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Accurate prediction of significant wave height is crucial for ocean engineering.

Traditional time series predictionmodels fail to achieve satisfactory results due to

the non-stationarity of significant wave height. Decomposition algorithms are

adopted to address the problem of non-stationarity, but the traditional direct

decomposition method exists information leakage. In this study, a hybrid VMD-

LSTM-rolling model is proposed for non-stationary wave height prediction. In

this model, time series are generated by a rolling method, after which each time

series is decomposed, trained and predicted, then the predictions of each time

series are combined to generate the final prediction of significant wave height.

The performance of the LSTM model, the VMD-LSTM-direct model and the

VMD-LSTM-rolling model are compared in terms of multi-step prediction. It is

found that the error of the VMD-LSTM-direct model and the VMD-LSTM-rolling

model is lower than that of the LSTM model. Due to the decomposition of the

testing set, the VMD-LSTM-direct model has a slightly higher accuracy than the

VMD-LSTM-rolling model. However, given the issue of information leakage, the

accuracy of the VMD-LSTM-direct model is considered false. Thus, it has been

proved that the VMD-LSTM-rolling model exhibits superiority in predicting

significant wave height and can be applied in practice.
KEYWORDS

wave height prediction, LSTM, VMD, VMD-LSTM-direct, VMD-LSTM-rolling
1 Introduction

The complex marine environment has a significant impact on the navigation of ships

and the implementation of construction operations (Ahn et al., 2021). Therefore, it is

crucial to accurately describe the characteristics of random waves (Janssen, 2008). One

crucial statistical metric of random waves is significant wave height. In ocean engineering, it

is essential to accurately predict significant wave height.

So far, specialists and researchers from different nations have endeavored to develop

numerical models to simulate significant wave height (Reikard et al., 2017). Booij et al.
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(1999) introduced SWAN to compute random, short-crested waves

in coastal regions with shallow water and ambient currents. Sarker

(2018) used MIKE21 SW to simulate the impact of Cyclone Chapala

on significant wave height in the Arabian Sea. Amunugama et al.

(2020) successfully reproduced typhoon phenomena, storm surges,

and wave height by employing the COAWST model to simulate

several violent typhoons in Japan. Hurricane Michael was simulated

by Vijayan et al. (2023) using the dynamic coupling of SWAN and

ADCIRC. They observed that the dynamic coupling model of

SWAN and ADCIRC significantly improved the accuracy of

the simulation.

However, numerical simulations impose high demands on the

performance of computing devices and also require a significant

amount of time and cost. To tackle the challenge of predicting

significant wave height, a growing number of specialists and

academics have started to explore the use of artificial intelligence-

based models. Makarynskyy et al. (2005) developed an artificial

neural network (ANN) model by using buoy data from Portuguese

west coast to predict significant wave height and zero-up-crossing

wave period. The results demonstrated the suitability of the ANN

model. Mahjoobi and Mosabbeb (2009) applied support vector

machine (SVM) to predict the significant wave height of Lake

Michigan and found that as the lag of wind speed increased, the

error statistics decreased. Long short-term memory (LSTM)

network has the capability to grasp the characteristics of time

series and utilize historical data for prediction, which has gained

attention. The LSTM network was used by Pirhooshyaran and

Snyder (2020) in order to forecast and rebuild significant wave

height across both the short-term and long-term time periods. Zhou

et al. (2021) established a significant wave height prediction model

using convolutional LSTM (ConvLSTM) and found that during

typhoons, the correlation coefficient for a 12-hour forecast still

reached 0.94. Bethel et al. (2022) utilized LSTM to predict the

significant wave height during hurricanes Dorian, Sandy, and Igor.

The application of these deep learning techniques has resulted in

enhanced precision in the prediction of significant wave height.

An efficient method for dealing with non-linearity and non-

stationarity is data preprocessing. Empirical mode decomposition

(EMD) has demonstrated excellent performance in handling non-

linear and non-stationary data (Huang et al., 1998). Duan et al.

(2016) developed an EMD-AR model and proved the effectiveness

of EMD in handling non-linear and non-stationary significant wave

height. Hao et al. (2022) used EMD to decompose significant wave

height and then performed LSTM prediction on the decomposed

components, which confirmed that this approach substantially

enhanced the prediction accuracy. Compared to EMD, variational

mode decomposition (VMD) exhibits greater robustness in terms of

sampling and noise (Dragomiretskiy and Zosso, 2013). Zhang et al.

(2023) compared the prediction results by VMD-CNN and 1D-

CNN, concluding that decomposing significant wave height using

VMD significantly enhances prediction accuracy. Zhao et al. (2023)

established a VMD-LSTM/GRU hybrid model to predict significant

wave height in the East China Sea accurately. These findings

collectively demonstrate that VMD can effectively handle non-

linear and non-stationary significant wave height. Ding et al.

(2024) proposed a two-layer decomposition model called
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CEEMDAN-VMD-TimesNet to predict significant wave height in

the South Sea of China. They discovered that the errors in

prediction results mainly originated from the high and medium

complexity components. Decomposing these components could

substantially enhance prediction accuracy, thereby leading to a

notable superiority in the performance of the two-layer

decomposition model over the single-layer decomposition model.

Data preprocessing makes a considerable contribution to the

improvement of prediction accuracy. However, the previous studies

usually decomposed all data directly (Duan et al., 2016; Hao et al.,

2022; Song et al., 2023; Zhang et al., 2023; Zhao et al., 2023; Ding

et al., 2024), which is not reasonable (Yu et al., 2021; Jiang et al.,

2024). The training set and the testing set are decomposed together

during the decomposition process when using the method of direct

decomposition. The term “information leakage” describes the

phenomenon that future data sets have an impact on the

decomposition outcome of current data (Yu et al., 2021; Gao

et al., 2022). Considering that the testing set is unknown,

decomposing the training set together with the testing set is

equivalent to information leakage, which ultimately makes this

decomposition method impossible to apply in practice.

The issue of information leakage has received attention (Li et al.,

2023; Cai and Li, 2024). Bouke and Abdullah (2023) conducted

comparative experiments on three datasets, one with information

leakage and the other without information leakage. Their findings

demonstrated that the model with information leakage had higher

accuracy. They also discovered that the impact of information

leakage varied for different algorithms and models, with some

algorithms and models displaying a pronounced sensitivity to

information leakage. Kapoor and Narayanan (2023) systematically

studied the issue of data leakage in machine learning-based

research. Their investigation revealed the presence of data leakage

in 17 fields, affecting 294 papers. In some instances, data leakage has

led to overoptimistic conclusions. Furthermore, they observed that

upon correcting data leakage issues, the performance of complex

machine learning models did not exhibit substantial improvement

compared to that of simple logistic regression (LR) models.

Rosenblatt et al. (2024) investigated the impact of five forms of

leakage on machine learning models. It was found that leakage via

feature selection and repeated subjects significantly enhanced

predictive performance, while other forms of leakage had minor

effects. Moreover, small datasets exacerbated the impact of leakage.

To retain the advantages of data preprocessing and address the

issue of information leakage, some scholars began to try to use

rolling decomposition instead of direct decomposition. Yan et al.

(2023) decomposed the NH3-H sequence into subsequences using

VMD under the rolling method, which added data successively and

excluded future data. Then the new sequences generated were

predicted by gated recurrent units (GRU) to obtain the results.

Hu et al. (2023) used the rolling method to generate multiple

sequences for wind speed prediction, and then each sequence was

decomposed by VMD and predicted using echo state network

(ESN) to generate multiple predictions. The multiple predictions

were combined to get the final outcome. Nonetheless, in general,

there is still little research on rolling decomposition, and scholars do

not use rolling decomposition in the same way.
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This article aims to construct a VMD-LSTM-rolling model for

predicting the significant wave height in the South Sea of China

using the rolling VMD decomposition and LSTM neural network.

The body of this article is organized as follows. Section 2 provides

the basic ideas behind the LSTM neural network, the VMDmethod,

the VMD-LSTM-direct model and the VMD-LSTM-rolling model.

In Section 3, the dataset employed in the study and the data

processing procedure utilizing the VMD method are delineated.

Section 4 of this article shows the prediction results obtained by the

proposed methods, and a detailed analysis of these results follows.

Section 5 ultimately presents a conclusion to this article.
2 Methodology

2.1 Long short-term memory (LSTM)

Vanishing gradients refers to the fact that in a deeper network,

the calculation of the gradient will approach 0 as the number of

layers increases, resulting in the network parameters not being

updated. Gradient explosion refers to the fact that the result of

multiplying the gradients is too large and the final calculation yields

a NaN value. Traditional recurrent neural networks (RNN) are

affected by gradient explosion and vanishing gradients, which

impose various limitations on their usage.

In order to address these shortcomings, LSTM was introduced

(Hochreiter and Schmidhuber, 1997). As an improved version of

RNN, LSTM effectively suppresses the problems of gradient

explosion and vanishing gradients by employing input gates,

output gates, and forget gates. LSTM is able to capture long-term

dependencies in sequential data. At the same time, LSTM is

sensitive to time and can learn patterns and features in time-

series data, which gives LSTM an advantage in tasks such as time

series prediction and signal processing.

Forget gate, input gate and output gate are structures in LSTM.

They are named according to their role in LSTM. Forget gate is used

to control what data is retained in the cell state and what data is to

be deleted. Input gate is used to deal with new memory from the

current input and determines which part of the information goes to

the current time. Output gate determines the output at the current

moment. Figure 1 displays the structure of LSTM.

The variable Ct-1 represents the cell state in the LSTM. LSTM

uses a forget gate to forget useless information. The expression is as

shown in Equation (1):

ft = s (Wf · ½ht−1, xt � + bf ) (1)

where ft represents the forget gate, Wf represents the weight

matrix, bf represents the bias vector, ht-1 represents the output at the

previous time step, xt represents the input at the current time step,

s represents a commonly used function in neural networks.

Next, information will be selectively processed using the input

gate. It is expressed as shown in Equations (2) and (3):

it = s (Wi ·  ½ht−1, xt �  + bi) (2)
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Ct = tanh(Wc ·  ½ht−1, xt �  + bc) (3)

where it represents the input gate, Wi and Wc represent the

weight matrix of the input gate, bi and bc represent the bias vector of

the input gate, while Ct denotes the current input unit’s state.

Subsequently, the cell state is updated as shown in Equation (4):

Ct = ft � Ct−1 + i� ~Ct (4)

Finally, the information is selected to be carried to the next

neuron through the output gate, as shown in Equations (5) and (6):

ot = s (Wo½ht−1, xt � + bo) (5)

ht = ot � tanh  (Ct) (6)

where ot represents the output gate, Wo represents the weight

matrix of the output gate, bo represents the bias vector of the

output gate.

It is through the combination of these gates that important

information in LSTM is preserved while irrelevant information is

discarded. However, there are limitations to this approach. The

performance of LSTM is poor when dealing with non-stationary

time series data (Hao et al., 2022; Zhao et al., 2023).
2.2 Variational mode decomposition (VMD)

VMD is a decomposition method for complex signals.

Significant wave height as a non-stationary time series is suitable

for decomposition by VMD. VMD effectively converts the process

of decomposition into an optimization process, which involves

solving a variational problem. Building the variational problem

and solving it are the two main parts of VMD. Variational mode

refers to the mode obtained by solving the variational problem.

VMD iteratively searches for the optimal solution of the variational

mode and is capable of adaptively updating the optimal center

frequency and bandwidth of each Intrinsic Mode Function (IMF)

(Dragomiretskiy and Zosso, 2013).
FIGURE 1

Structure of the LSTM model.
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VMD has redefined the intrinsic mode functions as given in

Equation (7):

uk(t) = Ak(t) cos  (fk(t)) (7)

where k is the mode number, Ak(t) is the amplitude of the k

mode, fk(t) is the phase of the kmode, uk(t) is the kmode function.

The constrained variational problem that has been framed is as

shown in Equation (8):

min   ukf g wkf g o
K

k=1

∂t d (t) +
j
p t

� �
∗ uk(t)

� �
e−jwkt

����
����2
2

( )

 s : t :  o
K

k=1

uk(t) = f

8>>>><
>>>>:

(8)

where uk represents the respective mode functions, while wk

represents the respective mode center frequencies.

A transformation of the constrained variational problem into an

unconstrained variational problem is performed in order to solve the

constrained optimization issue that was referenced before. The

introduction of an enhanced Lagrangian function is accomplished

by using the advantages of quadratic penalty terms and the Lagrange

multiplier approach, as shown in Equation (9) (Bertsekas, 1976).

L ukf g, wk½ g, lð Þ = ao
K

k=1

∂t d (t) +
j
p t

� �
∗ uk(t)

� �
e−jwkt

����
����2
2

+ f (t) −o
K

k=1

uk(t)

�����
�����
2

2

+〈l(t), f (t) −o
K

k=1

uk(t)〉
(9)

where a represents the variance regularization parameter, while

l represents the Lagrangian multiplier.

To address the aforementioned variational problem, alternating

direction method of multipliers (ADMM) is employed (Hestenes,

1969). The procedure is outlined as follows:
Fron
1. Initialize u1k,w
1
k, l

1
k and n.

2. The value of the variable n is increased by one, and then the

program moves on to the loop.

3. Based on Equation (10), it is seen that the variables uk and

wk undergo modifications. At the point when the number of

iterations exceeds k, the process of updating comes to an end.
û n+1
k (w) = f̂ (w)−oi<k

û n+1
i (w)+oi>k

û n
i (w)+

l̂ n (w)
2

1+2a(w−�wn
k )

2

�wn+1
k =

Z ∞

0
w û n+1

k (w)
�� ��2dwZ ∞

0
û n+1
k (w)

�� ��2dw

8>>>>>><
>>>>>>:

(10)
4. According to Equation (11), the variable l is updated.
l̂ n+1(w) = l̂ n(w) + t f̂ (w) −o
K

k=1

û n+1
k (w)

 !
(11)
5. In the event that the user-defined variable ϵ fulfills the

stopping requirement as shown in Equation (12), the loop is
tiers in Marine Science 04
ended. If it does not satisfy the condition, the loop carries

on to step 2 and continues the iteration.
o
K

k=1

û n+1
k (w) − û n

k(w)
�� ��2

2

û n
k(w)

�� ��2
2

< e (12)

By constructing and solving the variational problem, VMD can

effectively decompose non-stationary data. However, the mode

number k after the decomposition by VMD needs to be chosen

artificially. In order to find the most suitable mode number k, many

tests are required.
2.3 VMD-LSTM-direct

The traditional direct decomposition is to generate the

subsequences by directly decomposing all the data using VMD.

Suppose there are m data in total. The first k data are classified as a

training set, and the last m-k data are classified as a testing set. The

process of direct decomposition is shown in Figure 2. It should be

emphasized that this prediction uses an ensemble prediction

architecture, where the input to the LSTM model is the

decomposed subsequences, and the output of the LSTM model

is significant wave height. The prediction architecture is applied to

fully reflect the relationship between the subsequences. The final

prediction is obtained from the trained LSTM model. The whole

process is illustrated in Figure 3. It should be noted that the direct

decomposition contains the data of the unknown testing set. In

other words, information leakage occurs when the original data is

decomposed using knowledge about future values that is not

known. Due to the leakage of future information, the high

model accuracy is unreliable, and the laws of time series

prediction are deviated (Wang and Wu, 2016).
2.4 VMD-LSTM-rolling

Rolling decomposition is a method that differs from traditional

direct decomposition. Suppose there are m data in total. The first k

data are classified as a training set, and the last m-k data are

classified as a testing set. The process of rolling decomposition is

presented in Figure 4. Time series are generated by a rolling

method, after which each time series is decomposed. Rolling

decomposition and the VMD-LSTM-rolling model are

described below:
1. First, the first k data are considered as time series 1, which

are decomposed using VMD to get the subsequences. It

should be emphasized that this prediction uses an ensemble

prediction architecture, where the input to the LSTM

model is the decomposed subsequences, and the output

of the LSTM model is significant wave height. Using the

trained LSTM model, the prediction at the moment k+1 is

obtained, denoted as prediction1.
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Fron
2. Next, consider the actual data at the moment k+1 as known

data. At this point, the first data to the k+1th data are

regarded as time series 2. Just like step 1, the time series 2 is

decomposed using VMD to get the subsequences, and then

the subsequences are used as the input to the LSTM model,

and significant wave height is used as the output of the

LSTM model. The trained LSTM model is used to get the

prediction at the moment k+2, denoted as prediction2.

3. Continue executing the aforementioned procedures until

the rolling decomposition and the prediction processes

have been finished. The prediction1, prediction2,…, and

predictionn are the prediction results corresponding to

the testing set. Then all the predictions are combined

together to form the final results. It should be noted that

all the predictions are combined together rather than

being added up. The complete procedure is depicted

in Figure 5.
With the designed rolling decomposition and ensemble

prediction architecture, predictions are made for only one testing

set data at a time. When predicting the next testing set data, the

current testing set data is considered known. This design maximizes
tiers in Marine Science 05
the use of all available data for the purpose of learning. It is crucial

to emphasize that the actual value of the first testing set data, rather

than the predicted value, is added. This is because the actual value of

the first testing set data is considered known after prediction, and

the model becomes more stable by adding the actual value.

We need to emphasize that for multi-step prediction we use a

static prediction approach (Fu et al., 2023). For example, in the

four-step-ahead prediction, we predict significant wave height at

hour 11 using 1–7 h of data.
2.5 Persistence forecast (PF)

PF is a very simple prediction method, which uses significant

wave height of the previous hours as the prediction for this hour

(Rasp et al., 2020). It can be expressed by Equation (13):

Hs (t + k) = Hs(t) (13)

where Hs(t) represents significant wave height of the previous

hours, and Hs(t + k) represents prediction for this hour.

If the model’s prediction is worse than the PF, the model’s

performance is not satisfactory.
FIGURE 3

Flow chart of the hybrid VMD-LSTM-direct significant wave height prediction model.
FIGURE 2

Traditional decomposition process.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1382248
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Ding et al. 10.3389/fmars.2024.1382248
2.6 Evaluation metrics

For the purpose of evaluating the model’s performance, this study

uses four metrics to quantify the discrepancies between the actual and

predicted values, namely R2, MAE, RMSE and MAPE. R2 is used to

quantify the degree of agreement. MAE is the mean of the absolute

errors. RMSE is used to quantify the average difference. MAPE is the

percentage version of relative errors. The formulas are as stated in

Equations (14)–(17):

R2 = 1 −o
n
i=1(ŷ i − yi)

2

on
i=1(�yi − yi)

2 (14)

MAE =
1
no

n
i=1 yi − ŷ ij j (15)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(yi − ŷ i)

2

s
(16)

MAPE =
100%
n o

n

i=1

ŷ i − yi
yi

����
���� (17)

where ŷ i represents the predicted value, yi represents the actual

value, �yi represents the mean of the actual values, and n represents

the number of data samples.

In addition, this study employs Taylor diagrams to assess the

accuracy of the model (Taylor, 2001). The common Taylor diagram
Frontiers in Marine Science 06
accuracy indicators used in this study are correlation coefficient R, The

standard deviation STD, and the centered root-mean-square difference

E′. The formulas are as stated in Equations (18)–(20):

R = on
i=1(yi − �yi)(ŷ i − ŷ i)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

on
i=1(yi − �yi)

2 ·on
i=1(ŷ i − ŷ i)

2
q (18)

STD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(xi − x)2

s
(19)

E0 =
1
no

n

i=1
yi − yið Þ − ŷ i − ŷ i

	 
� �2( )1=2

(20)

where ŷ i, yi, �yi and n have explained above. ŷ i represents the

mean of the predicted values. xi and xi represents the value and the

mean value of the sequence which is used to calculate STD.
2.7 Neural network design

First, the dataset partitioning should be emphasized. The

dataset was partitioned into two subsets: a training set including

the initial 90% of the data, consisting of 4008 samples, and a testing

set comprising the last 10%, consisting of 408 samples.

The accuracy of neural networks can be achieved by increasing

the layers, but deepening the layers will significantly increase the
FIGURE 4

The proposed rolling decomposition process.
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computation time (Pfeiffenberger and Bates, 2018). The experiment

was conducted in a Python 3.7 environment and used the Keras

module of TensorFlow 2.10.0 to build the LSTM model. Based on

previous experience and multiple experiments, the LSTM model

was divided into 5 layers: an input layer, three hidden layers, and an

output layer. The first hidden layer, the second hidden layer and the

third hidden layer consisted of 128, 64 and 32 neurons, respectively.

Dropout was set to 0.2. The MSE was chosen as the loss function,

and the Adam optimizer was used. A total of 100 epochs were set

up, with a batch size of 32. Early stopping was implemented with a

patience of 10 to avoid overfitting. The timestep was set to 7, which

meant that the significant wave height of the current hour was

considered to be related to the previous seven hours.
3 Wave datasets preprocessing

3.1 Research area

This study was conducted in the South Sea of China. Two

positions were selected. The coordinates of position 1 were (21.50°

N,113.00°E), and the coordinates of position 2 were (23.00°N,117.00°

E). Figure 6 illustrates the location of the position that was chosen for

this study. The data used for prediction were obtained from ERA5 of
Frontiers in Marine Science 07
the European Centre for Medium-Range Weather Forecasts

(ECMWF) and covered the period from July 1, 2018, 0:00 UTC to

December 31, 2018, 23:00 UTC. A total of 4416 valid data were

included in the analysis. The dataset1 and the dataset2 used in this

paper are presented in Figures 7, 8, respectively.

We need to emphasize the reason why we did not select longer

significant wave height data. The rolling decomposition method,

which is equivalent to constructing multiple LSTM models for

training, greatly increases the training time compared to direct

decomposition. If the data length is too long, the training time

will be too large. Therefore, we used this time period to conduct

our study.
3.2 Data processing

The value of k has a substantial influence on the VMD

decomposition, which was determined to be 10 in this study

based on previous experience and multiple experiments (Zhou

et al., 2022; Zhao et al., 2023). Due to space constraints, only the

decomposition results of time series 1 for dataset1 and dataset2 are

exhibited here. As shown in Figures 7, 8, the time series 1 is

decomposed into 10 IMF components. After being decomposed

by VMD, the dataset becomes stationary.
FIGURE 5

Flow chart of the hybrid VMD-LSTM-rolling significant wave height prediction model.
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A

B

FIGURE 7

Significant wave height and decomposition results of time series 1 for dataset1 (A) significant wave height, (B) decomposition results of time series 1.
FIGURE 6

Distribution of the selected position in the South Sea of China.
Frontiers in Marine Science frontiersin.org08

https://doi.org/10.3389/fmars.2024.1382248
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Ding et al. 10.3389/fmars.2024.1382248
4 Results and discussion

4.1 Multi-step prediction results by
different models

Tables 1, 2 record the error statistics of multi-step predictions

by different models. Figure 9 shows comparison of the statistical

results of twelve-step-ahead prediction using Taylor diagrams.

Figures 10, 11 present the multi-step prediction results by

different models. “1h” in Figures 10, 11 represents December 15,

2018, at 00:00 UTC. Figures 12, 13 depict scatter plots of

measurements and predictions by the LSTM model and the

VMD-LSTM-rolling model. The closer the best-fit slope is to 1,

the better the fitting effect.
4.2 Discussion of the prediction results

From Tables 1, 2, it can be seen that the prediction results by the

LSTM model are in good agreement with the actual values for the

small step-ahead prediction. When the number of prediction steps
Frontiers in Marine Science 09
is two, R2, MAE, RMSE and MAPE of prediction results by the

LSTM model are 0.981, 0.054, 0.076 and 3.266% respectively for

dataset1, which indicates that there is only a minor discrepancy

between the predicted results and the actual results. All evaluation

metrics of the LSTM model exceed PF for dataset2, while the

evaluation metrics of the LSTM model has its own advantages

and disadvantages compared to PF for dataset1. Overall, the

performance of the LSTM model is satisfactory. Observing

Figures 10, 11, it is noticeable that the LSTM model can

accurately capture the trend of the original significant wave

height, and the prediction results at the peaks and troughs align

closely with actual values. The phase shift of the LSTM model is

very small and close to PF. The high prediction accuracy

demonstrates that the LSTM model has a strong ability to deal

with non-linear problems and is suitable for the small step-

ahead prediction.

However, as the prediction duration increases, the error of the

LSTMmodel grows rapidly. As can be seen from Tables 1, 2, for the

twelve-step-ahead prediction, R2 of prediction results by the LSTM

model is only 0.726, while MAE, RMSE and MAPE surge to 0.222,

0.285 and 13.705% respectively for dataset1, which means that the
A

B

FIGURE 8

Significant wave height and decomposition results of time series 1 for dataset2 (A) significant wave height, (B) decomposition results of time series 1.
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prediction results are inaccurate. The accuracy of the LSTM model

is still higher than PF for dataset2. However, the performance of the

LSTM model is worse compared to PF for dataset1, which

demonstrates that the prediction results of the LSTM model are

poor. As shown in Figures 10, 11, the phase shifts of the LSTM

model are quite similar to PF. As the prediction duration increases,

the prediction results exhibit noticeable phase shifts from the

measured curve. The larger the number of prediction steps, the

more noticeable the phase shift becomes. The occurrence of this

phenomenon may be attributed to the non-stationarity of

significant wave height. The effect of non-stationarity is not

apparent when the number of prediction steps is not large but

becomes more pronounced as the number of prediction steps
Frontiers in Marine Science 10
grows. Hao et al. (2022) observed the phase shift when using the

LSTM model to predict significant wave height, which aligns with

the findings of this study. It is evident that when the number of

prediction steps is large, the LSTM model fails to fulfill the

requirements of significant wave height prediction.

The VMD-LSTM-direct model and the VMD-LSTM-rolling

model overcome this drawback by decomposing the original data

into 10 IMFs through the VMD algorithm, improving the

stationarity of the data. As can be seen from Tables 1, 2, even

with a small number of prediction steps, both the VMD-LSTM-

direct model and the VMD-LSTM-rolling model already

outperform the LSTM model in terms of prediction accuracy. As

the prediction duration increases, this improvement becomes more
TABLE 1 Error measures of multi-step predictions of dataset1 by
different models.

Size
of

step

Index LSTM VMD-
LSTM-
direct

VMD-
LSTM-
rolling

PF

2 R2 0.981 0.992 0.987 0.982

MAE 0.054 0.036 0.047 0.057

RMSE 0.076 0.050 0.061 0.074

MAPE
(%)

3.266 2.035 2.946 3.566

4 R2 0.949 0.991 0.985 0.946

MAE 0.093 0.039 0.050 0.100

RMSE 0.123 0.053 0.066 0.127

MAPE
(%)

5.694 2.303 3.130 6.341

6 R2 0.893 0.986 0.982 0.900

MAE 0.136 0.049 0.055 0.138

RMSE 0.178 0.065 0.073 0.172

MAPE
(%)

8.184 2.810 3.417 8.772

8 R2 0.833 0.984 0.980 0.847

MAE 0.171 0.051 0.059 0.168

RMSE 0.222 0.069 0.078 0.212

MAPE
(%)

10.513 2.939 3.675 10.791

10 R2 0.780 0.982 0.975 0.798

MAE 0.197 0.055 0.063 0.193

RMSE 0.255 0.073 0.085 0.244

MAPE
(%)

12.201 3.332 3.923 12.510

12 R2 0.726 0.981 0.971 0.753

MAE 0.222 0.059 0.071 0.214

RMSE 0.285 0.076 0.092 0.270

MAPE
(%)

13.705 3.509 4.504 13.948
TABLE 2 Error measures of multi-step predictions of dataset2 by
different models.

Size
of
step

Index LSTM VMD-
LSTM-
direct

VMD-
LSTM-
rolling

PF

2 R2 0.986 0.997 0.990 0.984

MAE 0.074 0.040 0.068 0.086

RMSE 0.107 0.050 0.090 0.116

MAPE
(%)

4.111 2.441 3.768 4.914

4 R2 0.960 0.995 0.984 0.947

MAE 0.130 0.054 0.086 0.155

RMSE 0.181 0.068 0.113 0.209

MAPE
(%)

7.372 3.288 4.868 8.821

6 R2 0.919 0.994 0.983 0.895

MAE 0.186 0.059 0.089 0.215

RMSE 0.258 0.072 0.118 0.293

MAPE
(%)

10.373 3.793 5.019 12.336

8 R2 0.870 0.993 0.982 0.831

MAE 0.235 0.062 0.094 0.274

RMSE 0.327 0.077 0.122 0.373

MAPE
(%)

13.103 3.861 5.543 15.762

10 R2 0.828 0.989 0.978 0.757

MAE 0.267 0.076 0.104 0.327

RMSE 0.376 0.094 0.134 0.447

MAPE
(%)

15.195 4.665 6.146 18.924

12 R2 0.748 0.989 0.975 0.673

MAE 0.329 0.078 0.107 0.379

RMSE 0.455 0.097 0.142 0.518

MAPE
(%)

18.873 4.859 6.406 22.000
fro
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greater. For twelve-step-ahead prediction, R2 of the prediction

results by the VMD-LSTM-direct model for dataset1 is improved

by 35.09% compared to the LSTM model, while MAE, RMSE and

MAPE are decreased by 73.55%, 73.37% and 74.40%, respectively.

R2 of the prediction results by the VMD-LSTM-rolling model for
Frontiers in Marine Science 11
dataset1 is improved by 33.82% compared to the LSTM model,

whileMAE, RMSE andMAPE are decreased by 67.97%, 67.67% and

67.14%, respectively. All evaluation metrics of the VMD-LSTM-

direct model and the VMD-LSTM-rolling model are substantially

ahead of PF. It can be seen very clearly that both the VMD-LSTM-
A B

FIGURE 9

Comparison of the statistical results using Taylor diagrams (A) dataset1, (B) dataset2.
A B

D

E F

C

FIGURE 10

Predictions of significant wave height of dataset1 by different models for several future hours (A) 2 hours, (B) 4 hours, (C) 6 hours, (D) 8 hours, (E) 10
hours and (F) 12 hours.
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direct model and the VMD-LSTM-rolling model achieve more

accurate results. Even with a large number of prediction steps, the

prediction results still maintain a high accuracy.

We visualize statistical results through Taylor diagrams.

Twelve-step statistical results are plotted in Figure 9. The colored

scatter in the Taylor diagrams represents the model. The blue line,

the black line and the brown line represent the correlation

coefficient R, the standard deviation STD and the centered root-

mean-square difference E′, respectively. It can be clearly seen that

the LSTM model and PF are far away from the measured value,

which means that the LSTMmodel and PF have the poor prediction

performance. In comparison, the VMD-LSTM-direct model and

the VMD-LSTM-rolling model are quite close to the measured

value, which indicates that the accuracy of the VMD-LSTM-direct

model and the VMD-LSTM-rolling model are substantially

improved compared to the LSTM model and PF.

From Figures 10, 11, it can be seen that both the VMD-LSTM-

direct model and the VMD-LSTM-rolling model are able to capture

the characteristics and the general trend of the original significant

wave height. At the same time, the phase shifts of the VMD-LSTM-

direct model and the VMD-LSTM-rolling model are much smaller

than the LSTMmodel and PF. The reduction of the phase shift is an
Frontiers in Marine Science 12
important reason why the prediction error can be decreased. Both

the VMD-LSTM-direct model and the VMD-LSTM-rolling model

retain the ability to deal with non-linear problems, therefore they

achieve excellent performance in short-term prediction. In addition,

the impact of non-stationarity caused by significant wave height is

effectively suppressed due to VMD decomposition, which plays a

vital role in the improvement of long-term prediction accuracy. It is

obvious that both the VMD-LSTM-direct model and the VMD-

LSTM-rolling model exhibit an obvious superiority in the domain

of prediction compared to the LSTM model and PF, especially for

large step-ahead prediction.

As shown in Tables 1, 2, the accuracy of direct decomposition is

higher than rolling decomposition. Additionally, the VMD-LSTM-

direct model is closer to the measured value than the VMD-LSTM-

rolling model in Figure 9.The reason for this phenomenon is that

when decomposing the data for the VMD-LSTM-direct model, the

training set together with the testing set is decomposed, which is not

reasonable. The testing set is unknown, so this decomposition

approach leaks the future data and gets the features of the future

data, which improves the accuracy of prediction. However, direct

decomposition is impossible to be applied in real life and can lead to

false accuracy. Rolling decomposition is different because it ensures
A B

D

E F

C

FIGURE 11

Predictions of significant wave height of dataset2 by different models for several future hours (A) 2 hours, (B) 4 hours, (C) 6 hours, (D) 8 hours, (E) 10
hours and (F) 12 hours.
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that no future data is leaked by only decomposing known data.

Although the accuracy of rolling decomposition is lower than direct

decomposition, rolling decomposition ensures the veracity of the

prediction results and the feasibility of the method in real life, which

is more correct.

Considering that the direct decomposition method cannot be

applied in real life, the VMD-LSTM-direct model will not be

included in the following discussion. Observing Figures 12, 13, it

is clear that there is a severe divergence between the prediction

results by the LSTM model and the actual values as the prediction

duration increases. For the twelve-step-ahead prediction, the best-

fit slopes of the LSTM model are only 0.701 for dataset1 and 0.891

for dataset2. This situation is substantially improved after using the

rolling decomposition, which suppresses the error caused by the

non-stationarity of the original significant wave height. Although

the increase in prediction steps leads to a slight decrease in the best-

fit slopes, the decrease is minimal. It can be clearly seen that when

the number of prediction steps is twelve, the best-fit slopes of the

VMD-LSTM-rolling model are 0.931 for dataset1 and 0.972 for
Frontiers in Marine Science 13
dataset2, which implies that the prediction results are very close to

the actual values. The analysis leads to the conclusion that the

VMD-LSTM-rolling model has obvious advantages in prediction,

especially when the number of prediction steps is large because

using rolling decomposition improves the stationarity of significant

wave height. Meanwhile, the rolling decomposition can also take

into account the realistic use without the problem of future leakage.
5 Conclusion

The non-stationarity is a critical factor that strongly influences

the accurate prediction of significant wave height. The impact of

non-stationarity is amplified as the prediction duration increases.

For the small step-ahead prediction, the LSTM model can still

obtain accurate results. However, as the prediction duration

increases, the accuracy of the LSTM model significantly decreases,

and phase shift starts to occur. Data decomposition methods are

applied in order to improve the prediction accuracy. However,
A B

D

E F

C

FIGURE 12

Scatter diagram of the measurements and predictions of dataset1 by different models for several future hours (A) 2 hours, (B) 4 hours, (C) 6 hours,
(D) 8 hours, (E) 10 hours and (F) 12 hours.
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improper decomposition model will lead to information leakage. To

address this issue, we propose a model called rolling decomposition.

In this paper, the significant wave height data in the South

China Sea were obtained from ERA5 of the ECMWF. The LSTM

model, the VMD-LSTM-direct model and the VMD-LSTM-rolling

model were built to predict significant wave height. Then the

performance of these models were compared. After comparison,

the following findings were made:

In multi-step prediction, the LSTM model exhibits phase shift

due to the non-stationarity of significant wave height. The

magnitude of the shift increases with the number of prediction

steps. To address this issue, the VMD-LSTM-direct model and the

VMD-LSTM-rolling model decompose the significant wave height

by the VMD algorithm and obtain stationary IMFs, which

drastically mitigates the phase shift problem. Meanwhile, the

VMD-LSTM-direct model and the VMD-LSTM-rolling model

significantly reduce the prediction errors and achieve excellent

performance in both short-term and long-term prediction. These

phenomena indicate that the VMD-LSTM-direct model and the
Frontiers in Marine Science 14
VMD-LSTM-rolling model possess the capability to handle non-

stationary data.

The VMD-LSTM-direct model decomposes all data, obtaining

the features of the future data, so the accuracy exceeds that of the

VMD-LSTM-rolling model. However, the VMD-LSTM-direct

model leaks the information of the testing set, which makes it

impossible to be applied in practice. Rolling decomposition ensures

no leakage of future data by only decomposing known data.

Therefore, rolling decomposition is more correct and can be used

in real life.

In summary, the proposed rolling decomposition model not

only significantly improves the prediction accuracy of the LSTM

model but also successfully avoids the issue of information leakage.

The rolling decomposition model can accurately predict significant

wave height, demonstrating strong practical significance and

application value.

Although the proposed rolling decomposition model achieves

good accuracy, it still leaves questions for us to ponder. We only use

significant wave height to build the model while other parameters
A B

D

E F

C

FIGURE 13

Scatter diagram of the measurements and predictions of dataset2 by different models for several future hours (A) 2 hours, (B) 4 hours, (C) 6 hours,
(D) 8 hours, (E) 10 hours and (F) 12 hours.
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are not incorporated into our prediction model. Whether or not

adding other parameters would improve the model is a topic we will

experiment with in the future. Besides, only one data decomposition

method VMD is used in the model. In future research, rolling

decomposition based on other data decomposition methods will

be explored.
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