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forecasts of ocean variables
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Simona Masina3, Michael Mayer1,2,4, Retish Senan1,2,
Eric de Bosisséson1,2 and Silvio Gualdi3

1Research Department, European Centre for Medium Range Weather Forecasts, Reading, United
Kingdom, 2Research Department, European Centre for Medium Range Weather Forecasts,
Bonn, Germany, 3Institute for Earth System Predictions, CMCC Foundation - Euro-Mediterranean
Center on Climate Change, Bologna, Italy, 4Department of Meteorology and Geophysics, University of
Vienna, Vienna, Austria
There is growing demand for seasonal forecast products for marine applications.

The availability of consistent and sufficiently long observational records of ocean

variables permits the assessment of the spatial distribution of the skill of ocean

variables from seasonal forecasts. Here we use state-of-the-art temporal records

of sea surface temperature (SST), sea surface height (SSH) and upper 300m

ocean heat content (OHC) to quantify the distribution of skill, up to 2 seasons

ahead, of two operational seasonal forecasting systems contributing to the

seasonal multi-model of the Copernicus Climate Change Services (C3S). This

study presents the spatial distribution of the skill of the seasonal forecast

ensemble mean in terms of anomaly correlation and root mean square error

and compares it to the persistence and climatological benchmarks. The

comparative assessment of the skill among variables sheds light on sources/

limits of predictability at seasonal time scales, as well as the nature of model

errors. Beyond these standard verification metrics, we also evaluate the ability of

the models to represent the observed long-term trends. Results show that long-

term trends contribute to the skill of seasonal forecasts. Although the forecasts

capture the long-term trends in general, some regional aspects remain

challenging. Part of these errors can be attributed to specific aspects of the

ocean initialization, but others, such as the overestimation of the warming in the

Eastern Pacific are also influenced by model error. Skill gains can be obtained by

improving the trend representation in future forecasting systems. In the

meantime, a forecast calibration procedure that corrects the linear trends can

produce substantial skill gains. The results show that calibrated seasonal

forecasts beat both the climatological and persistence benchmark almost at

every location for all initial dates and lead times. Results demonstrate the value of

the seasonal forecasts for marine applications and highlight the importance of

representing the decadal variability and trends in ocean heat content and

sea level.
KEYWORDS

seasonal forecasts, skill, trend, essential climate/ocean variables, SST, sea level, ocean
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Introduction

Knowledge of forecast skill is a prerequisite for utilizing forecast

information. Assessing the skill of ocean variables from seasonal

forecasts other that sea surface temperature (SST) in a multi-model

context has remained elusive due to the lack of verifying ocean

datasets of sufficient quality and length. In recent years, the

availability of longer observational records of surface ocean

variables such as altimeter-derived sea level, and sea-ice

concentration has allowed the verification of seasonal forecasts of

these additional surface variables in a multi-model context. For

instance, Long et al., 2021 and Widlansky et al., 2023 have used

altimeter derived records of sea level anomalies to verify the ability

of the multi-model seasonal forecasts to capture the variations of

global and regional sea level. There have also been assessments of

the skill of multi-model seasonal prediction of sea-ice (Guemas

et al., 2016; Blanchard-Wrigglesworth et al., 2017). However,

verification of sub-surface ocean variables in a multi-model

context has remained challenging. Several studies have reported

the potential predictability of upper ocean heat content (OHC) in

the context of seasonal forecasts of El Nino-Southern Oscillation

(ENSO) (e.g. Balmaseda et al., 1994; Sharmila et al., 2023, among

others), but in these studies the forecast OHC was verified against

own analysis. The recent availability of ensembles of ocean

reanalyses has opened the possibility for independent verification

of seasonal forecasts of the ocean subsurface. For instance, McAdam

et al., 2022 have used the upper Ocean Heat Content from the

Global Reanalyses Ensemble Product (GREP) for a comparative

assessment of the forecast skill of seasonal forecasts between SST

and upper Ocean heat content in a multi-model context.

Here we will compare the skill of seasonal forecast of SST, sea

surface height (SSH) anomalies and OHC, with the expectation that

the comparative assessment can shed some light on the sources of

predictability and errors. One novel aspect of the current study is

the assessment of the forecast models to represent the trends in the

observational records, and it quantify how much the climate trend

contributes to the skill and forecast errors. We also expect that the

skill assessment of these ocean variables will encourage seasonal

forecast providers to make the data publicly available, as it is

currently done with the seasonal forecasts for the atmosphere.

In this study, we use these satellite observational records and

ocean reanalyses to verify ocean variables from two seasonal

forecast systems contributing to the C3S (Copernicus Climate

Change Service) seasonal multi-model product. These systems are

from ECMWF (European Centre for Medium-Range Weather

Forecasts) and CMCC (Centro Euro-Mediterraneo sui

Cambiamenti Climatici). The data and methods are described in

section 2. The results are presented in Section 3, which provides a

comparison of the spatial distribution of deterministic skill of SST,

OHC and SSH, in terms of anomaly correlation and root mean

square error, bench-marked against persistence and climatology.

This section also investigates the ability of the seasonal forecasts to

capture the recent linear trends present in observations, and it

quantifies the contribution of the linear trend to the seasonal

forecast skill. The lessons learned from the evaluation are

summarized in section 4.
Frontiers in Marine Science 02
Data and methods

Data

Verification datasets

Three observation-based datasets have been identified as

suitable for the verification of ocean variables from seasonal

forecasts. Suitability criteria are based on the length of the

available record (at least 1993–2016), and documentation on their

uncertainty and temporal homogeneity. For the surface variable

(SST and SSH) we use satellite-derived records from the ESA-CCI

initiative: the global Sea Surface Temperature Reprocessed product

(Merchant et al., 2019; Good, 2020), distributed by C3S; and the Sea

Surface Height (SSH) product (Pujol et al., 2016 and Taburet et al.,

2019), distributed by C3S and CMEMS (Copernicus Marine

Environmental Monitoring Service). Since satellite information is

insufficient to constrain the ocean subsurface, the ocean heat

content (OHC) in the upper 300m is verified with the Global

Ocean Reanalysis Ensemble Product (GREP, Storto et al., 2019),

distributed by CMEMS, which is constrained by in-situ

observations. A full description of the data is provided in section

S1.1 of Supplementary Material. For the purpose of verification,

we use seasonal means of these records for the period 1993–2016.

Seasonal forecasts ocean data
The two forecast systems used here are the Seasonal Prediction

System Version 3 from the Centro Euro-Mediterraneo sui

Cambiamenti Climatici (CMCC-SPS3, Sanna et al. (2017)), and

the fifth generation Seasonal Forecasting System from the European

Centre for Medium-Range Weather Forecasts (ECMWF-SEAS5,

Johnson et al. (2019)). Since 2018 both systems have been

contributing to the Copernicus Climate Change Service (C3S),

which makes seasonal forecasts of atmosphere and surface

variables (precipitation, 2m-temperature) freely available online.

These systems produce a forecast of ocean variables other than SST,

although the ocean variables are not yet publicly available for the

multi-model.

A full description of the models is included in Section S1.2 of

Supplementary Material. Suffice to say that both systems base their

ocean model component on the eddy-permitting version 3.4 of

NEMO (Nucleus for European Modelling of the Ocean), which has

a horizontal resolution of 25 km at the equator, and they are

initialized from ocean reanalyses: CMCC-SPS3 is initialized from

C-GLORS (Storto and Masina, 2016), while ECMWF-SEAS5 is

initialized from ORAS5 (Zuo et al., 2019).

Seasonal means of SST, SSH and OHC have been gathered from

a set of retrospective seasonal forecasts (re-forecasts) from the two

models. The re-forecast dataset comprises 96 independent initial

dates, spanning the 1993–2016 period, initialized 4 times per year,

with starting dates on the 1st of February, May, August and

November. This 1993–2016 period was chosen, so it is the same

as that used for the C3S seasonal multi-model product. The forecast

range is 6 months, and for the purpose of map verification, we split

it into first and second season. Thus, forecasts initialized in

February will be verified for the FMA (lead 1) and MJJ (lead 2)
frontiersin.org
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seasons. For an individual date, the forecast from each system

comprises 40 ensemble members, which are averaged to estimate

the ensemble mean. The forecast data are stratified by initial and

verifying calendar date (or by initial calendar date and lead time).

For instance, lead 1 (2) forecasts initialized in May will comprise the

MJJ (ASO) season for the period 1993–2016, which can then be

verified against the corresponding MJJ (ASO) values of the

observational record. For the sake of brevity, in the following we

discuss the skill statistics averaged over all starting months, unless

explicitly stated.
Verification methods

The ability of a prediction system to forecast specific events at a

given time is measured by a set of skill scores or metrics. Here we

focus on the scores of the ensemble mean forecast anomalies. The

forecast seasonal anomalies are computed with respect to the model

seasonal climatology, which depends on the forecast lead time. By

subtracting the model climate from the individual forecasts, we

effectively remove the forecast bias, which is the first order

correction in the calibration of seasonal forecasts (Stockdale,

1997). For the purpose of deterministic verification, only the

anomalies of the ensemble mean will be used (see description of

method in Supplementary Material 1.3.1). The verification statistics

used in what follows are therefore bias blind. An assessment of bias

and variability in SST and OHC have been reported in McAdam

et al., 2022, and it will not be further discussed here.

Since the initial focus is to quantify the performance of the

ensemble mean, we have chosen two different deterministic scores

(Wilks, 2011): anomaly correlation coefficient (ACC) and Mean

Square Skill Score (MSSS). The mathematical expression of these

skill metrics is given in Supplementary Section 1.3.2. The MSSS

compares the root mean square error (RMSE) of the forecast with

that of the climatology, which is the simplest model for a seasonal

forecast to be compared to. The climatological benchmark is

therefore already built in the definitions of ACC and MSSS:

positive values in these scores imply that the forecast is more

skillful than climatology. We also benchmark against persistence

(of the observed anomaly at the time of the initialization), which is

the second simplest statistical forecast model after climatology.

Treatment of linear trends
In addition to the interannual variability, in a changing climate,

it is also important to evaluate the ability of the forecast model to

capture the linear trend present in observations. Since the trend

contributes to the temporal variability, it can potentially impact the

forecast skill: it can enhance it if models are successful in capturing

the linear trend, or it can deteriorate it if the model errors prevent

the correct representation of the observed trends. In addition to the

standard ACC and MSSS statistics, we compute two additional sets

of statistics:
Fron
• Trend-corrected (Tc) ACC and MSSS, where the linear

trend of the forecast is corrected with that of observations.

This is done by linearly detrending the forecasts first (see
tiers in Marine Science 03
below), and then adding the observational linear trend.

Comparison of these statistics with the standard ones gives

an idea of the gains in skill by this additional calibration

step, and it illustrates the potential gains that could be

obtained if the models were able to represent the

trends adequately.

• Detrended (D) ACC and MSSS, where the linear trend has

been removed from the anomalies of both forecasts and

observations before computing the ACC and MSSS.

Differences between the Detrended with the Trend-

corrected statistics quantify the amount of the skill due

simply to the presence of trends in the observations.
Results

Skill without trend correction

The skill of the ECMWF and CMCC seasonal forecasting

systems in predicting the first season is shown in Figure 1, for the

three different ocean variables. For reference, the skill of the

persistence forecast is also shown. All the forecasts, including

persistence, have a high (significant) level of skill in the first

season. Nonetheless, even in the first season, the dynamical

models are more skillful than persistence in the wider tropics,

where ocean dynamics are faster. A notable exception is the skill of

SSH in the CMCC model, which in the tropical Atlantic is less than

persistence. It has been found that the underrepresentation of the

sea level trends stems from the ocean initial conditions; we will

return to this point later.

The advantage of the dynamical seasonal forecasts w.r.t

persistence is more obvious in the predictions for the second

season, as can be seen in Figure 2. As expected, the overall level

of skill decreases as the forecast lead time increases, but this decline

is faster for persistence than for the dynamical seasonal forecasts.

The dynamical models retain significant skill levels: for SST, ACC

values larger than 0.6 are seen over the wider tropics, along the coast

of North-West America and some areas of the Southern Ocean and

Northern Seas. The skill levels at longer forecast leads for OHC and

SSH are also higher than for SST, as expected from the larger

memory of the deeper water column.

Figure 3 shows that the skill gains of the dynamical models

against the persistence benchmark, already visible in the first season,

increases further in the second season. The pattern skill gains in SST

(left panels) is indicative of the dynamical processes operating in the

coupled model at these time scales, which persistence is not able to

represent. For instance, the signature of the tropical wave dynamics is

noticeable in the Tropical Pacific, with the ENSO signature in the

cold tongue region clearly visible. The skill gains in the extratropics

are likely related to the thermal memory of the mixed layer, but may

also be a result of the predictable variations in the atmospheric

circulation, which persistence will not be able to account for. The

comparison of skill between OHC and SST provides additional

criteria to attribute the predictability gains to the thermal memory

or to predictable atmospheric circulation. For instance, during the
frontiersin.org
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FIGURE 2

As Figure 1 but for the second season into the forecast.
FIGURE 1

Anomaly Correlation Coefficient (ACC) of the seasonal forecast anomalies in the first season for all initialization times for SST (left column), OHC
(middle) and SSH (right). Shown is the skill of the ECMWF (top) and CMCC (middle row) seasonal forecasting systems, as well as that of the
persistence forecasts (bottom). Correlation values with p-values < 0.05 are shown as dotted areas. Positive values indicate that the forecast skill is
better than the climatological forecast.
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boreal winter, the predictable atmospheric teleconnection patterns

such as the PNA (Wallace and Gutzler, 1981) will have more impact

on SST predictability than on OHC. The ACC over the North-

Eastern Pacific is indeed stronger for SST than for OHC for forecasts

of the first season verifying in boreal winter (see Supplementary

Figure S1).

An area of concern is the North Atlantic Subpolar Gyre in the

ECMWF, where the model skill is lower than persistence. This has

been attributed to a problem with the ocean initialization (Tietsche

et al., 2020). In the second season, there are also regions of

decreased skill grains along the boundaries of the atmospheric

convergence zones, which is symptomatic of errors in the spatial

patterns of anomalies produced by atmospheric models (e.g.,

meridional extension of the Hadley Circulation). This feature is
Frontiers in Marine Science 05
more noticeable in forecasts initialized from May (Supplementary

Figure S2 in Supplementary Material).

The patterns of ACC skill gains of models versus persistence are

quite similar in OHC and SSH, indicative of the strong correlation

between the two quantities, while they exhibit visible differences with

the patterns of SST skill gains. The pattern of skill gains in OHC and

SSH bears the signature of the equatorial wave dynamics, more

confined to the Equatorial band than SST. Outside the Equatorial

band is rather homogeneous, having less meridional span than that of

SST, and for the second season the decrease of skill associated with

atmospheric convergence zones is less apparent than in the SST skill

gain pattern. Along the Western Boundary Currents, the OHC/SSH

have less skill than persistence, a feature associated with the

insufficient resolution of the ocean component, as discussed by
FIGURE 3

Summary of ACC skill differences of the dynamical seasonal forecasts against persistence, for the different variables. Shown are the differences for
the first and second seasons (top and bottom respectively). Positive values indicate that the dynamical seasonal forecasts are better than the
persistence benchmark. The dotted areas indicate where the ACC skill is different at the 90% significant level.
frontiersin.org
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Feng et al. (2024). The different skill gain patterns between SST and

OHC/SSH can be attributed to different factors: i) the SST forecast in

dynamical models benefit from the memory of the OHC in the initial

conditions, which will be included in the persistence of OHC itself but

not in the persistence of SST; ii) the impact of the atmospheric

component, which is stronger in SST than in the subsurface. Thus,

the predictable atmospheric component enhances the skill of SST in

the tropics and mid-latitudes; conversely, errors (or unpredictable

variability) in the atmospheric model can induce errors (or

unpredictable variability) in the SST forecasts which are not so

visible in the integrated ocean variables. This seems to be the case

in localized areas of the Western Pacific, where the skill in SST is

lower than in OHC and SSH (Figures 1, 2).

We also note that the model skill for OHC and SSH is lower than

persistence at high latitudes, especially during the first season of the

forecast. This is suggestive of potential problems with the ocean initial

conditions, which should be the target of developments in future data
Frontiers in Marine Science 06
assimilation systems. We see again the low skill of the CMCC model

for SSH, which is related to the trend in the initial conditions and will

be discussed later. But luckily, this is an error that does not affect the

structure of the water column substantially and does not manifest in

SST or OHC. Over some coastal areas of the eastern tropical Atlantic

Equatorial Atlantic, the models prediction of OHC in the first season

is lower than persistence. This is partially attributed to deficiencies in

ocean initialization (McAdam et al., 2022), and it highlights the

potential for further skill gains that could be realized by improving

the forecasting systems.

Figure 4 shows the MSSS of forecasts at the first and second

seasons, for ECMWF and CMCC, and the three ocean variables of

interest. Values larger than zero indicate that the forecast beats

climatology. This is the case for the two dynamical forecasts over

most of the ocean. Notable exceptions include the North Atlantic

subpolar gyre in the ECMWF system, and the Southern Ocean and

the Subtropical Atlantic for the CMCC system.
FIGURE 4

Summary of MSSS of the dynamical seasonal forecasts for the different variables. Shown are the differences for the first and second seasons (top and
bottom respectively). Positive values indicate that the dynamical seasonal forecasts are better than the climatological benchmark. Dotted areas mark
where the differences are statistically significant at the 90% level.
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Fidelity of the trends in seasonal forecasts

Linear trends in observational datasets
The 1993–2016 linear trend in the observational records of SST,

SSH and OHC for the different seasons is shown in Figure 5.

Positive trend values are visible in all the fields, albeit with different

patterns. The SST field shows positive trends in the Indian Ocean,

and warm pools, in the Equatorial cold tongue and in the

extratropics, especially summer hemisphere, e.g. North Eastern

Pacific in boreal summer and South Western Pacific in austral

summer. The former coincides with the location of recent long-

lasting marine heat waves, induced by persistent atmospheric

anticyclones and deeper mixed layer (de Boisséson et al., 2022; de

Boisséson and Balmaseda, 2024). There are also warming SST

trends in the north/south subtropical Atlantic, and in the

European Northern Seas. SSH shows positive values everywhere,

with enhanced amplitude in the Western Pacific north of the

Equator, Tropical Indian and Atlantic Ocean and Western

Boundary Currents. The OHC trends resemble those in SSH, but

they show a stronger footprint of changes in ocean circulation (e.g.,

dipole in the tropical Pacific associated with strengthening of the

trades). They also reflect the deepening of the mixed layer in the

summer extratropics, consistent with trends in SST. Both SST and

OHC exhibit a negative trend over the North Atlantic subpolar gyre,

consistent with the findings of Li et al. (2022). Interestingly, this

negative trend is not visible in SSH which suggests that other factors
Frontiers in Marine Science 07
are at play (such as the deep ocean or variations in salinity). It is also

interesting that the positive trends in the tropical South Atlantic in

SSH and OHC do not have an obvious footprint in SST trend in

that area.

In general, the spatial pattern of the trends is similar in all

seasons, but the amplitude of the trends shows some seasonal

variations, with stronger extratropical SST warming in the

respective boreal summer (middle panels of Figure 5), and

enhanced SSH and OHC trends in the western Equatorial Pacific

in boreal autumn (August-October-November, bottom panels),

likely related to the strengthening of the trade winds over the

Pacific (de Boisséson et al., 2014).

Linear trends in seasonal forecasts
We now evaluate the ability of the forecasts to capture

observational trends. Any discrepancy between forecasts and

observation could be attributed to model errors or errors in the

initial conditions. For the purpose of illustrating the main messages,

we focus on show only the fidelity of the trends for the forecasts

initialized in May. The results for the forecast trends averaged over

February, May, August and November initial dates are shown in

Supplementary Figure S3.

Figure 6 (top 2 rows) shows the differences in linear trends for the

first season between seasonal forecasts and observations. Differences

are sizeable even at this short lead time. Most noticeable is the global

difference in the SSH in the CMCC forecast. This has been traced
FIGURE 5

Linear trend in observational records for the period 1993–2016 for the different SST, OHC and SSH for all seasons (top) and for May-June-July
(middle) and October-November-December. The dotted areas indicate that the linear trends are significant at the 90% level.
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back to the fact that the ocean initial conditions of SSH in the CMCC

system did not include explicitly the global changes in steric height

mean values, which current generation of models do not represent

due to the Boussinesq approximation. In ORAS5 (used to initialize

the ECMWF forecasts) this is diagnosed and added to the SSH

(Balmaseda et al., 2013; Zuo et al., 2019). Aside from this global

difference, both forecast systems exhibit also regional departures from

the observational trends, which are amplified as the in the forecasts

for the second season (bottom 2 rows), which are largely similar when

considering all initial forecast days (Supplementary Figure S3).

The ECMWF forecasts overestimate the warming trend in the

Eastern Equatorial Pacific, a signature that manifests in all three

considered variables. Further investigations point towards a

sensitivity of this trend to both ocean initial conditions and

atmospheric model. Two additional experiments were conducted

with the ECMWF system, replacing the atmospheric model and the

ocean initial conditions with more up-to-date versions one at a time.

The changes in the ocean version were only related with the data

assimilation and forcing fields, maintaining the same version of the
Frontiers in Marine Science 08
ocean model. The SST trends over the Equatorial Pacific trends were

reduced in these new experiments. In region Nino3.4, for forecasts

initialized in May and verifying in ASO, the SST trends went from.45

°C/decade in SEAS5, to 0.4 °C/decade with the new atmosphere

model version, and to 0.3 °C/decade when both atmosphere and

ocean initial conditions changed. The eastern equatorial Pacific SST

warming is also present in the CMCC seasonal forecasts, but with

weaker amplitude. We note that errors in seasonal forecasts of SST

trends are common to other models (L’Heureux et al., 2022), and it is

an emerging research topic in the scientific community. The errors in

the trends are likely to have implications for the prediction of ENSO.

For instance, seasonal forecast models over-predicted the warming of

El Nino in 2014–15 (Mayer and Balmaseda, 2021) and struggled to

predict the duration of the prolonged La Nina conditions during

2020–2022.

The CMCC and ECMWF seasonal forecasts tend to overestimate

SST warming over the Western Indian Ocean and Bay of Bengal, and

over the tropical Atlantic. We note that this overestimation of in the

surface is not mirrored by the OHC. Both ECMWF and CMCC
FIGURE 6

Differences in linear trends between seasonal forecasts and observations, for forecasts initialized in May and verifying in the first (top 2 rows) and
second seasons (lower 2 rows). Shown are trend differences in SST (left), OHC (middle), and SSH (right) for the ECMWF (top) and CMCC (bottom)
seasonal forecasting systems. The dotted areas indicate where the trend differences are significant at the 90% level.
frontiersin.org
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underestimate the surface warming trends at high latitudes during the

summer. Both ECMWF and CMCC underestimate the surface

warming trends at high latitudes during the summer hemisphere

(Figure 6 bottom 2 panels). The ECMWF model produces a cooler

than observed trend in the North Atlantic Subpolar Gyre, more

visible in the OHC, but also SST. This is believed to be related to the

overestimation of the decadal variability of the AMOC in the

ECMWF ocean initial conditions reported by Tietsche et al. (2020),

and it is present in all seasons (Supplementary Figure S3).
Impact of trends on errors and skill

The errors in the seasonal forecast linear trends could be easily

removed by correcting the linear trend, an additional calibration
Frontiers in Marine Science 09
step that is not currently carried out when using or assessing

seasonal forecast skill. Equally, if the linear trend is sizeable, it

will influence the interannual variability and its potential

predictability. Here we quantify the impact on skill of correcting

the linear trend, by comparing the skill of trend corrected versus

standard calibration. We can also measure the contribution of the

linear trend to the skill by comparing the skill of trend-corrected

versus detrended forecasts.

The skill gains obtained by the additional calibration step of

correcting the linear trends are shown in Figure 7, which shows the

differences in ACC (top two panels) and MSSS (bottom two panels)

between the trend-corrected versus the standard calibration for the

second season. Overall, positive values are seen for the 3 variables.

The equivalent results for the first season are shown in

Supplementary Figure S4. In the first season, the impact of trend
FIGURE 7

Differences in skill as measured by the ACC (top two panels) and MSSS (bottom two panels) between trend-corrected forecasts and those with
standard calibration in the second season. Dotted areas indicate that the ACC values are significantly different at the 90% level.
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correction is clearly visible in the CMCC forecasts of SSH, and on

forecasts of OHC and SST for both systems in MSSS. For ACC the

differences in the first season are clearly visible in SSH, and for OHC

and SST over some areas close to the sea-ice edge and mid-latitudes.

The trend correction improves the SST skill in several areas, most

noticeable over the Southern Indian Ocean, and the high latitudes.

There are also small but significant SST skill gains over the

Equatorial Central Pacific and Eastern Atlantic, which is more

noticeable in MSSS. Significant gains in OHC skill are widespread

across the different ocean basins. We also note that over the Arctic

and North Atlantic subpolar gyre the linear trend correction slightly

deteriorates the skill in the ECMWF forecasts of OHC, suggesting

the presence of non-linear trends.

The impact of linear trend correction on SSH deserves special

attention. While for the ECMWF the influence of trend correction

is similar in SSH to the other variables, in the CMCC system the

trend correction has a sizeable positive impact in the wider ocean

from the early stages in the forecast (Supplementary Figure S4),

consistent with the problem of the trends residing in the ocean

initial conditions. The skill gains are especially high for the Atlantic

basin, the South-Eastern Pacific, the Northern Indian Ocean, and

the Western Boundary currents. The problem in the CMCC ocean

initial conditions has been identified, as it is related to the fact that

the global trends in the steric component of SSH are not applied to

the model. It is however not obvious why a global increase in sea

level should have such a clear spatial structure. We note over the

regions where the trend correction has such a pronounce impact on

the SSH seasonal forecasts, the trend correction also has a

significant (although small) impact on the ECMWF seasonal

forecasts of SSH, and in both systems the same regions the trend

correction has impact on the skill of OHC.

It is of interest to evaluate the ACC skill of the trend-corrected

forecasts against persistence. This can be seen in the top panels of

Figure 8, which show similar diagnostics as Figure 3 but for the

additional calibration step. A simple linear trend correction solves

the problem with the skill of SSH in the CMCC system. In addition,

some areas with poor skill originally, such as OHC in the tropical

Atlantic and mid-latitudes, are improved. However, the trend

correction does not solve the underperformance in the first

season of OHC and SSH at high latitudes, indicating that more

work is needed to improve the ocean initialization in these areas.

The prediction of OHC over the Arctic in dynamical seasonal

forecasts is still poorer than persistence. The trend correction does

not improve the underperformance in SST along the edges of the

tropical atmospheric trade winds either, which was visible for

individual seasons and which may be attributed to errors in the

atmosphere (not shown). To verify where the dynamical seasonal

forecasts still have an advantage over persistence when predicting

the interannual variability only, the lower panels of Figure 8 show

the comparison of the detrended dynamical forecasts versus the

detrended persistence. In this case the linear trend has been

removed from forecasts, persistence and verifying observation.

The detrended dynamical forecasts maintain their skill advantage

in the wider tropics for the three variables considered. As for the

trend corrected forecasts, the most striking difference of the

detrended forecasts in comparison with Figure 3 is the skill for
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SSH of CMCC system over the Atlantic, which now is superior to

the detrended persistence. These results confirm that the erroneous

forecast trends can masked the skill in predicting the

interannual variability.

The contribution of the linear trends to the overall level of

ACC skill in seasonal forecasts is displayed in the top panels of

Figure 9, which show the ACC differences between trend-

corrected and de-trended forecasts (the latter verified against

de-trended observations). In SSH and OHC the linear trends

contribute to the skill in the Tropical Indian Ocean and

extratropical Pacific. The impact is also seen across the Atlantic

basin. The impact of the trends is stronger in predictions of SSH,

notably over the Atlantic basin and the Southern Ocean, as

discussed previously. The trends also contribute to the

predictability of SST over the extratropical oceans, and notably

over the European-Arctic area. The impact of the trend in forecast

skill is consistent in both forecasting systems. The bottom panes of

Figure 9 show the ACC differences between the detrended

forecasts and the standard calibration. Regions with negative

values indicate where the linear trends contribute to the ACC

skill. Conversely, positive values indicate where the erroneous

trends in the forecasting systems are detrimental for the skill.
Summary and conclusions

Selected ocean variables (SST, OHC and SSH) from the

ensemble of ECMWF and CMCC seasonal forecasts contributing

to C3S have been verified against independent observational

records. The observational records chosen are the state-of-the-art

datasets of Essential Ocean/Climate Variables (EOVs/ECVs). These

are monthly SST and SLA from the Copernicus Climate Change

Service (C3S) and OHC from Copernicus Marine Environmental

Service (CMEMS) Global Ensemble of ocean Reanalyses

Products (GREP).

The C3S seasonal forecasts dataset comprises probabilistic

forecasts initialized four times per year during the period 1993–

2016. Each individual forecast consists of 40 ensemble members,

integrated for up to 6 months. The forecast and observational data

have been stratified in seasonal means for which the anomaly

correlation and mean square skill score metrics have been

derived. The forecast performance has been benchmarked against

two statistical forecasts, namely persistence and climatology. The

fidelity of the linear trends in the forecasts has also been evaluated,

as well as the contribution of the observed trend to the seasonal

forecast skill. From the analysis of the results, we obtain the

following conclusions:
• Skill of seasonal forecast for 3 variables outperforms that of

persistence and climatology in most regions in the first and

the second season over the tropics. There is still scope for

further skill gains in the extratropical oceans, where the

persistence forecast beats the dynamical models. This is

more noticeable in forecasts of OHC and SSH, and

therefore it is expected that the improvements of the

ocean initial conditions can contribute to further skill gains.
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• Differences among the variables in the spatial distribution

of skill are indicative of processes contributing to

predictability. For example, over the tropical Atlantic

and North-Eastern Pacific, the higher skill in SST

forecasts than in OHC or SSH, is likely the consequence

of the additional predictability arising from the remote

effect of ENSO. Conversely, the lower skill of SST over the

Western Pacific Warm pool is probably related with

unpredictable atmospheric processes interfering with the

predictable signal in the ocean subsurface.
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• The ability of the seasonal forecasts to capture the linear trends in

observations has been evaluated. Results show that some aspects

of the observed linear trends are not well captured by seasonal

forecasts. This includes overestimation of the warming in the

tropics (warm-pool regions, and Equatorial Pacific cold tongue)

and under-estimation of mid-latitude warming. These

deficiencies are visible early in the forecast and appear to be

associated with the trends in the ocean initial conditions. This is

certainly the case for the SSH trends in the CMCC system.

However, deficiencies in the forecastsmodels cannot be ruled out.
FIGURE 8

As Figure 3 but showing the difference in ACC in the second season between the Trend-Corrected forecasts and persistence (top panels) and the
Detrended forecasts versus detrended persistence (bottom panels).
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• Additional linear trend correction calibration step corrects

some of these deficiencies and improves the forecast skill

further. The linear trend correction appears to contribute to

the skill in several areas of the Atlantic basin. However, it

does not improve the forecast skill over the Arctic,

suggesting that in these regions the trends may not

be linear.

• The contribution of the linear trend to the skill has been

quantified, and it is shown that this contribution is sizeable

for SSH in the Atlantic and Southern Ocean and is also
tiers in Marine Science 12
visible in SST and OHC in the Indian Ocean, mid-latitudes,

and areas of the Atlantic basin.
Results also highlight the importance of representing the

decadal variability and trends in ocean heat content and sea

level in the initial conditions. This is a non-negligible challenge

for the ocean data assimilation systems used in the production of

ocean initial conditions. The representation of decadal variability

and trends is essential for decadal forecasts and climate

projections. Therefore, the results from the seasonal forecasts
FIGURE 9

Contribution of the linear trend to the skill as measured by the differences between the anomaly correlation of the Trend Corrected and Detrended
seasonal forecasts (top panels) and by the differences between the Detrended and standard seasonal forecasts (bottom panels). Dotted area indicate
that the correlation differences are significant at the 90% level.
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are also very relevant for the efforts on decadal variability and

climate projections.
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