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Coastal water level information is crucial for understanding flood occurrences

and changing risks. Here, we validate the preliminary version (0.9) of NOAA’s

Coastal Ocean Reanalysis (CORA), which is a 43-year reanalysis (1979–2021) of

hourly coastal water levels for the Gulf of Mexico and Atlantic Ocean (i.e., the Gulf

and East Coast region, or GEC). CORA-GEC v0.9 was conducted by the

Renaissance Computing Institute using the coupled ADCIRC+SWAN coastal

circulation and wave model. The model uses an unstructured mesh of nodes

with varying spatial resolution that averages 400 m near the coast and is much

coarser in the open ocean. Water level variations associated with tides and

meteorological forcing are explicitly modeled, while lower-frequency water level

variations are included by dynamically assimilating observations from NOAA’s

National Water Level Observation Network. We compare CORA to water level

observations that were either assimilated or not, and find that the reanalysis

generally performs better than a state-of-the-art global ocean reanalysis

(GLORYS12) in capturing the variability on monthly, seasonal, and interannual

timescales as well as the long-term trend. The variability of hourly non-tidal

residuals is also shown to be well resolved in CORA when compared to water

level observations. Lastly, we present a case study of extreme water levels and

coastal inundations around Miami, Florida to demonstrate an application of

CORA for studying flood risks. Our assessment suggests that NOAA’s CORA-
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GEC v0.9 provides valuable information on water levels and flooding occurrence

from 1979–2021 in areas that are experiencing changes across multiple time

scales. CORA potentially can enhance flood risk assessment along parts of the

U.S. Coast that do not have historical water level observations.
KEYWORDS

Coastal Ocean Reanalysis (CORA), ADCIRC model, water level variability, storm surge,
coastal flooding risk
1 Introduction

Coastal flooding, exacerbated by rising sea levels, poses threats to

communities and ecosystems, motivating the need for comprehensive

data to inform protective measures. Inadequacies of existing

observing networks underscore the necessity for more detailed

water level datasets, which are vital for monitoring and mitigating

the impacts of coastal flooding. Responding to this requirement, the

National Oceanic and Atmospheric Administration (NOAA)

recently sponsored a 43-year reanalysis of hourly water levels for

the coastal U.S., which has preliminary output during 1979–2021 for

the Gulf of Mexico and northwestern Atlantic Ocean (hereafter

referred to as the Gulf and East Coasts, or GEC region). NOAA’s

new reanalysis is named the Coastal Ocean Reanalysis (CORA). This

paper assesses the ability of the preliminary version of CORA-GEC

(i.e., version 0.9) as it relates to describing observed coastal water level

variability at multiple timescales. Discussion is provided as to how the

data assimilation strategy employed in CORA (see its description in

Asher et al., 2019) may lead to an opportunity for improved

assessment of flooding risk for the Gulf and East Coasts, and

perhaps elsewhere.

Producing CORA-GEC v0.9 (CORA, hereafter) includes running

a hydrodynamic model forced by tides and meteorological fields as

well as assimilating observed water levels. This work was undertaken

by the Renaissance Computing Institute (RENCI) at the University of

North Carolina at Chapel Hill using the ADvanced CIRCulation

(ADCIRC) model coupled with the Simulating WAves Nearshore

(SWAN) model. ADCIRC is a two-dimensional barotropic ocean

circulation model proficient in resolving tidal and meteorologically-

driven ocean responses (Luettich and Westerink, 2004; Westerink

et al., 2008). SWAN is a spectral wave model able to generate,

propagate, and dissipate ocean wind waves and swells (Booij et al.,

1999; Zijlema, 2010). The coupling mechanism between ADCIRC

and SWAN facilitates information passing between the models about

water levels and waves, as described in the next section.

The ADCIRC model operates on a dynamic finite-element

unstructured-mesh framework, which allows the spatial resolution

to be variable. Its domain encompasses the northwestern Atlantic

Basin and accentuates the Gulf and East Coasts with the highest

spatial resolution (Figure 1). The ADCIRC mesh used in this study,

named the Hurricane Surge On-demand Forecast System (HSOFS;
02
Riverside Technologies and Inc. AECOM, 2015), is composed of 1.8

million nodes and 3.6 million triangular elements. With a horizontal

resolution of the node spacing as precise as 200 m in certain regions

but nominally 400 m near the coast, the model provides high-

resolution descriptions of large bays and barrier islands as well as

rivers and estuaries of such scale. Additionally, the model offers a

comprehensive portrayal of the coastal topography up to 10 m of

elevation above mean sea level, thereby facilitating the simulation of

inundations from high-water level events (Asher et al., 2019).

While purely barotropic models like ADCIRC have demonstrated

effectiveness in resolving tides and meteorologically-driven water level

variability (e.g., Bunya et al., 2010; Piecuch et al., 2016), they do not

explicitly represent water level responses to baroclinic processes (e.g.,

variability in major ocean currents such as the Gulf Stream; Calafat

et al., 2018; Chi et al., 2018) and seasonal processes such as steric

expansion of the water column (e.g., Widlansky et al., 2020).

Depending on the use of riverine forcing, they may also be missing

these effects (e.g., Piecuch and Wadehra, 2020). Finally, when run for

long-term studies such as the current 43-year reanalysis, they would

not include processes such as sea level rise, and they would be subject to

any slowly varying biases that may occur in the meteorological forcing.

To dynamically compensate for these unresolved water level forcings,

CORA assimilates coastal water level observations that have been low-

pass filtered to remove tidal responses and synoptic events (Asher et al.,

2019). Accordingly, CORA is not meant to accurately simulate sea level

variability in the offshore North Atlantic where there is no assimilation

of water levels and baroclinic processes may dominate.

With recent technological strides in global ocean variability

simulations using baroclinic models, the question has arisen of the

necessity for the barotropic assimilation framework used in CORA.

This question is addressed briefly by comparing CORA to the

Copernicus Global 1/12° Oceanic and Sea Ice GLORYS12 Reanalysis

(Jean-Michel et al., 2021). Atmospheric forcing fields for GLORYS12

are derived from the same meteorological forcing used in CORA

(described in section 2.1); however, data assimilation in the former is

focused on satellite-measured sea surface heights and temperatures as

well as in-situ measurements of subsurface temperature and salinity

profiles. Previously, global ocean reanalyzes using baroclinic models

showed poor skill in simulating interannual sea level variability along

the East Coast of North America (Piecuch et al., 2016; Long et al., 2021;

Widlansky et al., 2023). GLORYS12 possesses a much higher spatial
frontiersin.org
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resolution (1/12°) than the reanalyzes previously assessed by those

studies, and it seems to well simulate oceanic processes around North

America (Amaya et al., 2023; Feng et al., 2024). However, none of the

models currently used for global ocean reanalyzes assimilate land-based

gauge observations of water levels (sometimes referred to as tide

gauge data).

This study assesses the water level characteristics of CORA for the

entirety of the U.S. Gulf and East Coasts by comparing reanalysis

results with coastal observations from NOAA’s National Water Level

Observation Network (NWLON). Focus is on assessing how CORA

compares to the water level gauge observations over varying time

scales, from the multi-decadal trend to hourly variability. CORA’s

results in simulating realistic monthly variability is also compared to

the global reanalysis (GLORYS12). Additionally, a case study focused

on the Miami, Florida (FL) region is used to demonstrate how CORA

can provide a means to quantify coastal inundation. The paper

concludes with a discussion of potential opportunities for utilizing

this or subsequent versions of CORA to investigate water levels and

flooding characteristics along the coast, including in areas lacking

long-term water level gauge observations.
2 Materials and methods

2.1 Data

The preliminary version of CORA covers the period 1979–2021

at hourly resolution. The ADCIRC model time step was two
Frontiers in Marine Science 03
seconds, and hourly water levels were archived for the full

reanalysis by spot-sampling the data at the zero-minute of each

hour. The SWAN time step was one hour: at each shared time step,

water levels and currents were passed to SWAN and wave radiation

stress gradients were passed to ADCIRC. Boundary and tidal

potential forcing consisted of the 10 tidal constituents (M2, S2,

N2, K2, K1, O1, P1, Q1, Mm, and Mf) from the Oregon State

University TPXO 7.2 (Egbert and Erofeeva, 2002), which

represent the primary astronomical forcing throughout the

region. Atmospheric forcing consisted of 10-m winds and sea

level pressure from the European Centre for Medium-Range

Weather Forecasts (ECMWF) Reanalysis v5 (ERA5; Hersbach

et al., 2020). Model simulation and data storage for CORA was

managed by RENCI.

Data assimilation for CORA utilizes coastal observations from

the NWLON dataset as described by Asher et al. (2019). This

adjustment is accomplished by running the coupled ADCIRC

+SWAN without assimilation; calculating daily spatial-difference

fields from four-day low-pass filtered modeled and observed water

levels using radial basis functions to extrapolate between water level

gauges; and, then re-running the coupled ADCIRC+SWAN with an

additional mass source and an additional atmospheric pressure

component computed using the inverted-barometer equivalent of

the difference fields. The data assimilation process, which is

described in detail in Asher et al. (2019), is expected to make the

coastal water levels in CORA more realistic both around and

between observation gauges.

For comparison with NWLON observations, CORA data are

extracted using bilinear interpolation of water levels at the three
FIGURE 1

Spatial domain and relative node spacing of the ADCIRC model used for CORA. Bathymetry is indicated at model nodes (color bar; m), with ocean
depths to 500 m shaded blue. Inland elevations of the model up to 10 m are shaded gray (negative values). The coastline is indicated by a thin white
contour between the blue and gray shadings. A box encloses the focus region of this assessment (Gulf and East Coasts of the U.S. only). Arrows
indicate places referred to in the text and letters label locations of focus (referred to later).
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vertices (ADCIRC nodes) of the triangular element encompassing

the location closest to the water level gauge. A recursive algorithm is

used to check that each node of the selected element always has a

water level during the entire reanalysis, otherwise we proceed to

check the next closest element to the water level gauge at greater

model depths (in one-meter increments). In this manner, we

constrain our comparison of observations and CORA to

exclusively consider the model nodes that are perpetually

submerged, thereby ensuring consistent water level data.

Sea surface height monthly data from the global ocean

reanalysis, GLORYS12, were compared to water levels from

CORA and observations. For the GLORYS12 gridded dataset, sea

levels are extracted from ocean points closest to the water level

gauges using the nearest-neighbor method. Since GLORYS12

excluded tidal forcing in the model simulation, the dataset is not

used for the assessment of hourly water levels, although there is an

opportunity for further studying non-tidal residuals in this

reanalysis, if the hourly data is later utilized. Thereby, we

compare the performance near the coast of the two reanalysis

products (i.e., CORA and GLORYS12) at monthly time scales

during their overlapping period (1993–2020).

Our validation of CORA encompassed a total of 105 locations in

the NWLON (Table 1). These water level gauges are selected based on

data availability and completeness. The selection criteria necessitated

at least 10 years of hourly water level data with more than 70%

completeness. Among the 105 locations, 52 of them are included in

the CORA data assimilation scheme (8 of these assimilated water

level gauges are only partially assessed because their records are

shorter than 10 years). The water level from CORA is referenced to

the Mean Sea Level (MSL). For analyzing hourly data, we first

transformed the vertical datums for CORA and observed water

levels to the Mean Higher High Water datum (MHHW; i.e., the

average height of the highest tide recorded each day at a location).

Here, MHHW is calculated during the 2002–2020 epoch for both

CORA and observations, using the available recording period therein

for the water level gauges. This period of observations is scheduled to

become the fifth iteration of the National Tidal Datum Epoch

(NTDE5, https://tidesandcurrents.noaa.gov/datum-updates/ntde/).
2.2 Assessment method

The performance of the two reanalyzes is assessed at various time

scales by comparing sea levels fromGLORYS12 and water levels from

CORA with the water level observations according to the metrics of

standard deviation (SD) of each dataset, Pearson correlation

coefficient (r), anomaly correlation coefficient (ACC), and root-

mean-square error (RMSE). ACC and RMSE are calculated from

monthly mean anomalies of reanalyzes and observations. Trends in

monthly anomalies as well as the range and peakmonth of the annual

cycle are also compared for the datasets. The annual cycle range

represents the difference between the maximum and minimum

monthly climatology. The peak month of the mean annual cycle is

defined as the month with the highest water level (or sea level) on

average. Trends are calculated on the monthly anomalies using least
Frontiers in Marine Science 04
TABLE 1 Description of observations used in the assessment.

No. Location Duration Assimil-
ated

1 Eastport, ME 1979–2021 Yes

2 Cutler Farris Wharf, ME 2010–2021 No

3 Bar Harbor, ME 1979–2021 Yes

4 Portland, ME 1979–2021 Yes

5 Wells, ME 2006–2020 Yes

6 Boston, MA 1979–2021 Yes

7 Fall River, MA 1999–2021 No

8 Woods Hole, MA 1979–2021 Yes

9 Nantucket Island, MA 1979–2021 Yes

10 Newport, RI 1979–2021 No

11 Conimicut Light, RI 1999–2021 No

12 Providence, RI 1979–2021 No

13 Quonset Point, RI 1999–2021 No

14 New London, CT 1979–2021 Yes

15 New Haven, CT 1999–2021 Yes

16 Bridgeport, CT 1979–2021 Yes

17 Montauk, NY 1979–2021 Yes

18 Kings Point, NY 1998–2021 Yes

19 The Battery, NY 1979–2021 Yes

20 Bergen Point West Reach, NY 1981–2021 No

21 Sandy Hook, NJ 1979–2021 Yes

22 Atlantic City, NJ 1979–2021 Yes

23 Cape May, NJ 1979–2021 Yes

24 Ship John Shoal, NJ 2002–2021 No

25 Delaware City, DE 2001–2021 No

26 Reedy Point, DE 1979–2021 No

27 Lewes, DE 1979–2021 Yes

28 Ocean City Inlet, MD 1997–2021 Yes

29 Bishops Head, MD 2005–2021 No

30 Cambridge, MD 1979–2021 No

31 Baltimore, MD 1979–2021 No

32 Annapolis, MD 1979–2021 No

33 Solomons Island, MD 1979–2021 No

34 Wachapreague, VA 1979–2021 No

35 Kiptopeke, VA 1979–2021 No

36 Lewisetta, VA 1979–2021 Yes

37 Windmill Point, VA 1996–2021 No

38 Yorktown USCG Training Center, VA 2004–2021 No

(Continued)
f
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squares linear regressions over a common time period of observations

and reanalyzes (nominally 1993–2020); however, the time period is

adjusted for water level gauges with shorter records so that the epochs

match across datasets (see Table 1). All the metrics are calculated

based on the availability of observations, allowing for different time

periods in some locations, and omitting some assessments for the

water level gauges with very short records (e.g., only four years of

observations for CBBT, Chesapeake Channel).

Tide predictions for observations and CORA were made

according to calculations of their respective tidal harmonic
TABLE 1 Continued

No. Location Duration Assimil-
ated

39 Sewells Point, VA 1979–2021 No

40 CBBT, Chesapeake Channel, VA 2018–2021 Yes

41 Money Point, VA 1997–2021 No

42 Duck Pier, NC 1979–2021 Yes

43 USCG Station Hatteras, NC 2010–2021 No

44 Beaufort, NC 1979–2021 Yes

45 Wilmington, NC 1979–2021 No

46 Wrightsville Beach, NC 2004–2021 Yes

47 Springmaid Pier, SC 1979–2021 Yes

48 Charleston, SC 1979–2021 Yes

49 Fort Pulaski, GA 1979–2021 Yes

50 Fernandina Beach, FL 1979–2021 Yes

51 Mayport, FL 1995–2021 Yes

52 Trident Pier, FL 1994–2021 Yes

53 Lake Worth Pier, FL 2012–2021 Yes

54 Virginia Key, FL 1994–2021 Yes

55 Vaca Key, FL 1979–2021 Yes

56 Key West, FL 1979–2021 Yes

57 Naples, FL 1979–2021 Yes

58 Fort Myers, FL 1979–2021 No

59 Port Manatee, FL 1996–2021 No

60 St. Petersburg, FL 1979–2021 No

61 Old Port Tampa, FL 1996–2021 No

62 Clearwater Beach, FL 1996–2021 Yes

63 Cedar Key, FL 1979–2021 Yes

64 Apalachicola, FL 1979–2021 No

65 Panama City, FL 1979–2021 No

66 Panama City Beach, FL 1993–2021 Yes

67 Pensacola, FL 1979–2021 Yes

68 Dauphin Island, AL 1981–2021 Yes

69 Dog River Bridge, AL 2012–2021 No

70 East Fowl River Bridge, AL 2012–2021 No

71 Coast Guard Sector Mobile, AL 2008–2021 No

72 Chickasaw Creek, AL 2012–2021 No

73 West Fowl River Bridge, AL 2012–2021 No

74 Bayou La Batre Bridge, AL 2012–2021 No

75 Pascagoula NOAA Lab, MS 2006–2021 No

76 Bay Waveland Yacht Club, MS 1979–2021 Yes

(Continued)
TABLE 1 Continued

No. Location Duration Assimil-
ated

77 Pilottown, LA 2012–2021 Yes

78 Pilots Station East, S.W. Pass, LA 2004–2021 No

79 Shell Beach, LA 2009–2021 Yes

80 Grand Isle, LA 1980–2021 Yes

81 Port Fourchon, Belle Pass, LA 2003–2021 No

82 Berwick, Atchafalaya River, LA 2003–2021 No

83 LAWMA, Amerada Pass, LA 2006–2021 No

84 Eugene Island, LA 2015–2021 Yes

85 Freshwater Canal Locks, LA 2005–2021 Yes

86 Lake Charles, LA 2002–2021 No

87 Bulk Terminal, LA 2009–2021 No

88 Calcasieu Pass, LA 2002–2021 Yes

89 Port Arthur, TX 2012–2021 No

90 Morgans Point, TX 1993–2021 No

91 Texas Point, Sabine Pass, TX 2012–2021 Yes

92 Eagle Point, TX 1993–2021 No

93 Galveston Bay Entrance, TX 2001–2021 No

94 Galveston Pier 21, TX 1979–2021 No

95 Galveston Railroad Bridge, TX 2013–2021 No

96 San Luis Pass, TX 2012–2021 No

97 Freeport Harbor, TX 2017–2021 Yes

98 Matagorda Bay Entrance Channel, TX 2017–2021 Yes

99 Aransas Wildlife Refuge, TX 2013–2021 No

100 Rockport, TX 1979–2021 No

101 Aransas, Aransas Pass, TX 2017–2021 Yes

102 USS Lexington, TX 2012–2021 No

103 South Padre Island CG Station, TX 2016–2021 Yes

104 Bob Hall Pier Corpus Christi, TX 1986–2021 Yes

105 Port Isabel, TX 1979–2021 No
f

Numbered locations of water level gauges, durations of data (start and end years), and
assimilation status into CORA are indicated.
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constituents. We applied the Matlab version of Unified Tidal

Analysis and Prediction Functions (UTide) to the detrended

hourly water levels during the NTDE5 to obtain up to 68 tidal

constituents at each location. These include the principal tidal

constituents (including M2, S2, K1, and O1), those associated with

long period tides (eg., Sa, Ssa, and Mm), and some non-linear

components of the tides. Then, the tide predictions were

generated with nodal corrections by using the constituents with

power exceeding a minimum signal-to-noise ratio of two, which

was nominally 17 and 11 constituents across locations for the

observations and CORA, respectively. Lastly, the non-tidal

residual was calculated for each location and dataset. We also

assessed the performance of CORA in terms of the difference in

amplitude and phase of the leading tidal constituent compared to

the observations. For the tidal difference assessment, we calculated

errors of the respective constituents having the greatest amplitude at

each location (indicated in the results), which was usually M2

(principal lunar semidiurnal with a period of 12.42 hours) for the

East Coast and either K1 or O1 (lunar diurnal with a period of 23.93

or 25.82 hours, respectively) for the Gulf Coast.

At hourly timescales, CORA is assessed based on its SD, along

with calculations of r and RMSE, with respect to the water level

observations. Hourly non-tidal residuals used for such calculations

were obtained by subtracting the predicted tides from water levels

during the entire observational record and reanalysis. CORA’s

performance representing the most extreme high-water level

events is also assessed according to these metrics. For each

location, the 20 highest (and independent) daily maximum water

levels were identified in the non-tidal residuals of observations and

CORA. Independence of the extreme events is ensured by requiring

separation of at least seven days between dates of the highest water

levels, otherwise we consider the next highest daily maximum. For

these 20 dates of extremes at each location, we extracted five-day

windows centered on the peak water levels to compose 100 days of

hourly data, and then compared CORA to the observations. These

composites include water levels before, during, and after extremely

high-water levels, which often exceed established flooding

thresholds (section 3.5).

Annual histories of high-water levels for observations and

CORA are defined by calculating the respective 2% exceedance

thresholds of daily maximum water levels. For this calculation, the

trend is either retained or removed in the water levels so that we

consider effects of long-term changes and/or higher-frequency

variability, respectively. The annual occurrence at a location is the

number of days per year that the daily maximum water level

exceeds the 2% threshold (calculated during the NTDE5). We

compare this statistic between observations and CORA to

determine the capability of the reanalysis for describing the 43-

year history of high-water levels.
2.3 Case study method

We end the assessment by presenting an example of using

CORA to study how coastal flood risk varies in space and time, such

as during a severe weather event like a hurricane. This application is
Frontiers in Marine Science 06
shown using a case study of water level and inundation conditions

around the cities of Miami and Miami Beach in the southeastern

part of FL. For this region, we performed calculations for every

model node within a 0.3° latitude × 0.18° longitude (approximately

33 km × 19 km) domain centered on the Virginia Key water level

gauge (3277 nodes). We focus especially on conditions during

September 2017, which was when Hurricane Irma struck the

Florida Keys with Category 4 winds and caused storm-surge

flooding in a broad region of the southern East Coast (Juárez

et al., 2022).

To assess flood characteristics in CORA, we first categorize

model nodes as either having “dry land” or “ocean” characteristics,

depending on whether they are dry or wet during every hour of the

entire reanalysis. This land/ocean distinction does not include every

node, since some places are only sometimes covered by water. Some

of these non-ocean nodes are submerged at least once per calendar

month and, hence, categorized as “intertidal” zones (i.e.,

representing places flooded during high tides). It is the remaining

nodes, which are not in either of the preceding categories (i.e., dry

land, ocean, or intertidal), that we are most interested in for

assessing flood characteristics. These so-called “occasionally

flooded” nodes have hourly water level data only rarely during

the 43-year reanalysis. The “intertidal” region includes wetlands,

river floodplains, and partially submerged sandbars, while the

“occasionally flooded” nodes may also include other inland places

that are only inundated because of extreme events.

For the Miami regional case study, we perform spatial and

temporal analysis of all these model-node classifications. Assessing

positions of the occasionally flooded nodes reveals where

inundation has occurred in CORA. Likewise, considering how the

2% exceedance threshold varies for the ocean nodes may identify

spatial differences in the magnitude of water level extremes. We

present a flooded-node-hours metric to track temporal changes in

the amount of area inundated by water (i.e., the number of flooded-

nodes per hour summed over the region of interest, and then

binned by month). The resulting time series provides a description

of how inundation is simulated in the occasionally flooded zone of

CORA for not only the area immediately around the Virginia Key

water level gauge, but also the Greater Miami region vulnerable to

high tides, storm surges, as well as sea level rise and variability.
3 Results

3.1 Long-term trends

We assess the long-term trends of water levels in CORA at

assimilated and non-assimilated NWLON locations (Table 1), as

well as make comparisons with sea level trends in GLORYS12,

thereby determining abilities of both reanalyzes to replicate

observed changes at decadal time scales. Coastal water level

trends are associated with a variety of oceanic and geological

processes that are measured and resolved in various capacities by

these datasets. Specifically, GLORYS12 is designed to better

simulate open ocean and global mean sea level changes, rather

than relative coastal water level changes, which may have
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contributions due to land subsidence or uplift. Relative water level

changes are measured by coastal gauges and, therefore, these effects

are included in the assimilation algorithm used to compute CORA.

However, land subsidence can be a highly localized process (e.g.,

Buzzanga et al., 2020, Buzzanga et al., 2023; Ohenhen et al., 2023).

Hence, relative water level changes assimilated into CORA may not

always be representative of subsidence or uplift away from water

level gauges, even over relatively short distances.

Figure 2 shows the linear trend of monthly anomalies from all

the water level gauges, and the difference in trend for the reanalyzes

at nearby locations. The sea level trend bias in GLORYS12 is

homogeneously negative near the Gulf and East Coast locations

that we assessed (Figure 2B; see also Supplementary Table 1),

because GLORYS12 simulates oceanic processes and does not

capture information about differences in relative sea-level rise

observed by the water level gauges (Figure 2A). The trend for

GLORYS12 averaged over all locations is less than half the observed

trend of 8.95 mm yr-1 (i.e., a bias of nearly -6 mm yr-1). These trend

rates equate to sea level rise from 1993–2020 of 0.294 m for

observations and only 0.084 m for GLORYS12. GLORYS12 trends

are biased low near all the water level gauges considered, partly

because glacial isostatic adjustment (GIA) causes land subsidence of

the East Coast south of Massachusetts (Harvey et al., 2021). The

differences compared to water level gauges are especially large for

the western Gulf Coast, where anthropogenic extraction of

subterranean fluids caused localized subsidence and faster sea

level rise (e.g., 14.07 mm yr-1 observed versus 3.74 mm yr-1 in

GLORYS12 at Eagle Point, TX; Supplementary Table 1). The slower
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sea level rise in GLORYS12 for the western Gulf Coast is partly

explained by the fact that the reanalysis does not resolve changes in

land elevations, which are subsiding around many of the water level

gauges there (Kolker et al., 2011; Harvey et al., 2021). Trends on the

East Coast in GLORYS12 more closely resemble the observations

(respectively, 3.46 mm yr-1 versus 5.71 mm yr-1 at Charleston, SC;

Supplementary Table 1). However, there is still considerable bias on

the East Coast, especially between Cape Hatteras and Cape Cod

where the regional average trend in GLORYS12 is about 3 mm yr-1

less than observed (Figure 2B). Along the Mid-Atlantic Coast, the

GIA trends unresolved by GLORYS12 can be as large as 2 mm yr-1

(Harvey et al., 2021). Besides unresolved processes in GLORYS12,

its resolution (1/12°) could explain some disparities in the trends for

estuaries like the Chesapeake Bay area where water level gauges are

far removed from the nearest-ocean model grid point (Feng

et al., 2024).

CORA produces water level trends that resemble observations,

both around the assimilated and non-assimilated gauges

(Figures 2C, D). For CORA, the average trend of all locations is

only 0.66 mm yr-1 less than the observed trend (8.95 mm yr-1). The

overall better agreement in the average trend is likely due to the

ability of CORA assimilation to approximate the smoothly varying

GIA field over the domain. Near the assimilated water level gauges,

CORA trends are even more aligned with observations (on average,

only 0.44 mm yr-1 less than the observed trend of 8.37 mm yr-1).

Around the non-assimilated water level gauges, in contrast, trend

differences between CORA and observations are slightly larger

(-0.88 mm yr-1 on average). The most substantial trend
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(A) Long-term linear trend of monthly anomalies (mm yr-1). Difference in trend with respect to (A) observations for (B) GLORYS12 nearest to the
water level gauges and (C, D) CORA nearest to the water level gauges that are either assimilated or not assimilated, respectively, as listed in Table 1.
Solid circles represent trends calculated between 1993–2020, dotted circles represent locations where availability of the observations differs from
that complete epoch necessitating a shorter period to be used for the trend calculation (at least 10 years), and dotted triangles represent assimilated
locations with even shorter water level gauge records (only shown for the trend analysis). Six locations have trends exceeding the color bar range
(above 20 mm yr-1); four of which have records shorter than 9 years.
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differences in CORA are for parts of the western Gulf Coast around

water level gauges that were not assimilated (e.g., 7.79 mm yr-1 less

than the 14.07 mm yr-1 observed at Eagle Point, Galveston Bay, TX),

which is presumably due to the smaller spatial scales of the non-

GIA subsidence processes dominant in this region. In the

Chesapeake Bay, where only two water level gauges were

assimilated (Lewisetta, VA and CBBT, Chesapeake Channel, VA;

Table 1), the similarity between trends in observations (Figure 2A)

and CORA (Figures 2C, D) highlights an advantage of non-

localized assimilation (i.e., trends resemble observations even

away from the assimilated water level gauges; Asher et al., 2019).

In general, CORA describes well the observed trends for the

Gulf and East Coasts, including around both assimilated and non-

assimilated water level gauges (Figures 2C, D). However, there are a

few places on the coast where the water level trend in CORA needs

further scrutiny, especially where there are relatively large distances

between assimilated water level gauges or complexities in the coastal

bathymetry and shoreline geometry (e.g., channel constrictions,

multiple inlets) requiring finer model resolution to resolve (e.g.,

tidal dynamics in lagoons; Bilskie et al., 2019). Supplementary

Figure 1 compares the water level trends for CORA and

observations along the coast at three spatial scales (full domain,

regional, and local), using southern FL as an example of the latter

two areas. There is evidence that the regional coastline shape and

distance between water level gauges affects the trend in CORA. An

example of this concern is between Lake Worth and Trident Pier

(Cape Canaveral) on the eastern coast of FL (Supplementary

Figure 1) where there is a pronounced along-shore gradient of the

water level trends in CORA, despite the water level gauges at the

southern and northern bounds of this region being used in

the assimilation and having comparable trends (Supplementary

Table 1). A further challenge in the CORA assimilation arises

when the observation periods differ across nearby water level

gauges such as between the Virginia Key and Lake Worth

locations shown in Supplementary Figure 1 (record durations are

listed in Table 1). We consider locally varying water level trends in

CORA again when describing applications (section 3.6).
3.2 Annual cycle

To begin assessing the proficiency of the reanalyzes in capturing

seasonal variability, we examine the mean annual cycle

characteristics. The focus is first on the timing of the annual

cycle, as indicated by the peak month at water level gauges, as

well as for sea levels from GLORYS12 and water levels from CORA

(Figures 3A–D; Supplementary Figure 2 shows the annual cycle

across all months). The annual cycle typically peaks during

September or October at most of the water level gauges on the

Gulf and East Coasts (Figure 3A). These months are when ocean

temperatures are usually the warmest (i.e., during late summer or

early fall), which is associated with thermal expansion of seawater

and therefore higher sea levels for the open ocean and water levels at

the coast (see also Figure 2 in Widlansky et al., 2020). Other factors

driving the observed coastal water level annual cycle include Gulf

Stream dynamics (e.g., around Virginia Key, FL; Ezer and
Frontiers in Marine Science 08
Dangendorf, 2022) and riverine outflows (e.g., around the Gulf of

Maine, which has an earlier peak of the annual cycle because of

remote effects from the St. Lawrence River; Piecuch and

Wadehra, 2020).

Both GLORYS12 and CORA resolve the timing of the annual

cycle peak to within a month at most locations (Figures 3B–D).

GLORYS12, using a baroclinic ocean model, directly simulates

thermal expansion and Gulf Stream dynamics (Amaya et al.,

2023). For the Southeast Coast, the annual peak timing of high

sea levels in GLORYS12 is very similar to the water level gauges

(e.g., during October at Charleston, SC). Likewise, there is close

agreement of the annual cycle peak months between GLORYS12

and the water level gauges for most locations on the Mid-Atlantic,

Northeast, and Gulf Coasts. Around the Gulf of Maine, however,

there are discrepancies of a couple of months (e.g., at Portland, ME),

which is possibly related to the absence of riverine forcing in

GLORYS12 (Jean-Michel et al., 2021). CORA has even better

agreement with the observed annual cycle peak timing, both at

the assimilated and non-assimilated water level gauges (Figures 3C,

D). The apparent accuracy of CORA is due to the assimilation of

water level observations because there is no thermal expansion in

the ADCIRC barotropic model, nor is riverine outflow directly

included in the reanalysis. Around non-assimilated water level

gauges in CORA (Figure 3D), the similarity of the annual cycle

peak month to observations suggests that the assimilation

procedure correctly adjusts the timing of the water level

climatology at these locations as well.

Amplitude of the annual cycle is indicated by the range between

the maximum and minimum values of the monthly mean annual

cycle (Figures 3E–H). According to the water level gauges

(Figure 3E), the annual cycle is larger in magnitude for the Gulf

and Southeast Coasts (e.g., 0.275 m at Charleston, SC) compared to

locations north of Cape Hatteras (e.g., 0.209 m at Ocean City Inlet,

MD). There are exceptions to these general observations for the

Mid-Atlantic Coast, such as the locally larger annual cycles in some

estuaries, including Chesapeake Bay (e.g., 0.285 m at Baltimore,

MD), compared to nearby water level gauges closer to the open

ocean (e.g., 0.219 m at Kiptopeke, VA). The smallest annual cycle

magnitudes are observed north of Cape Cod (e.g., 0.076 m at

Portland, ME) where there is limited oceanic thermal expansion

during the summer (Widlansky et al., 2020).

The annual cycle amplitudes in GLORYS12 and CORA

resemble the water level observations almost everywhere

(Figures 3E–H), although some notable differences exist.

Averaging the annual cycle ranges for the locations shown in

Figure 3, there are only slight differences between the

observations (0.239 m) and CORA, which is 0.025 m less at the

assimilated water level gauges and only 0.006 m more at the non-

assimilated locations. For GLORYS12, there is a larger difference of

the average annual cycle range (0.054 m less than observed).

Regionally, the Mid-Atlantic Coast stands out as an area of

discrepancy in the annual cycle range between observations and

GLORYS12 (e.g., 0.254 m versus 0.156 m, respectively, at Windmill

Point, VA). For CORA, the annual cycle range is much closer to

observations around all the assimilated water level gauges

(Figure 3G) as well as most of the non-assimilated locations
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(Figure 3H), such as around the Chesapeake Bay (e.g., 0.248 m at

Windmill Point, VA). There are much larger discrepancies in the

CORA annual cycle around a few of the other non-assimilated

water level gauge locations, like at Wilmington, NC on the Cape

Fear River where the reanalysis range is 0.068 m more than

observed (Figure 3H).
3.3 Monthly variability

Monthly anomalies are computed for observations, GLORYS12,

and CORA for each water level gauge location on the Gulf and East

Coasts by removing the mean annual cycle and linear trend from

the data. To quantitatively assess the monthly variability, we

employed statistical metrics including the SD, ACC, and RMSE

(see Section 2.2). Results of the monthly variability assessment are
Frontiers in Marine Science 09
depicted in Figure 4 and listed in Supplementary Table 2. Time

series of the monthly anomalies are also shown for selected

locations in Figure 5.

For most of the water level gauges on the Gulf and East Coasts,

the amount of monthly variability in both GLORYS12 and CORA

aligns closely with observations (i.e., SD values are comparable, as

seen in Figures 4A–C and Supplementary Table 2). Results for the

Charleston, SC water level gauge are an example of realistic

amounts of monthly variability in the reanalyzes compared to

observations (i.e., the SD values are identical for CORA and only

0.004 m larger for GLORYS12; Figure 5E). Interestingly, monthly

variability at locations near Charleston on the Southeast Coast is

typically larger in GLORYS12 compared to the observations as well

as CORA (Figures 4A–C; values are listed in Supplementary

Table 2). Averaged over all the locations from Texas to Maine,

monthly variability in CORA is somewhat less than the
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Annual cycle characteristics. Top: The peak month of the annual cycle for (A) observations, (B) GLORYS12 nearest to the water level gauges,
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observations (SD values of 0.058 m versus 0.063 m). Around the

assimilated water level gauges, there is no apparent difference in

CORA compared to observations as far as the amount of monthly

variability (i.e., the average bias of the SD values is negligible).

The ACC metric reveals clear distinctions in performance of

GLORYS12 and CORA when compared to observations

(Figures 4D–F). GLORYS12 has a weaker correlation with

observations overall (Figure 4D), both for the Gulf Coast (e.g., the

ACC is 0.81 at Grand Isle, LA; Figure 5H) and the East Coast (e.g.,

ACC is 0.85 at Charleston, SC; Figure 5E). CORA is much more

strongly correlated with the observed monthly variability, both overall

(Figures 4E, F) and for these examples (ACC values of 0.88 and 0.99,

respectively; see Figure 5 for time series at these and other locations).

CORA performs similarly well according to this correlation metric for

most other locations on the East Coast, regardless of assimilation status

of the nearby water level gauges (e.g., at the non-assimilated Sewells

Point, VA location, the ACC is 0.97; Figure 5D). Performance as

measured by ACC is relatively low along the Gulf Coast (e.g., 0.88 at the

Grand Isle assimilated water level gauge; Figure 5H). Considering the

time series comparisons with the Grand Isle gauge (Figure 5H), it is

unknown why there is a noticeable offset in CORA during 2007–2010

compared to both the observations and GLORYS12. Such offsets from

observations of monthly anomalies are rare in CORA, even among

locations around the non-assimilated water level gauges (e.g., as shown

in panels B, D, F, and I of Figure 5).

The RMSE metric for GLORYS12 and CORA compared to the

observations indicates mostly similar performances of the reanalyzes
Frontiers in Marine Science 10
overall (Figures 4G–I), although the values for GLORYS12 are

slightly higher everywhere compared to CORA (Supplementary

Table 2). Whereas Cape Hatteras marks a clear distinction in the

amount of RMSE for GLORYS12 (Figure 4G), no such spatial

demarcation is evident in CORA (Figures 4H, I). GLORYS12

exhibits larger errors along the Southeast and Gulf Coasts, where

monthly variability also is larger (see SD values in Figure 4A). Overall,

the RMSE of CORA for monthly variability is very small in absolute

terms (e.g., 0.008 m at Charleston, SC compared to that assimilated

water level gauge) and relative to GLORYS12, which has five times

larger error for this example location (Figure 5E). For CORA, there

are only six locations between Texas and Maine where both the ACC

is below 0.80 and the RMSE exceeds 0.04 m (e.g., Wilmington, NC;

Supplementary Table 2), which is a substantial improvement

compared to GLORYS12 (25 such locations).
3.4 Tides

The fidelity of CORA in resolving tides is evaluated through its

capability to describe tidal constituents that match the observed

characteristics. We specifically focus on the leading constituent at

each location as described in Section 2.2 (i.e., typically the M2

principal lunar semidiurnal tide for the East Coast and either the K1

or O1 lunar diurnal tide for the Gulf Coast). These tidal constituents

are calculated from hourly water levels, and differences between

CORA and observations are depicted in Figure 6.
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This assessment reveals mostly minor biases in the amplitude of

the leading tidal constituents. Biases are slightly negative overall,

and larger on average for the East Coast (-0.034 m) compared to the

Gulf Coast (-0.013 m). Regionally, however, biases are mostly

positive between Cape Hatteras and Cape Cod, especially around

assimilated water level gauge locations (Figure 6A). Due to the low-

pass filtering method of the data assimilation, we did not expect

assimilation status to explain a large difference in performance

resolving tides (i.e., comparing Figures 6A, B). Notably, two non-

assimilated locations on the East Coast display underestimations of

the lunar semidiurnal tide, with M2 amplitude errors exceeding

-0.20 m (Wilmington, NC and Cutler Farris Wharf, ME; Figure 6B).

The Wilmington water level gauge is located on the Cape Fear River
Frontiers in Marine Science 11
approximately 30 km from its mouth at the Atlantic Ocean, and

Cutler Farris Wharf is located near the Bay of Fundy where tides

exceed 10 m. Although CORA has limitations depicting tides in

such specific locations, tidal amplitudes in the reanalysis are mostly

similar to observations.

In terms of tidal phase biases, CORA compares well with

observations at most locations (Figures 6C, D). The average M2

tidal phase bias for the East Coast is about -4 degrees, which is

equivalent to an approximately 8-minute offset for this constituent.

Small negative phase biases suggest that there are many locations on

the East Coast where the M2 tide in CORA leads the observations by

a few minutes. However, there are clearly exceptions where much

larger (and positive) biases exist for the M2 constituent, such as at
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Wilmington, NC (37 degrees or 76 minutes of lag). The lagging tide

at Wilmington in CORA is most likely due to insufficient resolution

of the Cape Fear River in the HSOFS mesh but may also be affected

by the absence of river influx in the model. For the Gulf Coast,

average K1 or O1 tidal phase biases are also positive but rather small

(5 degrees or about 20 minutes of lag), although the span of biases

near non-assimilated water level gauges is substantial (-12 degrees

to +35 degrees or 49 minutes lead to 143 minutes lag on average

among these tidal constituents). Explaining the causes of these tidal

errors in CORA requires further study, which we briefly discuss in

Section 4.
3.5 Non-tidal variability

Non-tidal water levels for each dataset are calculated by

subtracting the predicted tides from the observations and CORA,

respectively. Using the non-tidal residuals, which do not include

long-term trends, we assess the capability of CORA to accurately

simulate hourly variability. The evaluation method of comparing

with the observations and applying performance metrics is like

what was used in the monthly variability assessment (Section 3.3).

Figure 7 illustrates the results for evaluating the hourly non-tidal

residuals of CORA according to the amount of variability (SD),

correlation with observations (here using the Pearson’s correlation

coefficient, r, instead of ACC), and error magnitude (RMSE).

The amount of hourly non-tidal variability, as indicated by the

SD values in Figure 7A for the observations (0.159 m on average), is

much greater than monthly variability (Figure 4A; 0.063 m). Along

the Gulf and East Coasts, SD values of the hourly observations range

from 0.207 m (Eagle Point, Galveston Bay, LA) to 0.123 m (Cutler
Frontiers in Marine Science 12
Farris Wharf, ME). Hourly variability in CORA is comparable in

magnitude to the observations at most of the assimilated and non-

assimilated locations (Figures 7B, C; see also Supplementary

Table 2). However, there are isolated examples of large biases in

non-tidal variability, such as at Pilots Station East, LA where the SD

is much smaller in CORA (0.139 m) compared to the water level

gauge (0.212 m).

Correlations are strong between the hourly non-tidal water

levels in observations and CORA (Figures 7D, C). Overall, 20 out of

44 assimilated water level gauges have an r value exceeding 0.9

(Supplementary Table 2). For the comparison with non-assimilated

gauges, r values are similarly strong at roughly a quarter of the

locations (14 out of 53). For both the assimilated and non-

assimilated water level gauges, r values are higher on average for

the East Coast (0.89 and 0.90, respectively) compared to the Gulf

Coast (0.79 and 0.76). There are exceptions of much weaker

correlations at some locations, however, such as at Berwick, LA,

which is located on the Atchafalaya River away from the Gulf Coast

(the r value there is only 0.28, and CORA also has a much lower SD

than observed; Supplementary Table 2). There are other locations

on the Gulf Coast with relatively weak r values (e.g., 0.67 at the Key

West, FL assimilated water level gauge). Much stronger correlations

exist nearly everywhere on the East Coast, including around non-

assimilated locations (e.g., 0.95 at Solomons Island, MD, which is

on the Patuxent River near the Chesapeake Bay).

Assessment of the RMSE values offers additional insights into

the efficacy of CORA for describing the hourly variability of non-

tidal water levels (Figures 7F, G). For the East Coast, RMSE values

are low compared to the SD values (Figures 7A–C), especially at the

assimilated water level gauges (the average error is only 0.065 m at

these locations). For the Gulf Coast, RMSE values are somewhat
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higher, although still much less than the local SD values (average

errors of 0.095 m and 0.103 m, respectively, at assimilated and non-

assimilated locations). Performance of CORA around Berwick, LA

is again an exception according to the RMSE metric (0.334 m).

Other than that non-assimilated water level gauge, we see no

systematic differences in the RMSE metric for the hourly

variability based on assimilation status.

Figure 8 shows the assessment of hourly variability during high-

water level extreme events. We identified the 20 highest

(independent) water levels in the data and evaluated the hourly

non-tidal residuals within a five-day window centered around each

event (i.e., assessing 100-day composites). This extreme event criteria

selects water levels that exceed NOAA-defined thresholds for minor
Frontiers in Marine Science 13
flooding occurrence (Sweet et al., 2018) at most locations (e.g.,

Supplementary Figure 3). There is larger variability in these

composites of high-water level events compared to assessing the

entire 43-year time series, for both observations and CORA (SD

values of 0.302 and 0.293, respectively; Figures 8A–C). During the

high-water level events, there are only subtle differences in SD values

between locations around assimilated and non-assimilated water level

gauges in CORA (0.312 and 0.277, respectively), with observed

variability being slightly higher for these subsets (0.317 and 0.291).

Correlations are strong between CORA and observations during

times of high-water level extremes (r values exceed 0.9 at 66 out of

97 locations; Figures 8D, E). Likewise, the majority of RMSE values

are below 0.15 m (81 out of 97; Figures 8F, G). Only a few notable
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exceptions of locations with poorer performance exist in CORA, such

as at Wilmington, NC (r and RMSE values of 0.64 and 0.316 m). At

most other locations, CORA performs well during the high-water

level events according to these metrics of correlation and error,

including around non-assimilated water level gauges (e.g., 0.97 and

0.081 m at Newport, RI).

To further elucidate CORA’s performance, we consider nine

time series corresponding to locations previously assessed for

monthly variability (Figure 5) but now for hourly water levels

(Figure 9). We use September 2017 as an example of the tidal and

non-tidal variability observed on the Gulf and East Coasts. The

observed tidal cycles are mostly well captured by CORA, as seen by

the close correspondence between the water levels overall (left

column of Figure 9; especially panels A–E, which are for the East

Coast locations). Whereas for the Gulf Coast locations (Figures 9H,
Frontiers in Marine Science 14
I), there appears to be more deviation between observations and

CORA. Some of the discrepancies in hourly water levels may be

attributed to non-tidal diurnal oscillations that CORA and its ERA5

forcing potentially fail to capture (e.g., coastal sea breezes). These

discrepancies could also result from other spurious characteristics

of the model configuration. Another location of substantial bias in

tidal amplitude is Southbank Riverwalk, FL (Figure 9F; this non-

assimilated location was not considered in previous assessments

because its data record is only from 2015–2021), which is on the St.

Johns River about 30 km upstream from the Atlantic Ocean and

where meteorological forcing has a dominant influence on water

levels (Bacopoulos et al., 2009).

We choose six days around when Hurricane Irma struck the

Florida Keys on September 10, 2017 to show the hourly non-tidal

residuals (Figure 9; right column). Hurricane Irma’s storm surge
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Similar to Figure 7, except for comparing hourly non-tidal residuals during 100-day composites containing the 20 highest water levels observed at
each location.
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was directly associated with over a meter of water level rise observed

that day at Virginia Key, FL, which is in Biscayne Bay near Miami.

The non-tidal residual exceeded 1 m above MHHW at the water

level gauge, despite being about 180 km from where Hurricane Irma

made landfall. Large storm surges were observed along much of the

Southeast Coast, such as the record-high-water level at Southbank

Riverwalk on the St. Johns River (1.7 m; Figure 9F). There was a

substantial water level rise in CORA at that non-assimilated

location (1.01 m). The next day at Charleston, SC, a similarly

high non-tidal residual was observed and well depicted by CORA

(Figure 9E). Water levels exceeded tide predictions much farther

north on the East Coast as well, although only by around 0.10 m

(e.g., at Sewells Point, VA; The Battery, NY; Newport, RI; and,

Boston, MA as shown in Figure 9). CORA effectively described the

timings of non-tidal residuals observed by all six water level gauges

on the East Coast. Magnitudes were mostly realistic in CORA,

however there was a clear low bias at the Southbank Riverwalk.
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Another example when CORA performed particularly well

depicting observed storm surges was during Hurricane Sandy in

2012, regardless of assimilation status of the nearest water level

gauge (e.g., approximately matching the 1.5 m non-tidal residual

observed at Newport, RI; Supplementary Figure 4). We found that

CORA performed similarly well resolving water levels for many

other large storms, at least at locations away from the core of most

intense winds as experienced in hurricane eye walls.
3.6 Applications

CORA is designed to serve applications in assessing the frequency

and severity of coastal flooding associated with high-water levels.

Potential applications include conducting regional frequency analyses

of water level characteristics, assessing shifts in the mean conditions

(e.g., of tidal datums such as MSL and MHHW), and understanding
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the spatial extent of flooding due to very high tides and storm surges

combined with sea level rise and variability. Most importantly, CORA

provides the capability to evaluate changing flood risks both near and

away from existing water level gauges. We briefly demonstrate several

such applications using this preliminary version of CORA, which

performs well in describing the observed water level characteristics

for the Gulf and East Coasts (Sections 3.1–3.5).
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3.6.1 Tidal datums and exceedance thresholds
Figure 10 illustrates the annual number of daily maximum water

levels above the 2% exceedance threshold according to the observations

and CORA, which respectively average 0.434 m and 0.422 m above

MHHW for the 2002–2020 epoch (Supplementary Table 1 lists the

thresholds for each location and Supplementary Figure 3 shows the

distribution of water levels in relation to the thresholds for example
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Annual occurrence of extreme water levels according to the 2% exceedance threshold with respect to MHHW for locations on the Gulf and East
Coasts. (A) Results from observations (years with unavailable data for a location are gray). (B) Results from CORA (locations not assessed for 2%
exceedance are gray; Supplementary Table 1). Color shading indicates the number of days per year when the maximum water level is above the 2%
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locations). During the recent decade, there has been a clear increase in

days experiencing such extreme water levels according to observations

(Figure 10A), which has been widely reported (e.g., Sweet and Park,

2014; Wahl et al., 2015). CORA captures this overall increase in

occurrence of extremely high-water levels (Figure 10B). There is a

close correspondence between observed characteristics and CORA at

most of the locations assessed (e.g., at Virginia Key during 2017, 10 and

8 days, respectively). The increase for the Gulf Coast is particularly

evident in both the observations and CORA, especially since 2015

(Figure 10C). Water level extremes likewise became more frequent

during this time for the East Coast, with the top five years of most

occurrences all since 2017 (Figure 10C).

Most of the increased occurrence of extremely high-water levels

during the 43-year reanalysis, and especially since 2015, is explained

by sea level rise (Figure 10). Considering the detrended hourly water

levels, there is no overall increase in the annual occurrence of high

extremes (Supplementary Figure 5). However, correspondence

between individual years remains in the detrended data, such as

the large number of high-water levels during 2020 previously noted

at the Gulf Coast water level gauges and associated CORA locations.

Tidal datums also changed because of sea level rise, withMSL and

MHHW during the 2002–2020 epoch higher everywhere compared

to during 1983–2001, which is the prior NTDE (see Supplementary

Table 1; and, noting that observations are unavailable at some

locations for the earlier epoch). Height increases of the tidal

datums since the 1983–2001 epoch are similar between

observations and CORA for most of the Gulf and East Coast

locations. At Virginia Key, the respective MHHW increases for

observations and CORA are 0.05 m and 0.052 m. We note that

water levels in CORA are referenced to MSL, hence that datum is

initially close to zero (Supplementary Table 1). East Coast locations

observe an average MSL increase of 0.076 m (0.080 m for MHHW)

compared to datum increases of 0.081 and 0.080 m, respectively, in

CORA. Tidal datums increased more for the Gulf Coast, where only a

limited number of water level gauges are available during the earlier

epoch, according to observations (0.092 m and 0.107 m for MSL and

MHHW, respectively) and CORA (0.090 m and 0.094 m, also

respectively). Considering that the 2% exceedance thresholds for

observations and CORA are also comparable (noted above) further

supports the concordance between the reanalysis and water level

gauges concerning characteristics associated with coastal flooding.

3.6.2 Regional water levels and flooding
CORA is suitable for assessing regional water levels and

flooding. In a case study to demonstrate this application, we

consider the Greater Miami region around the Virginia Key, FL

water level gauge (mapped in Figure 11). The fastest water level rise

(exceeding 5.3 mm yr-1) occurred in deep channels surrounding the

Port of Miami as well as the northern part of Biscayne Bay

(Figure 11A). Examination of water level trends for nearby

assimilated water level gauges (5.73 mm yr-1 at Virginia Key and

5.97 mm yr-1 at Lake Worth; Supplementary Table 1) suggests that

the relatively faster rate of rise in the latter area of Biscayne Bay is

partly explained by the interpolation of observations along the coast

during the CORA assimilation (see also Supplementary Figure 1,

which shows trends in a broader area of the southern coast of FL).
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Water level rise is a little slower to the south of Key Biscayne in

CORA (around 4.8 mm yr-1). Trends diminish offshore in CORA

because the water level error fields are forced to zero in the open

ocean (Asher et al., 2019).

The 2% exceedance level is also heterogeneous across the region

(Figure 11B). Higher thresholds of the 2% exceedance are mostly in

the open ocean areas such as adjacent to Miami Beach (greater than

0.44 m). Exceedance thresholds closer to 0.30 m are more common

in Biscayne Bay, especially south of the port area. For comparison,

the CORA characteristic closest to the Virginia Key water level

gauge consists of a 0.352 m 2% exceedance level, which is only

slightly higher than observed (0.333 m; Supplementary Table 1).

Another important application of CORA is assessing the regional

flooding extent during past high-water level events. Ourmethodology

for assessing flooding in the reanalysis, as explained in Section 2.3, is

to categorize model nodes as either always wet (ocean), always dry

(land), flooded at least once per month (intertidal), or occasionally

flooded. It is the occasional flooding category that is most relevant

from the perspective of assessing historical impacts associated with

high-water levels. Hurricane Irma’s landfall, described in section 3.5,

is the focus event of the regional case study. Storm surge associated

with the hurricane was much higher closer to the landfall points

(exceeding 2 m at Cudjoe Key andMarco Island according to surveys,

(https://www.weather.gov/mfl/hurricaneirma), compared to the 1.11

m non-tidal residual observed at Virginia Key (Figure 9G). Since the

current configuration of CORA demonstrates better capability at

simulating realistic storm surges well away from the hurricane core of

most severe winds, such as around water level gauges along the East

Coast after Irma’s landfall (Figure 9), the domain of Figure 11 is well

suited for a regional case study.

During Hurricane Irma, every model node in the Miami region

that has flooded since 1979 (i.e., the “occasional flooding” category)

was inundated for at least an hour, along with all the intertidal

nodes (i.e., the red and yellow dots, respectively, in Figure 11C). The

inundation pattern reveals areas particularly vulnerable to storm

surge flooding, such as the bay side neighborhoods of Miami Beach.

On the mainland, CORA depicts coastal flooding in the northern

and southern parts of the case study domain as well as extending

inland around the Miami River, although inundation in the latter

area seems to be an artifact of the model topography and resolution

because in reality the river is always connected to Biscayne Bay.

Whereas in CORA, nodes near the Miami River are only sometimes

flooded, as indicated by the red dots in Figure 11C. Other areas

appear less susceptible to flooding since the model nodes remained

dry during Hurricane Irma, which are mainly places of higher

elevation. It is important to note that these flooding characteristics

do not represent a worst-case scenario because the most severe

hurricane winds were experienced outside of the region.

Miami is also experiencing chronic high-tide flooding, which is

becoming more frequent with sea level rise (Wdowinski et al.,

2016). Figure 12A shows that the number of days of extremely high-

water levels have increased since the Virginia Key observations

began in 1994, and that there is a pronounced annual cycle with an

October peak. CORA closely resembles the observations.

Employing the metric of flooding node-hours in CORA, we see

similarity between the occurrences of extremely high-water levels
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and flooding (i.e., comparing Figures 12A, B). Highest sea levels are

most often observed during August–October around Miami (e.g.,

Widlansky et al., 2020), which is also hurricane season and when

most of the flooding occurs in CORA (Figure 12B). Like the

increasing trend of extreme water levels (Figure 12A), there has

also been a pronounced increase in monthly flood occurrence since

1979, with the most flooding in CORA happening during Hurricane

Irma (Figure 12B). Furthermore, the six years with the most days of

extremely high-water levels and flooded model nodes were all since

2015, which has been a period of frequent high-tide flooding for

Miami (Sweet et al., 2018).
4 Discussion

This study evaluates coastal water levels in NOAA’s CORA-

GEC v0.9, as compared to NOAA’s NWLON observations and sea

levels in the GLORYS12 reanalysis. This preliminary version of

CORA spans 43 years of hourly water levels for the U.S. Gulf and

East Coasts. CORA stands out due to its relatively high coastal

resolution and thus accurate representation of many complex
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coastal features, its inclusion of inundation of coastal areas, and

its assimilation of coastal water level observations to supplement the

tidal and meteorologically forced responses that are explicitly

included in the barotropic ADCIRC+SWAN model. We assessed

CORA regarding coastal water levels on multiple timescales (i.e.,

considering the long-term trend and annual cycle as well as

interannual, monthly, and hourly variability). Furthermore, we

compared the performance of CORA to monthly and longer

timescales of variability in GLORYS12, which is a global

reanalysis that uses an entirely different approach to describing

sea levels. Additional performance metrics included assessing tides

and extremes in CORA compared to observations. We also

considered applications such as using CORA to assess coastal

flooding. Here, we summarize the results (Section 4.1) prior to

discussing the implications and next steps (Section 4.2).
4.1 Summary of results

CORA closely matched water level observations, with slightly

better performance at assimilated locations than at water level
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gauges that were not included in the assimilation. The satisfactory

performance of CORA is attributable to the data assimilation

method, which adjusts the ADCIRC water levels to observations.

Regional performance differences are presumably related to the

density of water level gauges available for assimilation, with areas

having fewer observations showing lesser performance across most

metrics (e.g., along the western Gulf Coast). CORA performance

was consistently weakest at water level gauges located up coastal

rivers, most likely due to inadequate resolution of these water bodies

in the HSOFS mesh. In terms of performance hierarchy, CORA

around assimilated water level gauges typically outperformed

locations near non-assimilated water level gauges. Only

considering the monthly and longer timescales of variability,

including the long-term trends, CORA more closely matched

observations compared to GLORYS12. While CORA adeptly

captured storm surges, such as during Hurricanes Irma and

Sandy, it encountered challenges with high-frequency variability

at some locations on the Gulf Coast, which are possibly related to

problems unexplored here such as resolving non-tidal diurnal cycles

like land-sea breezes or other model characteristics like boundary

forcings. CORA also tended to slightly underpredict tidal variability

(i.e., having smaller amplitudes) and it exhibited phase errors at

some locations, which requires further study to explain why. Both

GLORYS12 and CORA effectively represented the annual cycle of

coastal water levels. CORA also well represented extremely high-

water level events. Most importantly, CORA excelled in tracking the

observed rise in water levels above the 2% exceedance level, with a

clear uptick in extremely high-water level days post-2015, especially

for the Gulf Coast and areas like Miami that are experiencing more

occurrences of flooding recently.

Overall, CORA offers a comprehensive description of water

levels for the Gulf and East Coasts, providing insights for areas
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without extensive observations. The realism of CORA is achieved by

the assimilation of observations from water level gauges, especially

concerning long-term trends and monthly variability. CORA

consistently matched observed water level trends, notably

identifying a rise in days with extremely high-water levels at all of

the locations considered. Likewise, we found the annual cycle of the

clustering of extremely high-water levels is well represented, such as

the typical occurrence during September and October for most

locations along the Gulf and East Coasts.

Regarding chronic high-tide flooding, places like Miami have

seen increased frequencies (Sweet et al., 2022). Around Miami,

CORA realistically describes the observed rise in extremely high-

water level days post-1994 and the marked increase in flood events

since 2015. A focused study on the Miami region, centered on

Hurricane Irma in 2017, demonstrated the utility of CORA in

assessing coastal flooding characteristics. This case study

emphasized the ability of using CORA to assess the combined

effects of sea level rise and variability, as well as tides and storm

surges, on coastal inundation events. Using CORA, we mapped

areas prone to flooding in the Greater Miami area, highlighting its

capability in assessing changing risks associated with higher sea

levels. The findings present valuable data for adaptive and

preventive strategies against sea level rise and extreme events.
4.2 Implications and next steps

CORA is a promising tool for assessing water level variations,

tidal datums, and coastal flooding characteristics, especially in the

context of rising sea levels. Its high-resolution coastal water level

data is crucial for adapting to the challenges of sea level rise and

extreme water levels caused by storm surges and other weather,
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climate, or tidal fluctuations. By assimilating observations from

water level gauges, CORA captures behavior in trends and

variability that could be caused by relative sea level rise, changing

coastal ocean processes, and meteorological forcing. CORA’s use of

the ADCIRC model, which is proficient in simulating storm surges,

especially for large hurricanes and away from the central core of the

strongest winds, makes it useful in coastal planning for future

extremes. A more in-depth exploration into the effects of rising

sea levels, return intervals of extreme water levels, regional flood

thresholds, and in general the relationship between CORA and

observations will be vital for informing future coastal strategies. The

ADCIRC+SWAN simulations that comprise CORA have also

generated hourly data sets of surface waves, which may be helpful

for understanding the combined effects of water level and waves on

coastal flooding (Aretxabaleta et al., 2023).

Looking forward, continued enhancements of CORA are

ongoing. The next reanalysis version for the Gulf and East Coasts

(NOAA CORA-GEC v1.0) includes more assimilated water level

gauges, particularly in the western Gulf of Mexico. The subsequent

version (v2) will incorporate higher-resolution atmospheric forcing

from hurricanes to better capture extremely high storm surges

(Bilskie et al., 2022). Additional improvement could also come from

using vertical land motion observations (e.g., Wöppelmann and

Marcos, 2016) to inform the calculation of water level correction

surfaces between observation sources that are used in the

assimilation process. Nevertheless, we found this preliminary

version of CORA highly realistic as far as depicting monthly and

hourly water level variability in areas without assimilated water level

gauges, which suggests potential applications in what have been less

observed and studied coastal regions. Plans are in place to expand

CORA to the Pacific Ocean, which will likewise further the

description of coastal water levels and flooding events in such

regions (i.e., for the West Coast, Alaska, Hawaii, and U.S.-

affiliated Pacific Islands).

CORA offers a new method for comprehensively analyzing the

intertwined effects of historical sea level rise, water level variability,

high tides, and storm surges on simulated coastal inundations.

Particularly evident in areas like Miami, FL, which contends with

these complex challenges on a recurrent basis, our assessment of

CORA illuminates the nuances of coastal impacts (i.e., flooding as

inferred by model nodes inundated with seawater). We showed that

CORA resolves flooding occurrences affected by the long-term rise

and annual cycle of sea level as well as more abrupt occurrences

such as monthly water level anomalies, very high tides, and

storm surges.

The Miami regional case study serves as a replicable approach

for assessing flooding characteristics in other coastal zones, since it

is accommodating to different topographies and weather patterns.

However, the true efficacy of CORA’s depictions of coastal flooding

hinges on validation against observed impacts. This validation data

can span from detailed impact reports (e.g., using a methodology

like in Hague et al., 2020) to visual confirmations via camera images

(e.g., such as from NOAA’s Web Camera Observation Network;

WebCOOS as reviewed in Dusek et al., 2019) or potentially satellite

assessments. Furthermore, extra care will be needed in some regions
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to ascertain if the local relative water level rise depicted by CORA

matches observations, which could be accomplished by utilizing

additional observations of vertical land motions such as from

InSAR and LiDAR measurements (Hurtado-Pulido, 2023). As

such, with refinement and further verification, CORA could

become pivotal for deciphering and addressing the multifaceted

issues associated with coastal flooding.

In conclusion, CORA is a new dataset in coastal water level

research, which may lead to advancements in the assessment and

understanding of risks in a changing climate. The versatility and

comprehensive approach of the reanalysis make it widely

applicable for understanding and planning around coastal

challenges. With its high-resolution water level data and broad

applications, CORA stands as a foundation for future research

about coastal environments, which will hopefully drive more

informed decision-making in the face of rising sea levels and

associated challenges.
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