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Risk and uncertainty are intrinsic characteristics of natural resources that must be

taken into account in their management. Harvest control rules (HCR) used to be

the central management tool to control stock fisheries in an uncertain context. A

typical HCR determines fishing mortality as a linear relationship of the biomass

binding only when the biomass is above a critical risk value. Choosing the linear

relationship and the risk value is a complex task when there is uncertainty because

it requires a high level of data and an in-deep knowledge of the stock. This paper

fully characterizes robust HCRs that explicitly include scientific uncertainty using

the robust control theory approach. Our theoretical findings show that under

uncertainty: i)Constant HCRs are not robust; ii) Robust HCRs show a steeper linear

relationship between fishing mortality and biomass and a higher value of biomass

to be consider at risk than non-robust HCRs. From the implementation viewpoint,

we assume a three-sigma rule and show that robustness is achieved by selecting a

fishingmortality such that its deviation from the fishingmortality target is twice the

deviation of the biomass from the biomass target, and the critical value of the

biomass (the point below which fishing should cease, or become as close to zero

as possible) is half of the biomass associated with the maximum sustainable yield

when this is the target.
KEYWORDS

harvest control rules, limit reference points, robustness, uncertainty, robust control
theory, fisheries management
1 Introduction

Preservation of natural resources requires management to consider the risks and

uncertainty inherent to this type of goods (Gollier et al., 2004; Williams, 2011). Changes in

environmental conditions, unpredictable changes in resource demand, technological

advancements, or even geopolitical events are potential sources of uncertainty that may

impact the successful and sustainable use of the resource leading it to risk situations for

overuse, degradation, or depletion of resources.
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Fisheries are one of the natural resources subject to uncertainty

and risk factors that are threatened from a sustainability perspective

(Francis and Shotton, 1997; FAO, 2022). The abundance and

distribution of fish stocks can be influenced by unpredictable and

variable factors such as changes in ocean conditions, overfishing,

natural disasters, and socio-economic and political risks associated

with the fishing industry, such as market fluctuations and trade

disputes, and changes in fishing regulations. These uncertainties

and risks can impact the sustainability and viability of fish stocks

and the fishing industry, making effective management and decision-

making challenging (Garcia, 2000). Most fisheries management

agencies take these uncertainties and risks into account under the

precautionary principle framework despite its limitation from the

economic efficiency point of view (Gollier and Treich, 2003). This

principle recognizes the potential negative consequences associated

with high uncertainty and advocates among others for the use of

predefined decision rules and conservative management actions

(FAO, 1995; Mildenberger et al., 2022).

From the management perspective, the use of the Maximum

Sustainable Yield (MSY) as the benchmark for assessing the state of

fisheries has become the primary tool for fisheries management

since it was accepted as a goal by the United Nations Convention on

the Law of the Sea [UNCLOS Article 61, UN (1982)]. The World

Summit on Sustainable Development (WSSD, 2002) urged states to

maintain or restore depleted fish stocks until they can produce the

MSY. This demand was recognized by, among others, the European

Union, which established the operational objective of rebuilding or

maintaining stocks above the biomass levels that could produce the

MSY in its Common Fisheries Policy (CFP) (Article 2, EU (2013)).

The original basis for limit reference points was actually yield

maximization rather than conservation (think about the sloped

control rule as a less extreme version of the bang-bang control rule).

However, reference points such as the biomass needed to

produce the MSY are targets and do not explicitly recognize

threats to the stock. In this sense, although the original basis for

these reference points was yield maximization, they are now more

closely associated with conservation. Hence, stock size “limit

reference points” are usually defined and interpreted as the stock

biomass below which recruitment becomes substantially reduced

(Beddington et al., 2007). In actual practice, these limit reference

points are extensively used by fisheries managers to set simple

harvest control rules (HCRs) that link the state of the biomass to

control variables such as fishing mortality, effort, and catches. The

use of limit reference points for biomass in harvest control rules

implicitly recognizes that there are stock sizes below which

recruitment may be impaired (Punt et al., 2014). Fisheries

management typically consists of comparing the effectiveness of

alternative HCRs for a variety of assumptions about the dynamics of

fish and fisheries [e.g., Mildenberger et al. (2022) and Rosa

et al. (2022)].

The main objective of this paper is to provide theoretical

support for setting HCRs that account for scientific uncertainty.

In fisheries management, scientific uncertainty relates to

uncertainties associated with natural states and processes (process

uncertainty), the measurement thereof (observation uncertainty),

the structure of the estimation model (model uncertainty), the
Frontiers in Marine Science 02
retrospective biases reflected in longitudinal extension of data

(structural uncertainty) and the application of management

strategies and policies (implementation uncertainty) (Francis and

Shotton, 1997; Punt and Donovan, 2007; Mildenberger et al., 2022;

Bi et al., 2023). This aim frames within the FAO guidelines

advocating fisheries scientists and managers should test current

and alternative control rules and associated reference points to

determine robustness to predominant sources of uncertainty and

responsiveness to the desired characteristics of performance. Failure

to effectively account for uncertainty can lead to overshooting

management targets, failing to rebuild depleted stocks, and

missing opportunities to take advantage of sustainable fishing

opportunities (Schwaab, 2015).

In this context, we design model-based HCRs that explicitly

include scientific uncertainty under the robust control theory

framework. In particular, we assume that managers understand

that the perceived dynamics are an approximation of the real model

which is not fully known. Following the ideas of Fellner (1965) and

Hansen and Sargent (2011), we characterize robust HCR by

distorting the perceived dynamics up to a pre-specified worst case

level of error between the truth and perceived reality. Figure 1

summarizes this idea that will be explained in detail in Section 2.3.

Under this framework, a robust precautionary HCR is characterized

by solving an extremization problem: Managers maximize the

fishery’s performance, assuming that a hypothetical malevolent

nature chooses the level of scientific uncertainty –the distortion of

the real model– to minimize fishery performance. For simplicity,

the analysis is carried out assuming a simple age-structure with a

BevertonHolt population frame (Beverton and Holt, 1957), similar
FIGURE 1

Adapted from Hansen and Sargent (2011) (Figure 1.7.1). Set of nearby
models, representing the “real world”, for which the decision rule
will work well using the perceived model. R and P stand for real and
perceived, respectively and h is the maximum distance between the
two models representing the maximum scientific uncertainty
accepted by managers.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1379068
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Da-Rocha et al. 10.3389/fmars.2024.1379068
to Hannesson (1975), where the recruitment is the only source of

uncertainty which is assumed to be autocorrelated.

The analysis reveals that when managers are concerned about

scientific uncertainty, they know that a fraction of the volatility

observed in the data is generated by the observer’s ignorance. For

the sake of simplicity, the source of uncertainty in our framework is

considered to affect recruitment, which is characterized as a

persistence model affected by shocks. In this context, managers

infer that the real model –which is generating the perceived

recruitment shocks– is more persistent than the perceived model.

As a result, robust HCRs have to be designed assuming a more

persistent fishery dynamics process than the one perceived in the

data. In particular, our analysis shows that a robust HCR always has

a higher limit reference point for the precautionary biomass. Thus,

for the range of biomass between the precautionary and the target

values, the linear relationship established by the standard HCR

becomes steeper in the robust context than in the non-

robust setting.

Finally, we show that HCRs that use half of the biomass level

associated with MSY (0.5BMSY) as the limit reference point for the

precautionary biomass are consistent with our theoretical results. In

this sense, our results can be said to be aligned with practices such as

those implemented by the Australian and New Zealand fisheries

authorities (Rayns, 2007; New Zealand Ministry of Fisheries, 2008)

or with the proposal by Froese et al. (2011) for European

fisheries management.

The rest of the paper is organized as follows: Section 2 describes

the assumptions under the model and the characterization of robust

HCRs. Section 3 shows the theoretical findings of the analysis and

derives a rule of thumb for fixing critical values for the biomass.

Section 4 concludes by discussing the results.
2 Methods

2.1 Harvesting control rules and limit
reference points

Determining optimal fishing mortality may not be sufficiently

helpful from an operational viewpoint. Different management

approaches, including what is politically feasible, lead to fisheries

management being implemented through different tools (e.g., total

allowable catch (TAC) limits, limits on the amount of fishing effort,

restrictions on the gear, seasonal closures), sometimes in a

combined way and with different degrees of success (Da-Rocha

and Gutiérrez, 2012; Selig et al., 2017).

A well-managed fishery requires the design of explicit harvest

strategies that indicate how much catch should be attempted to be

harvested under what circumstances (Hilborn and Walters, 1992,

Chapter 15). In practice, simple rules, known as harvest control

rules (HCRs), are used by many fisheries managers to set a target

level of fishing mortality. However, any specific design of HCR

depends on the quantity and quality of data available for the fishery

(Smith et al., 2009; Punt, 2010). For those stocks with the highest

quality information available, a model-based HCR design may be

appropriate. In these cases, as Eikeset et al. (2013) point out, an
Frontiers in Marine Science 03
HCR can be understood as an algorithm that relates state variables

that show the biological information of the fishery (e.g., biomass,

spawning biomass, etc.) to the control variables of the fishery that

reflect the management information (e.g., fishing mortality, effort,

catches, etc.). In those cases with poor or limited data, “empirical”

HCR can be proposed (Punt, 2010). For instance, when targets and

limits are based on historical standardized catch rate, a cpue-based

HCR is more appropriate (Little et al., 2011; Jardim et al., 2015).

This type of HCR has proved to be particularly effective in mixed

and multi-specific fisheries (Canales et al., 2024).

HCRs take different forms in different settings in real practice

(Kvamsdal et al., 2016; Free et al., 2023). For the purpose of this

study, we focus on standard model-based HCRs that advise on

fishing mortality that targets MSY (FMSY) by considering

precautionary biomass thresholds Blim and Btrigger. The threshold

Blim represents the point below which it is believed that the

reproductive capacity of the stock may be at risk, so the HCR

prohibits fishing when biomass drops below it (i.e., fishing mortality

is set to zero). In this sense Blim can be understood as a

precautionary threshold that can be imposed even if there is not

complete information on the reproductive capacity of the stock

below that threshold. The threshold Btrigger represents the lower

bound compatible with a given biomass target and the HCR consists

of setting a constant fishing mortality consistent with that biomass

level whenever the biomass is above that threshold. When the

biomass is in the range (Blim, Btrigger), the HCR establishes a linear

relationship between fishing mortality and biomass. Figure 2 shows

this type of HCR, which is referred to as “protective” by Mackinson

et al. (2018) regarding the North Sea multi-annual plan (European

Commission, 2016). Note that when targets are given by fisheries

policy makers, a characterization of HCR consists in selecting

appropriate Blim according to some criteria.

In actual practice, the concept of precautionary biomass is more

complex. For instance, the Harvest Strategy Standard for New

Zealand Fisheries establishes two types of limit reference points

associated with different management actions called”soft limits”

and “hard limits” (Mace et al., 2013). The soft limit is a biomass

level below which a stock must be subjected to a formal, time-

constrained rebuilding plan to rebuild it back to the BMSY (usually 1/2

BMSY or 20% of the biomass in the absence of fishing -B0 o BF=0 -,
FIGURE 2

A “protective” HCR based on biomass thresholds Blim and Btrigger

with MSY as the target (Mackinson et al., 2018, Figure 4B).
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whichever is higher). The hard limit is a biomass level below which all

fishing activity on the stock in question should cease (usually 1/4

BMSY or 10% B0, whichever is higher). There are variations on this

theme. For the US National 1 Standard Guidelines, for example, a

minimum stock size threshold (MSST, usually equivalent to about 1/2

BMSY) is specified below which a similar type of formal, time-

constrained rebuilding plan is required to rebuild the stock back to

BMSY. However, the guidelines do not specify a biomass limit below

which all fishing for a stock must cease, although some US

jurisdictions or individual US fisheries do so (US National Marine

Fisheries Service, 2016). The Australian Harvest Strategy Policy

(DAW, 2018) sets Blim at 0.2B0 which, based on their other

definitions, would be consistent with 1/2 BMSY. When this point is

reached, all directed fisheries for the stock in question should be

closed, but bycatch fisheries may remain open within limits.

In any case, the design of any HCR also requires a relatively high

level of data and knowledge of the dynamics of the stocks concerned.

In the type of HCR referred to here, it is necessary to know the values

of the target reference points (e.g., those associated with MSY) and

the biomass thresholds, Btrigger and Blim. To estimate these values

accurately, complete knowledge of the biological, economic, and

ecologic models behind the stock population dynamics is needed. It

is not always possible to apply the HCR because of the lack of

information. For example, in 2005, it was only possible to use this

type of HCR on 22 of the 80 species managed by the Pacific Fishery

Management Council (Punt and Donovan, 2007).

An additional problem is that in most cases, the design of HCRs

does not explicitly include a way to deal with uncertainty (Punt and

Donovan, 2007; Deroba and Bence, 2008). In the case of European

fisheries stocks, when the data and knowledge requirements are not

fulfilled, ICES sometimes advises a lower fishing mortality than

FMSY even when the stock is in good conditions; for instance, F0.1,

instead of FMSY, which is the mortality rate where the yield per

recruit slope is 10% of the maximum yield per recruit slope.
1 The application of this model to a specific stock would require empirical

testing of the relationship between spawning stock biomass and the adult

population and even taking into account other variables that accurately

measure reproductive potential (Kell et al., 2016).

2 In real fisheries, however, these variables are selected endogenously

according to management criteria that typically allow for long-term

sustainable and efficient exploitat ion of the stocks (Yagi and

Yamakawa, 2020).
2.2 The population model

We build up the population model as in Da-Rocha and Mato-

Amboage (2016), where a stochastic version of the fishery of

Hannesson (1975) is considered with two age classes: juveniles

and adults. Let Nt,1, and Nt,2 be the populations of juveniles and

adults in period t, respectively. Each year, t, a stochastic exogenous

number of juvenile fish are born, Nt,1 = exp(zt), where zt is a random

variable that determines the recruitment of the fishery. This is the

only source of uncertainty affecting the model and it is perceived by

the managers as following an AR(1) process:

zt+1 = rzt + ~et+1, (1)

where ~et+1 is a Gaussian i.i.d. process with zero mean and variance

s 2
e , and rj j  ∈  ½0, 1) is the autocorrelation coefficient.

Managers see this perceived model as an approximation to the

real model, representing the “real world”. Following Hansen and

Sargent (2011), this scientific uncertainty is represented with a set of

alternative models of the form
Frontiers in Marine Science 04
zt+1 = rzt + et+1 + wt+1, (2)

where et+1 is another Gaussian i.i.d. process with zero mean and

variance s 2
e , and wt+1 is a vector of perturbations in the mean of ~et+1,

that can feed back into the history of the state, z. Note that since

process represented in Equation 2 is the model that generates the

data, it is as though the errors ~et+1in the perceived model (1) were

conditionally distributed as N (wt+1,s2
e ) rather than as  N (0,s 2

e ).

Moreover, it is also important to highlight that perturbations wt+1

affect the real persistence of recruitment. Since wt+1 feeds back into

the history of the state, z, parameter r does not represent persistence

in the real model (2). We show bellow what this real persistence is

when managers select optimal HCRs.

The dynamics of the adult age group is then given by Nt+1,2 =

 Nt,1e
−Ft−m,, where Ft represents the fishing mortality applied in

period t and m is the natural mortality rate, which for the sake of

simplicity is assumed to be constant over time. Finally, for this

proof-of concept article we assume, as Da-Rocha and Mato-

Amboage (2016), that the spawning stock biomass of the fishery

is defined as Bt = ln Nt,2. This relation implies that the spawning

stock biomass is an increasing function of the number of adults in

the population and that only a non-constant fraction of adults

are spawners1.

This population representation enables policymakers’ constraints

to be modeled as a linear-quadratic problem, which is essential to apply

the robust control theory (Hansen and Sargent, 2011).
2.3 Robust precautionary HCRs

Uncertainty is modeled following the multiplier preference

approach based on the robust control theory proposed by Hansen

and Sargent (Hansen and Sargent, 2001, 2011). Under this

framework, optimal (robust) policies are selected among all

possible distributions consistent with what is known and

observed, by adding a penalty term that is inversely related to the

distance of any given distribution from the best guess.

We start by assuming that fishery managers want to design a

robust precautionary HCR that linearly relates fishing mortality and

biomass so that exogenous targets (Btar , Ftar) are achieved while

avoiding the risk of the stock falling below level B which would

result in the fishery being considered as no longer sustainable from

the biological viewpoint. Note that we are assuming that Btar and Ftar
frontiersin.org
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are exogenously given by themanagers2. A typical ICESHCR considers

Btar =  MSY Btrigger and Ftar = FMSY (Mackinson et al., 2018).

The objective function of managers is characterized in terms of

distances of fishing mortality and biomass from their respective

target points as in Da-Rocha and Mato-Amboage (2016). They aim

to stabilize the resource around the desired points. This idea is

formalized with a loss function that represents the net present

weighted sum of the squared distance of fishing mortality, Ft , and

biomass, Bt , from their respective targets

E0o
∞

t=0
b t+1½(Ft − Ftar)

2 + l(Bt − Btar)
2�, (3)

where 0 < b < 1 represents the subjective discount rate, E0 is the

mathematical expectation conditioned on the information available

at the time of decision-making and l is a parameter that represents

the weight of biomass deviation relative to fishing mortality

deviation. There are three noteworthy remarks regarding the

managers’ loss function (3): First, F is, by definition, a variation

rate (mortality rate), and its deviation from its target is also a rate. In

addition, the deviation of the B from its target must also be seen also

as a variation rate since both variables are defined in logarithms.

Hence, the two sums of the loss functions are ratios with no

measurement units. Second, it penalizes both deviations above or

below the desired values (hence the square of the distance). Third, it

considers the dynamic nature of the resource, enabling long-run

deviations to be offset by more minor deviations in the short run.

How much present deviations can offset future deviation depends

on the discount factor, b: Larger discount factors mean small

discount rates, that is managers care as much about future

changes as if they occurred in the current year3.

An HCR can be understood as the result of minimizing the loss

function (3), taking into account the population model. This

interpretation means that an HCR is characterized by the

parameter l. Note that with l = 0 the rule is independent of the

biomass, and the instrument is constant over different biomass

levels. With l approaching infinity, the rule is (equivalently) linear

in the biomass level, and a bang-bang or most rapid approach path

solution emerges. A positive, finite lambda dictates a trade-off

between fishing mortality and biomass and may be associated

with a positive Blim. Figure 3 illustrates these cases, which shows

are somewhat reminiscent of classical thinking as embodied by

(Hilborn and Walters, 1992, Chapter 15).

An HCR that follows the precautionary principle is sought here,

so the rule needs to ensure at most a v% probability of the biomass

falling below the limit point, B; that is, the HCR has to satisfy the

requirement that
3 Discount is frequently introduced into fishery economics using the

discount rate, r, instead of a discount factor, b; the former is usually applied

in continuous time frameworks, whereas the latter is more commonly used in

discrete set ups. The inverse relationship between the two is given by b =

 (1  + r)−1, which is compressed between 0 and 1 (Da Rocha et al., 2010). There

is even some literature in which discounting the future is included as a time-

varying factor (Da-Rocha et al., 2016).

Frontiers in Marine Science 05
Pr (B ≤ B) ≤ v, (4)

where v is given by the managers. Equation 4 specifies a

precautionary HCR which guarantees that the stock is above the

limit point B with at least a 1 − v% probability (e.g., v = 0.05 for

ICES advice).

In addition, managers know that the perceived model (1) is an

approximation of the real model (2), so they are aware of the

dynamic misspecification of the model (the scientific uncertainty).

Therefore a scientific uncertainty level h is considered, i.e.

E0o
∞

t=0
 b t+1w2

t+1 ≤ h : (5)

The left-hand side of Equation 5, E0o∞
t=0b

t+1w2
t+1, is an

intertemporal measure of the size of model misspecification called

conditional relative entropy. This constraint is used to measure the

statistical discrepancy between the perceived model (1) and the real

model (2), which differ only in the w term [see Hansen and Sargent

(2011)]. Therefore, Equation 5 expresses the idea that managers

know that the real model can be any nearby model around the

perceived model (see Figure 1). The parameter hmeasures the set of

models surrounding the perceived model for which managers think

the decision rule will work well. More significant scientific

uncertainty implies a more extensive set of alternative models

that may represent the “real world” to be compared with the

perceived model. So in this context, h can be understood as a

measure of scientific uncertainty accepted by managers. Formally,

the conditional relative entropy is constrained to be lower than or

equal to an exogenous scientific uncertainty level h which the

managers provide.

(Hansen and Sargent 2011, chapter 9) propose using Bayesian

detection error probability to estimate h when guiding the choice of

the set of models against which the perceived model is compared.

This approach assumes that the models on and inside the ball In

Figure 1 are difficult to distinguish statistically from the real model

with the amount of data at hand. In essence, it takes a neutral stance

on whether the true data-generating process is represented by the

perceived model or by the worst-case model (at the boundary of the

ball). The method involves calculating the likelihood ratio tests to

choose between these two models under both hypotheses, bases on

in-sample fit, for a sample of a given size. Then a probability of a

detection error is calculated on the basis of a large number of

simulations by giving equal probability to the two models of being

the true model.4 When the model assumes no robustness

(maximum h), the detection error probability es 50%. Hansen

and Sargent (2011) suggest choosing h such that the range for the

detection error range is between 10% and 20%. Sample size also

plays an important role. The larger the available sample is, the lower

h is chosen because the uncertainty is less of a concern.

Considering all these specifications, in looking for a robust

precautionary HCR, the managers’ problem consists of minimizing

the loss function expressed in Equation 3, taking into account the
4 Technically, the detection error probabilities can be calculated using

program detection2.m in Matlab.
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population model and the precautionary and misspecification side

constraints Equations 4, 5, respectively).

Technically, the robust precautionary HCR is characterized in

two steps. First, for a given HCR (a given l) and an admitted

uncertainty level h, managers seek to maximize their intertemporal

target gap while a hypothetical malevolent nature minimizes that

same target by selecting the worst perturbation process, given the

population dynamics. Formally, the following extremization

problem is solved:

max
Ft ,Bt+1f g∞t=0

   min
wt+1f g∞t=0

   E0  o
∞

t=0
 b t −(Ft − Ftar)

2 − l(Bt − Btar)
2 + bqw2

t+1

� �
,

s : t :    
Bt+1 = zt − Ft −m,

zt+1 = rzt + et+1 + wt+1 :

(

(6)

where the multiplier q represents the penalty for deviating from the

real model in the function to be optimized. Note that since the

problem seeks to minimize of the perturbation w, a very low q
allows the nature to wreak havoc, while q → ∞ corresponds to a

zero penalty for the deviation.

Second, given the target paths solutions from the extremization

problem (Equation 6), the HCR, l, and the multiplier q associated

with the scientific uncertainty level, h, that satisfy the precautionary
and misspecification constraints (Equations 4, 5, retrospectively)

are found. To this respect, it should be noted that since the function

to optimize is monotonous and concave in h, there is a negative

bijective function from h to the multiplier q (Giordani and

Söderlind, 2004).

Appendix A.1 proves that for a given scientific uncertainty level

h and a precautionary probability of biomass falling below the limit

point, v, the robust precautionary HCR is given by

l =
1
b

seerf
−1(2v − 1)

ffiffiffi
2

p

(B − Btar)(1 − r̂ 2)1=2
− 1

� �
, (7)

where erf is the Gaussian error function and r̂ is given by

h =
b

1 − b
(r̂ − r)2s 2

e

(1 − r̂ 2)
: (8)

Parameter r̂ can be interpreted as the actual persistence of the

real model. This parameter is unknown to managers but is
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endogenously determined by Equation 8 for a given scientific

uncertainty. Two facts that emerge from Equation 8 are worth

noting: On the one hand, if managers are not concerned about

scientific uncertainty (h → 0), then r̂   = r. However, when

managers are highly concerned about scientific uncertainty

(h → ∞), r̂ > r meaning that the (inferred) real model is more

persistent than the perceived one. On the other hand, even for

uncorrelated perceived processes (r = 0), a robust HCR would have

to consider the existence of some persistence, i.e. r̂ 2 = h
b

1−b

� �
s2
e +h

> 0.

Finally, the complete characterization of the robust HCRs given

by Equations 7, 8 shows unambiguously that the more significant

the scientific uncertainty (h) is, the larger r̂ 2 and l are.
3 Results

3.1 Theoretical findings

Two theoretical conclusions can be highlighted from the

characterization of robust precautionary HCRs (Equations 7, 8).

First, an HCR of keeping fishing mortality constant at the target

level cannot be a precautionary robust rule.

Proposition 1. A constant effort rule, Ft = Ftar is not a robust

precautionary HCR. Therefore, a robust limit reference point for

biomass is greater than zero.

Proof: See Appendix A.2

Under scientific uncertainty, it can be inferred that the real

process is correlated, even when the stochastic process obtained

from the perceived model is not. Robustness implies the use of

biomass-based HCRs, l > 0 (see a numerical example in Da-Rocha

and Mato-Amboage (2016)).

The logic behind the result that a constant effort HCR is not

robust under scientific uncertainty can be illustrated with the

following reasoning. Suppose that a naive manager considers both

that the perceived model (1) is the one that generates the data (but it

is not) and the process is perceived as uncorrelated, r = 0. Under

this assumption, a constant effort HCR, lNR = 0, is expected to

generate a variance ~se =
(B−Btar)

erf−1(2v−1)
ffiffi
2

p (from Equation 7 when l = 0

and r = 0). This result means that the expected biomass volatility

-based on naive expectations- is s 2
B = ~s 2

e . However, data is

generated not by the perceived model (1) but by the real model
FIGURE 3

l = 0 is associated with a constant effort HCR; l > 0 is associated with a biomass-based HCR; l → ∞ is associated with a constant or fixed
escapement rule.
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(2), which includes the perturbation wt+1. Therefore, the volatility of

the biomass is actually given by s 2
B = s 2

e
1−r̂ 2 .

5

Managers concerned with robustness seek reliable HCR for all

close real models (2) in the set shown in Figure 1. This is equivalent

to designing an HCR that takes into account that r̂ > r = 0. This

robust HCR is given by Equation 7 and for an uncorrelated process

is lR = 1
b

1
(1−r̂ 2)1=2

− 1
h i

> 0. It generates a risk measure of

Pr(B ≤ B) =
1
2
½1 + erf ((1 + lRb)(1 − r̂ 2)1=2erf−1(2v − 1))� : (9)

Figure 4 shows how naive HCR performance deteriorates more

quickly than robust HCR rules as scientific uncertainty (the

correlation generated by the perturbation process, r̂ ) increases.

When the naive constant effort rule, lNR =  0, is applied the

precautionary constraint is violated, i.e.

Pr(B ≤ B) =
1
2
½1 + erf((1 − r̂ 2)1=2erf−1(2v − 1))� > v : (10)

In general, HCR reduces precautionary levels when the

perceived model is correct. However, the performance becomes

more precautionary as scientific uncertainty increases.

Second, how much faster fishing mortality is reduced when a

stock is assessed to be below the target biomass depends on the level

of scientific uncertainty. Our results show that for the same

uncertainty concern and precautionary criteria (given by h and v

), a robust HCR selects a higher biomass limit reference point (Blim)

than non-robust HCR. Figure 5 illustrates this result showing that

BR
lim > BNR

lim. Given this, the linear relationship between fishing

mortality and biomass in the range (Blim, Btar) becomes steeper

with l(r) > l(r̂ ). Proposition 2 establishes these results formally.

Proposition 2. Greater scientific uncertainty levels imply: i) a

steeper relationship between biomass and robust fishing mortality in

the robust HCR, and ii) a higher limit reference point for biomass,

which is given by Blim = Btar − Ftar=bl(r̂ ).
Proof: See Appendix A.3.
3.2 A robust rule of thumb for HCR

According to our modeling, characterizing the robust

precautionary HCR for a particular stock would require time

series data to compute se , r, and B. However, if the idea is only

to explore the impact of scientific uncertainty –for the given levels

of v– there is no need to compute these statistics.

To see this more clearly, assume that the stock has been assessed

as above Btrigger, and the ICES MSY (constant effort) advice rule has

been applied. In that case, (see Appendix A.4), the robust

precautionary HCR has to satisfy the requirement that

bl =
1 − r2

1 − r̂ 2

	 
1=2

−1 =
ŝ − s
s

,

5 When ~et+1 is perturbed, biomass evolves following DBt+1 = r̂ DBt +
1

1+bl et .

See Equation 17 in Appendix A.1.2 for further details.
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where s and ŝ represent the standard deviation of the

recruitment process in the perceived model (1) and in the real

model (2), respectively. This result means that robustness is

proportional to the difference between the standard deviation of

the perceived and the real models.

Following the three-sigma rule, ŝ = 3s , which guarantees that

99.7% of random events lie around the mean of its normal

distribution (see Pukelsheim (1994)), the robust HCR is to set bl
as 2. This result implies that whenever the biomass is above the limit

reference point for the biomass, Blim, the robust HCR sets fishing

mortality such that its deviation from the target is twice the

deviation of the biomass from its target. Moreover, the robust

HCR also endogenously determines the biomass reference point as

half of the biomass target, i.e., Blim =  0:5BMSY.

In short, the limit reference point used by Australian and New

Zealand fisheries authorities (New Zealand Ministry of Fisheries,

2008; Sainsbury, 2008) and proposed by Froese et al. (2011) for

European fisheries management is the endogenous robust limit

point associated with a robust HCR where fishing mortality

deviation is twice the biomass deviation when a stock is assessed

using a three-sigma rule.
4 Discussion and conclusions

Marine resource management procedures that take account for

uncertainty include specification of the data to be collected and how

these data will be used to provide management advice that

incorporates feedback mechanism in the form of decision rules to

HCRs (Punt and Donovan, 2007). This paper shows that scientific

uncertainty can be treated analytically using the robust control

theory proposed by Hansen and Sargent (Hansen and Sargent,

2001, 2011). In particular, robust model-based HCRs are

theoretically characterized in closed form using this approach.

This result is a novelty with respect to other papers that also

study robust control in natural resource management (Vardas

and Xepapadeas, 2010; Athanassoglou and Xepapadeas, 2012;

Xepapadeas and Roseta-Palma, 2013).

This theoretical characterization of robust HCRs allows

establishing two novel points to be made from a fisheries

management perspective. First, it can be stated theoretically that

constant HCRs are not robust under scientific uncertainty. This

result provides theoretical support for approaches suggesting that,

in the presence of uncertainty, biomass-based threshold HCRs,

which indicate that fishing mortality should decrease with biomass,

are more appropriate than constant fishing mortality HCRs

(Deroba and Bence, 2008; Punt, 2010). Second, robust HCRs set

higher biomass precautionary reference points than those of non-

robust HCRs. Moreover, these precautionary levels are defined in

terms of target reference points [as in Froese et al. (2011)]. These

results are aligned with the idea that sources of uncertainty can be

reduced by defining intervals around the limit reference points

(Rindorf et al., 2016; Da-Rocha et al., 2017; Rindorf et al., 2017a, b)

or by choosing appropriate methods for estimating them (van

Deurs et al., 2021; Bi et al., 2023).
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This research also show that these theoretical findings can be

easily implemented by designing HCRs that use 0.5BMSY as the limit

reference point for biomass. In this sense, our results can be said to

be aligned with real practices. The Australian Harvest Strategy

Policy (DAW, 2018) identifies 20% of the biomass in absence of

fishing (0.2B0) as the standard limit reference point because it is

considered a suitable proxy that avoids recruitment overfishing for

productive stocks (Sainsbury, 2008). For less productive stocks,

more conservative limit reference points are proposed (e.g. 0.3B0).

Additionally, the Australian Harvest Strategy considers that if BMSY

can be reliably estimated and it is above 0.4B0 then 0.5BMSY is an

appropriate alternative as a limit reference point (Rayns, 2007).

New Zealand uses 0.5BMSY as a limit below which a formal

rebuilding plan is required (New Zealand Ministry of Fisheries,

2008). Froese et al. (2011) propose using this limit reference point to

design HCR to manage European fisheries. More recently, Froese

et al. (2018) use this reference to asses European stocks and found

51% of them to be outside safe biological limits.

In this regard, it is worth mentioning that it has been common

practice in the International Council for the Exploration of the Sea
Frontiers in Marine Science 08
(ICES) in the last few years to set management reference points based

on a deterministic equilibrium relationship between yield, fishing

mortality, and biomass (ICES, 2017). In particular, for stocks for

which there is no appropriate population information, the

deterministic version of the surplus production Schaefer model

(Schaefer, 1954) is used and in most cases 1/3BMSY set as a proxy

for Blim This deterministic approach is no appropriate because, in

general terms, deterministic reference points overestimate fishing

mortality and the biomass required to support MSY. For example, the

US, Australia and New Zealand all have the default assumption that

BMSY =  0:4B0, which is way higher than the deterministic BMSY in

most cases. In any case, notice that this selection is not incompatible

with our results. We find that with uncertainty, the level of

precautionary biomass (below which fishing is banned) should be

higher than in deterministic cases. In this context, it is worth studying

whether it is advisable to increase Blim from 1/3BMSY to 0.5BMSY.

On the other hand, ICES has recently started using the SPiCT

model for theirMSY advice. SPiCT is a surplus production model that

takes uncertainty in catches and biomass indexes into account

(Pedersen and Berg, 2017). This framework enables precautionary

limits to fishing mortality (Fp−05) to be set such that the probability of

the predicted biomass being below an agreed lower limit (Blim) is 5% or

less (Rindorf et al., 2016). From this perspective, our characterization of

the precautionary biomass associated with the robust HCR (BR
lim in

Figure 5) is a concept similar to the predicted biomass implied for the

precautionary fishing mortality (Fp−05) in Rindorf et al. (2016). The

novelty of our result is it supports this idea for stocks whose population

can be described in a very simple way from age cohorts.

From the point of view of the stock modeling, it should be

emphasized that in this study it has been set up in the simplest way

possible. In particular, it has been assumed that the stock is divided

into two age groups (juveniles and adults) without considering the

existence of a plus group and the spawning stock biomass follows a

logarithmic relationship with the adult population. Furthermore,

the only source of uncertainty considered is recruitment, which is

assumed to be autocorrected to order 1. All these simplifications
FIGURE 4

Risk of biomass dropping below B for a naive HCR, l = 0 (Equation 10) and a robust HCR, l > 0 (Equation 9). The robust HCR was designed by
assuming r̂ to be 0.5. Notice that when the correlation generated by the real model is 0.5 the probability of the biomass dropping below B is exactly
v = 0.05.
FIGURE 5

Robust HCR versus non-robust HCR. Robust design of HCR leads to

a higher limit reference point for the biomass. BNR
lim and BR

lim stand for
non-robust and robust biomass limit reference points, respectively.
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may seem far removed from the reality observed in the population

dynamics of most fish stocks. However, this simplified modeling is

useful (and necessary) to obtain analytical solutions that help

interpret the results in simple scenarios. Application of the model

to specific populations would require adaptation to account for

their intrinsic biological characteristics.

The simplification of the biological model to a form with only one

source of uncertainty suggests that this study is a kind of proof of concept

for a single source of uncertainty. However, one of the attractions of the

methodology used in this study is that the class of disturbances used to

capture uncertainty may be more general than the simplicity of the

model analyzed apparently shows. With Hansen and Sargent (2011)

approach, the uncertainty considered may include unknown parameter

values andmisspecfication of highermoments of the error distribution as

long as the decision maker’s objective function is quadratic and his

approximating model is linear with Gaussian errors (see chapters 1.13, 3

and 7). Evenmore structured kinds of uncertainty can be accommodated

by slightly reinterpreting the decision maker’s objective function (see

chapter 19). In this sense, this approach can be extended to all the sources

of uncertainty classified by Francis and Shotton (1997), i.e., observation,

model structure, process error, and implementation errors. Therefore,

our findings can be applied in case studies that use the simulation

modeling approach to assess different management strategies (MSE)

under various sources of uncertainty. Even in those fisheries with poor

data, the proposed methodology can be used to design robust HCR that

link abundance indices such as CPUE or survey data with catch limits.

This study focuses on HCRs that aim to maintain stock biomass at

levels consistent with MSY, relying on a limited number of biological

reference points (Ftar , Btar and Blim), where ed as a biomass limit

reference point that indicates the closed/open status of the stock to the

fishing activity. This simplification can be seen as a limitation because it

does not take into account that fisheries management may have

multiple objectives (maximizing catch, minimizing risk to the

resource, and maximizing industrial stability) that may conflict with

each other. To mitigate these possible conflicts in the presence of

uncertainty, several types of measures have been recommended; among

others, the definition of optimal HCRs based on a larger number of

biological reference points (Yagi and Yamakawa, 2020), the evaluation

of the theoretical and applied impact of spatio-temporal measures (Da-

Rocha et al., 2012; DAW, 2018), the valuation offishery resources with

non-constant discount factors (Da-Rocha et al., 2016). The robustness

of such solutions could also be evaluated in the context of robust

control theory, extending the applicability to actual practice.
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Appendix

A.1 Finding the robust HCR

A.1.1 Solving the extremization problem
The extremization problem (6) can be simplified with a change

of variables, DFt = Ft − Ftar and DBt = Bt − Btar , and expressed as

the following non-stochastic problem:

max
DFt ,DBt+1f g∞t=0

  min
wt+1f g∞t=0

   o
∞

t=0
 b t −DF2

t − lDB2
t + bqw2

t+1

� �
,

s : t :   
DBt+1 = zt − DFt ,

zt+1 = rzt + wt+1,

(

where et+1 is set to zero in the second constraint by the modified

certainty equivalent principle that applies to robust control

problems (Hansen and Sargent, 2011, chapter 2.4.1).

Let us write the optimization function explicitly for periods t, t +

1 and t + 2,

L = … + b t −DF2
t − lDB2

t + bqw2
t+1

� �
+b t+1 −DF2

t+1 − lDB2
t+1 + bqw2

t+2

� �
+b t+2 −DF2

t+2 − lDB2
t+2 + bqw2

t+3

� �
+… :,

Taking into account the restrictions of the optimization

problem in Bt+1 and Bt+2, the above expression can be express as,

L = … + b t −DF2
t − lDB2

t + bqw2
t+1

� �
+b t+1 −DF2

t+1 − l(zt − DFt)2 + bqw2
t+2

� �
+b t+2 −DF2

t+2 − l(rzt + wt+1 − DFt+1)2 + bqw2
t+3

� �
+… :

Therefore, the original optimization problem can be converted

into an unconstrained optimization problem. Any solution for DFt
and wt+1 must be the solution to the following two-period problem

for DFt and wt+1:

max
DFt

 min
wt+1

 L = −DF2
t + bqw2

t+1 − bl(zt − DFt)
2 − b2l(rzt + wt+1

− DFt+1)
2 :

The first order conditions (f.o.c.) for this optimization problem

are:

∂L
∂DFt

= 0   ⇒    − DFt + bl(zt − DFt) = 0,

∂L
∂wt+1

= 0   ⇒   qwt+1 − bl(rzt + wt+1 − DFt+1) = 0:

Solving these f.o.c.’s for DFt and wt+1, and considering the first

constraint of the nonstochastic problem, the following emerges:

DFt =
bl

1 + bl
zt , (11)

DBt+1 =
1

1 + bl
zt , (12)
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wt+1 =
rbl

q(1 + bl) − bl
zt : (13)

It is worth highlighting that the multiplier emerges from

Equations 11, 12; so l = 1
b

DFt
DBt+1

represents the HCR. Note also

that in the f.o.c. (Equation 13) also appears the uncertainty penalty

parameter q and the perceived persistence coefficient for the

recruitment, r, which relate the malevolent perturbation to the

recruitment. Thus, any robust HCR must take this relationship into

account. The next appendix shows this.

A.1.2 Characterizing robust precautionary HCR
Given the solution of the extremization problem we solve for

q and l using constrains Equations 4, 5. We start by substituting

the f.o.c. (Equation 13) into the real model (2) which can be

expressed as

zt = rzt−1 + wt + et = r̂ zt−1 + et , (14)

where

r̂ (q , l) = r
q(1 + bl)

q(1 + bl) − bl

� �
: (15)

Substituting Equation 14 into the f.o.c. Equation 12, the biomass

deviation can be expressed as

DBt+1 = r̂DBt +
et

1 + bl
:

Solving for the total biomass previous period gives

Bt+1 = (1 − r̂ )Btar + r̂Bt +
et

1 + bl
:

Since et is a Gaussian process, Bt+1 also follows a Gaussian

distribution whose mean and variance are given respectively by,

mB = Btar , (16)

s 2
B =

s2
e

(1 + bl)2(1 − r̂ 2)
: (17)

Therefore the precautionary restriction (Equation 4) can be

expressed as

Pr(B ≤ B) =
1
2

1 + erf
B − mBffiffiffi
2

p
sB(q , l)

	 
� �
= v,

where erf is the Gaussian error function. Substituting mB and s 2
B

from Equations 16, 17, the above expression can be rewritten as:

(1 + bl)(1 − r̂ 2)1=2 =
seerf

−1(2v − 1)
ffiffiffi
2

p

(B − Btar)
: (18)

For a given, r̂ , managers can prevent biomass from dropping

below B with a probability v, if the harvest control rule l satisfies

Equation 18. In fact the solution for l that appears in the text as

Equation 7 is derived directly from Equation 18.
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To compute r̂ , the first step is to express the vector of

perturbations wt+1 as an AR(1) process

wt+1 =
rbl

q(1 + bl) − bl
zt = r̂wt +

rbl
q(1 + bl) − bl

et , (19)

which is obtained from expressions Equations 13, 14.

Taking into account that the process for the perturbation wt+1 is

given by Equation 19 and that the term E0w2
t+1 is the variance of this

process, then the misspecification restriction (Equation 5) can be

written as

h = E0o
∞

t=0
 b t+1w2

t+1 =
b

1 − b
(rbl)2s 2

e

(1 − r̂ 2)½q(1 + bl) − bl�2 : (20)

Manipulating Equation 15 gives bl
q(1+bl) =

r̂ −r
r̂ . Therefore,

expression Equation 20 can be rewritten as

h = E0o
∞

t=0
 b t+1w2

t+1 =
b

1 − b
(r̂ − r)2s 2

e

(1 − r̂ 2)
,

which is the expression Equation 8 in the text that determines r̂
A.2 Proof of Proposition 1

For any accuracy level, h, Equation 20 implies r̂ > r = 0. Thus,

a robust HCR, given by Equation 7, has l > 0 and makes it

impossible for Ft = Ftar to be a solution to the robust

precautionary rule. ▪
A.3 Proof of Proposition 2

It can be checked straightforwardly in Equation 1 that when

h = 0, r̂ 2 = r2 and when h → ∞, r̂ 2 = 1. Taking this into account

l increases with scientific uncertainty (and goes to infinity, l → ∞,

when h → ∞). Finally, it is clear that B = Btar − Ftar=r̂ bl increases

when l and r̂ increases. ▪
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If there is misspecification and nature chooses wt+1 ≠ 0, then

r̂ > r and the variance of the biomass is given by Equation 17. The

risk of biomass dropping below B is then given by

Pr(B ≤ B) =
1
2

1 + erf
B − mBffiffiffi
2

p
sB(q , l)

	 
� �

=
1
2

1 + erf
(B − Btar)(1 + bl)(1 − r̂ 2)1=2ffiffiffi

2
p

se

 !" #
(21)

However, if managers are not concerned about misspecification

(q → ∞ or equivalently h = 0), the autocorrelation coefficient of

recruitment is r̂ = r. In this context, selecting l = 0 implies,

according to Equation 7, a standard deviation for the residuals of
~se =

(B−Btar)(1−r2)1=2ffiffi
2

p
erf−1(2v−1)

. Inserting this expression into Equation 21

Pr(B ≤ B) =
1
2

1 + (2v − 1)(1 + bl)
1 − r̂ 2

1 − r2

	 
1=2
" #

: (22)

If the HCR is selected to guarantee that the risk of biomass

dropping below B is v then l has to be selected such that Equation

22 is equal to v. This implies that the following expression must

hold:

1 + bl =
1 − r2

1 − r̂ 2

	 
1=2

:

This condition can be expressed as

bl =
1 − r2

1 − r̂ 2

	 
1=2

−1 =
ŝ − s
s

,

where s and ŝ represent the standard deviation of the recruitment

process in the perceived model (1) and in the real model (2),

respectively. The above condition becomes bl = 2 with the three-

sigma rule. Moreover, this condition endogenously determines Blim

= 0:5BMSY whenever Ftar and Btar . are normalized to 1.
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