediterranean Sea and the Baltic Sea

(Voss et al., 2008; Tsikliras et al., 2019).
FIGURE 5

Overall habitat suitability map of sprat in the Adriatic Sea on top and habitat allocation map below. The color scales depicted the probability of
occurrence of the species in each square of the grid. Persistency areas are in yellow, preferential areas are in green, occasional areas are in light
blue, and rare areas are in blue.
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4.3 Impact of climate change

The Mediterranean Sea is one of the most threatened basins in

the world due to multiple anthropogenic pressures and its specific

characteristics (Azzurro et al., 2022). It is characterized by high

biodiversity and highly variable oceanographic conditions, but it is

also the fastest-warming marine region in the world (Pastor et al.,

2020). It is well known that abiotic changes in marine ecosystems,

driven by climate changes, affect the spatial distribution of marine

fauna, as demonstrated by Andrews et al. (2019) in the Barents Sea

and by Ouled-Cheikh et al. (2022) in the Mediterranean Sea. Since

the Adriatic Sea is a semi-enclosed basin located in the most

northern part of the Mediterranean Sea, the boreal pelagic

species, which are migratory and capable of covering vast

distances, are unable to escape northward toward suboptimal

conditions due to the semi-enclosed nature of the basin, driven

by global warming. This leads to a complex orography characterized

by a widely extended continental shelf with a predominant depth of

50 m in the northern region (Russo and Artegiani, 1996). These

conditions expose, even more, the Adriatic Sea to the negative

effects of climate change (Denamiel et al., 2020), which might be a

climatic “dead end” for the Mediterranean boreal marine species if

global warming continues (Ben Rais Lasram et al., 2010). Along

with overfishing, this threatens the Mediterranean Sea’s most

productive region (FAO, 2023).

The application of SDMs provides the possibility to assess

population dynamics along the time series and under future

scenarios, which can be particularly valuable as part of EBM’s

purpose (O’Higgins et al., 2020). We found a noticeable contraction

in the extent of the sprat-habitat suitability map under high SST and

low CHL, such as in 2018, which was the warmest month of the

time series, especially in late summer. Conversely, we detected an
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expansion of sprat-suitable areas during colder years such as 2007,

2010, and 2013 (see Supplementary Figures S6–S9). These findings

are in accordance with the sprat’s biology and ecology, considering

that the sprat is a boreal species favoring cooler habitats.

We argue that the sprat population in the Adriatic Sea is likely

to be negatively impacted by the temperature increase due to global

warming. An increase in seawater temperature could negatively

affect the spawning success of boreal species (Peck et al., 2012; Frisk

et al., 2015). The habitat suitability projections presented in the

results highlight a severe decline in suitable areas for sprats under

increasing carbon dioxide emission scenario 8.5. We detected a

continuous decline during early summer from short- to long-term

projections, which led to an almost extinction of suitable areas

between 2079 and 2099, while during the late summer, we foresaw a

reduction of almost 50%. The projections under the “stabilization”

scenario 4.5 in late summer reveal a general shift from coastal

warm-temperature waters to deeper and colder waters, underlined

by a gain of new habitat in the period between 2029 and 2074.

Nevertheless, albeit minor compared to RCP 8.5 projections, we

observed a strong shrinkage of sprat-habitat suitability in both

seasons for a long-term period, as shown in Figure 7. Climate

change is affecting fish stocks around the world, and the recently

observed poleward shift in cold-favoring species is leading to a

change in the pelagic communities’ composition in favor of warmer

water species (Cheung et al., 2013; Kanamori et al., 2019). The

northward spread of sprat has already been foreseen in the Baltic

and North-Atlantic Oceans due to an increase in SST, unlike in the

Adriatic and the Mediterranean Sea, where the physical boundaries

will prevent the northward spreading of the species (Schickele et al.,

2021). The reduction in the sprat’s suitable habitat area found in our

simulations is likely to have negative effects on future recruitments

of the sprat population and significant ecological and economic
TABLE 4 Results of habitat suitability extent changes in comparison with contemporary environmental suitability areas under two IPCC
representative concentration pathway (RCP) scenarios 4.5 and 8.5 in short- (2029–2049), mid- (2054–2074), and long-term (2079–2099) periods.

IPCC scenarios Period Habitat loss Habitat gain Habitat range change

Early summer

RCP 4.5 Short (2029–2049) 11% 32% 21%

Mid (2054–2074) 34% 25% −19%

Long (2079–2099) 52% 16% −36%

RCP 8.5 Short (2029–2049) 16% 20% 4%

Mid (2054–2074) 62% 25% −37%

Long (2079–2099) 94% 5% −89%

Late summer

RCP 4.5 Short (2029–2049) 54% 121% 67%

Mid (2054–2074) 61% 191% 131%

Long (2079–2099) 86% 44% −42%

RCP 8.5 Short (2029–2049) 85% 62% −23%

Mid (2054–2074) 84% 114% 30%

Long (2079–2099) 87% 43% −44%
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consequences in the Adriatic Sea, since the sprat is an important

forage species in the pelagic ecosystem for many predators,

including seabirds and commercially important pelagic fish such

as swordfish, tuna, and mackerel (Fasola et al., 1989; Knudsen et al.,

2009; Navarro et al., 2017). The gradual decline in sprat biomass is

therefore likely to have cascading effects throughout the ecosystem,

both in terms of bottom-up control of predators and top-down

control of zooplankton abundance. Consequently, other small

pelagic species, such as anchovy in the Mediterranean Sea, may

be more suited to forthcoming local conditions, competing with S.

sprattus for the same ecological niche, being less affected by climate

change (Bourg et al., 2015; Schickele et al., 2021). The

trophodynamic role of sprat in the Adriatic Sea may be gradually

replaced by the warm-temperate Clupeid species round sardinella,

Sardinella aurita, which is already spreading its area of distribution

northward, from the south-central Mediterranean Sea to the north
Frontiers in Marine Science 12
Adriatic Sea, where its presence is currently considered uncommon

(Schickele et al., 2021).
5 Conclusions

The results of this study provide valuable insights into the

potential impacts of climate change on the distribution of sprat in

the Adriatic Sea. The study revealed that currently, sprat is mostly

found in the shallow northern area of the basin, where its

distribution and movements are primarily related to chlorophyll-

a concentration and sea surface temperature. Our analysis revealed

that the suitability of the sprat’s habitat in the Adriatic Sea is very

vulnerable to climate change, suggesting that if global warming

continues, the species may disappear from the Adriatic region by

2099, particularly under the IPCC RCP scenario 8.5. This result is of
FIGURE 6

Habitat suitability extent changes in comparison with contemporary environmental suitability areas in early summer (left panel) and late summer
(right panel) under IPCC representative concentration pathway (RCP) scenarios 4.5 and 8.5 in short- (2029–2049), mid- (2054–2074), and long-
term (2079–2099) periods.
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great concern, as the sprat is an important forage species within the

Adriatic Sea’s food web, and its disappearance could have far-

reaching implications for the marine ecosystem in the region. While

SDMs have been extensively used to map small pelagic fish habitats

under current environmental conditions (Bellido et al., 2008;

Giannoulaki et al., 2013; Milisenda et al., 2018), only recently the

potential of SDMs to predict species distribution under future

scenarios has been explored (Schickele et al., 2021). We should

encourage further exploration of SDMs for predicting future habitat

suitability maps of pelagic fish species in the Mediterranean Sea.

This should be supported by additional studies using ecosystem

models, helping to foresee the impacts of shifts in the distribution of

small pelagic fish species on the entire ecosystem. Future research

on changes in the Adriatic ecosystem caused by climate change,

with an emphasis on studies of changes in pelagic fish assemblages,
Frontiers in Marine Science 13
is likely to be crucial for future fishery resource management in

this area.
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