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Lightweight underwater image
adaptive enhancement based on
zero-reference parameter
estimation network
Tong Liu1, Kaiyan Zhu2*, Xinyi Wang2,
Wenbo Song2 and Han Wang2

1School of Mechanical and Power Engineering, Dalian Ocean University, Dalian, China, 2School of
Information Engineering, Dalian Ocean University, Dalian, China
Underwater images suffer from severe color attenuation and contrast reduction

due to the poor and complex lighting conditions in the water. Most mainstream

methods employing deep learning typically require extensive underwater paired

training data, resulting in complex network structures, long training time, and

high computational cost. To address this issue, a novel ZeroReference Parameter

Estimation Network (Zero-UAE) model is proposed in this paper for the adaptive

enhancement of underwater images. Based on the principle of light attenuation

curves, an underwater adaptive curve model is designed to eliminate uneven

underwater illumination and color bias. A lightweight parameter estimation

network is designed to estimate dynamic parameters of underwater adaptive

curve models. A tailored set of non-reference loss functions are developed for

underwater scenarios to fine-tune underwater images, enhancing the network’s

generalization capabilities. These functions implicitly control the learning

preferences of the network and effectively solve the problems of color bias

and uneven illumination in underwater images without additional datasets. The

proposed method examined on three widely used real-world underwater image

enhancement datasets. Experimental results demonstrate that our method

performs adaptive enhancement on underwater images. Meanwhile, the

proposed method yields competitive performance compared with state-of-

the-art other methods. Moreover, the Zero-UAE model requires only 17K

parameters, minimizing the hardware requirements for underwater detection

tasks. What’more, the adaptive enhancement capability of the Zero-UAE model

offers a new solution for processing images under extreme underwater

conditions, thus contributing to the advancement of underwater autonomous

monitoring and ocean exploration technologies.
KEYWORDS

underwater image enhancement, zero-reference, parameter estimation network, loss
functions, lightweight
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1 Introduction

Since the particulate matter in the water leads to light

absorption and scattering, the underwater observation tasks based

on optical vision face enormous challenges. Underwater images

inevitably suffer from quality degradation issues caused by

wavelength and distance-dependent attenuation and scattering

(Akkaynak et al., 2017). Typically, when the light propagates

through water, it suffers from selective attenuation that results in

various degrees of color deviations. In water, red light with a longer

wavelength is absorbed more than green and blue light, so it

attenuates fastest. Conversely, light with the blue-green

wavelength experiences the slowest attenuation, resulting in most

underwater images appearing in bluegreen tones (Kocak et al.,

2008). In this environment, it is critical to identify effective

solutions for improving the visual quality of underwater images

and for a better understanding the underwater world.

Given the challenges faced by underwater optical imaging,

Synthetic Aperture Sonar(SAS) imaging technology based on

sound waves may offer some solutions (Zhang et al., 2021; Yang,

2023). Unlike optical imaging, SAS utilizes the propagation

characteristics of sound waves in water to penetrate through

particles and acquire high-resolution underwater images. Sound

waves propagate in water without being affected by light absorption

and scattering, thus overcoming the quality degradation issues

encountered in optical imaging. However, the resolution of SAS

imaging is typically influenced by underwater propagation media

such as water temperature, salinity, and water flow velocity. SAS

imaging often requires complex signal processing, data processing

techniques, and corresponding hardware equipment, potentially

increasing system costs and complexity (Abu and Diamant,

2023). Therefore, despite the significant advantages of SAS

imaging technology in underwater observation, the focus of this

study remains on the processing and analysis of underwater optical

images. This aims to explore effective methods for improving the

visual quality of underwater images, thereby enhancing our

understanding of the underwater environment.

Furthermore, when conducting underwater observation tasks,

the selection of lightweight equipment is crucial to enhance

maneuverability, flexibility, reducing complexity, and cutting

costs. Despite the potential for slight performance degradation

associated with lightweight devices, this is a factor that needs to

be balanced when effectively executing tasks. In this context, the

adoption of lightweight methods for processing underwater images

becomes particularly important, as they can enhance in real-time

the visual quality of underwater images, contributing to a more

accurate understanding of the underwater environment.

In order to obtain higher visual quality underwater images,

methods based on physical models can, to some extent, address the

aforementioned issues (Zhuang, 2021). In the field of underwater

image enhancement, physics-based methods (Chiang and Chen,

2011; Drews et al., 2016; Li et al., 2016; Berman et al., 2017; Zhuang

et al., 2021) focus on accurately estimating medium transmission.

By utilizing estimated parameters such as medium transmittance,

uniform background light, and other critical underwater imaging

parameters, these methods invert the physical model of underwater
Frontiers in Marine Science 02
imaging to obtain clear images. Although these methods perform

well in certain scenarios, they often produce unstable and sensitive

results when dealing with challenging underwater environments.

These methods include histogram equalization (HE) (Frei, 1977)

and contrast-limited adaptive histogram equalization (CLAHE)

(Zuiderveld, 1994), aim to adjust pixel values to enhance specific

qualities of the image, such as color, contrast, and brightness. Image

restoration methods (UDCP) (Drews et al., 2016) view improving

image quality as the inverse imaging problem. Though methods

based on physical models can exhibit satisfactory performance in

certain scenarios, they typically generate unstable and sensitive

results when facing challenging underwater scenarios. There are

two reasons for this: 1) estimating multiple underwater imaging

parameters is intricate for traditional methods, and 2) the assumed

underwater imaging models do not work well.

In recent years, significant progress (Cai et al., 2018; Li et al.,

2020b) has been made in underwater image enhancement using

deep learning technologies. (Wang et al., 2021; Huang et al., 2022;

Lai et al., 2022) showed that convolutional neural network (CNN)

based image enhancement algorithms perform well on underwater

images, achieving enhanced images with improved contrast and

color reproduction. The method in (Xiao et al., 2022) introduced a

CNN-based image enhancement framework for underwater images

that is able to automatically determine optimal parameters for

enhancing underwater images, resulting in images with both high

quality and low computational cost. This method has achieved

state-of-the-art performance compared to prior work in image

enhancement for underwater images. However, most of these

methods rely on paired data for supervised training, and even

though some unsupervised learning methods do not require

paired data, they still necessitate unpaired reference data.

Unfortunately, collecting paired data introduces high costs, and

images generated by simulation algorithms differ from real data,

leading to lower generalization capabilities of the network. Different

from these papers, the proposed deep learning-based methods

possess a unique advantage—zero-reference. Throughout the

training process, it does not require any paired or unpaired data,

in stark contrast to existing CNN and GAN-based methods that rely

on such data.

Inspired by Zero-DCE (Guo et al., 2020), this paper specifically

designs an underwater curve model that applies the concept of zero-

reference learning to underwater scenarios. A new deep learning

method called Zero-UAE is proposed, which is based on a zero-

reference parameter estimation network, for adaptive enhancement

of underwater images. This method does not use an end-to-end

network model because such a model is much more complex than

parameter estimation. Only relying on a small amount of non-

reference data samples, the training effectiveness of an end-to-end

network model always cannot achieve expectations. In order to

achieve lightweight and zero-reference better while ensuring the

robustness of the network, an adaptive recovery image parameter

estimation network is needed, which as simple as possible. Unlike

the training method proposed in Zero-DCE, due to the complexity

of the underwater environment, which cannot use multi-sequence

datasets for guidance, this method only uses a limited number of

underwater image datasets for guidance. Zero-UAE can adaptively
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enhance the brightness and contrast of images while restoring

normal colors and details to underwater images. This method

demonstrates that even in zero-reference training scenarios, Zero-

UAE remains competitive in comparison with state-of-the-art

methods that require paired or unpaired data. The contributions

of this method can be summarized as follows:
Fron
1. A zero-reference underwater adaptive enhancement

parameter estimation network is proposed, which does

not rely on paired or unpaired data, thereby reducing the

risk of overfitting. This study demonstrates robustness in

various complex underwater conditions.

2. A set of non-reference loss functions is designed, including

the specifically crafted underwater color adaptive

correction loss function proposed in this paper. Through

their collaborative action, these loss functions effectively

facilitate the adaptive enhancement of degraded images in

c omp l e x unde rwa t e r s c e n e s wh i l e en su r i n g

pixel consistency.

3. Zero-UAE achieves state-of-the-art performance on several

recent benchmarks, both in terms of visual quality and

quantitative metrics.
Furthermore, the Zero-UAE method performs excellently in

underwater survey tasks, including various marine life, seabed

debris, corals, sand, without incurring significant computational

burdens. With a small model size, real-time image processing can be

achieved in just 30 minutes of training time. This offers a more

convenient option for devices in underwater observation tasks.

The rest of this paper is organized as follows. Section II presents

the related works of underwater image enhancement. Section III

introduces the proposed method. In Section IV, the qualitative and

quantitative experiments are conducted. Section V concludes

this paper.
2 Related works

Underwater image enhancement is generally categorized into

two major groups: traditional methods and deep learning methods.

Traditional methods are further divided into non-physical model-

based methods and physical model-based methods.
2.1 Traditional methods

Non-physical model-based methods focus on directly

intensifying pixel values to achieve improved image quality

without the constraints of physical models. (Ancuti et al., 2012)

proposed a fusion-based method that applies a multiscale fusion

strategy on images subjected to color correction and contrast

enhancement. In (Ancuti et al., 2017; Ghani and Isa, 2015)

introduced a contrast enhancement method that aligns with the

Rayleigh distribution in RGB color space. Another technical

method utilizes the Retinex theorem for algorithm design, where

(Fu et al., 2014) converts color-corrected images into the CIELab
tiers in Marine Science 03
color space and enhances the L channel using the Retinex theorem.

Methods based on physical models treat underwater image

enhancement as an inverse problem, introducing various priors

and models of underwater image formation. Among these, the

notable model is the Jaffe-McGlamery underwater image model

(McGlamery, 1980; Jaffe, 1990).
2.2 Deep learning models

In recent years, deep learning methods have been widely applied

in the field of underwater image processing, primarily focusing on

acquiring training datasets and the generalization capability of

convolutional models. These methods mainly include methods

based on Convolutional Neural Networks (CNN) and Generative

Adversarial Networks (GAN).

(Li et al., 2020a) introduced the Underwater Image

Enhancement Convolutional Neural Network (UWCNN),

reconstructing clear underwater images directly using underwater

scene priors without estimating model parameters. (Qi et al., 2022)

proposed a novel underwater image enhancement network

(SGUIE-Net), which addresses the issues of color distortion and

detail blurring in underwater images by incorporating semantic

information and region-wise enhancement feature learning. (Wang

et al., 2021) proposed an underwater image enhancement

convolutional neural network (UICE2-Net) that utilizes two color

spaces. This method is the first one based on deep learning to use

the HSV color space for underwater image enhancement.

(Guo et al., 2019) proposed a Multiscale Dense Generative

Adversarial Network (GAN) for underwater image enhancement,

employing multiscale dense residual blocks in the generator to

improve performance and retain finer details. They used spectral

normalization to stabilize discriminator training and designed a

non-saturating GAN loss function to constrain the training. (Cao

et al., 2018) utilized two neural networks to estimate background

light and scene depth separately to restore underwater images,

improving the color information of underwater images (Fabbri

et al., 2018), by improving the loss function of the Generative

Adversarial Network, trained a paired underwater image dataset

generated using CycleGAN to obtain enhanced images with better

color effects. (Li et al., 2017) proposed an Unsupervised Generative

Adversarial Network (WaterGAN), taking aerial images and depth

pairs as input to generate synthesized underwater images.

Subsequently, they introduced a color correction network, taking

original unlabeled underwater images as input and outputting

restored underwater images. (Wang et al., 2019) introduced an

Unsupervised Generative Adversarial Network (UWGAN) based

on an improved underwater imaging model for generating lifelike

underwater images from aerial images and depth maps. They

further utilized U-Net for color restoration and dehazing training

on a synthetic underwater dataset. (Islam et al., 2020b) introduced a

method for fast underwater image enhancement to enhance visual

perception (FUnIEGAN). They proposed a model based on

conditional generative adversarial networks for real-time

underwater image enhancement. Moreover, they contributed to

the EUVP dataset, which includes a collection of paired and
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unpaired underwater images. (Wang et al., 2023) proposed a

generative adversarial network with multi-scale and attention

mechanisms, which introduces multi-scale dilated convolution

and directs the network’s focus towards important features, thus

reducing the interference from redundant feature information.

(Huang et al., 2023) introduced a Zero-Reference Deep

Network that is designed based on the classical haze image

formation principle, aiming to explore zero-reference learning for

underwater image enhancement. (Xie et al., 2023) proposed a zero-

shot dehazing network that further improved the level adjustment

method combined with automatic contrast for enhancement.

Currently, many deep learning-based underwater image

enhancement methods employ a supervised learning method that

relies on paired training data generated by simulation methods.

However, this method faces several challenges. Firstly, supervised

learning requires a substantial amount of paired data, and in the

deep-sea environment, the difficulty and cost of obtaining real

paired data make this method impractical. Secondly, due to the

complexity of the deep-sea environment, simulated image pairs

may not fully capture the diversity and details of the actual scenes,

thereby affecting the network’s generalization ability. In comparison

to supervised learning, there are some unsupervised learning

methods that do not require paired data, but they still necessitate

non-paired data for training. Despite the efforts of zero-shot

underwater image enhancement to improve the quality of

underwater images, the deep-sea environment presents unique

challenges. Factors such as lighting conditions, water quality

variations, and the diversity of underwater objects make training

models challenging.

Therefore, this paper proposes a novel lightweight underwater

image adaptive enhancement method based on Zero-UAE. In

contrast to existing deep learning-based underwater image

enhancement methods, this paper has the following unique

characteristics: 1) It adopts a zero-reference learning strategy,

eliminating the need for paired and unpaired data. 2) It designs

an underwater adaptive curve model based on the principle of light

attenuation curves to eliminate uneven underwater illumination

and color distortion. 3) The paper employs a non-end-to-end

network structure, acquiring low-level features through skip

connections, capable of handling most underwater scenes. 4) It

devises a set of underwater image non-reference loss functions,
Frontiers in Marine Science 04
reinforcing the pixel structure of underwater images and enhancing

their visual effects compared to other methods.
3 Methodology

Typically, collecting enough paired data in underwater scenes

incurs high costs, and simulated underwater images differ from real

ones. Consequently, supervised underwater image enhancement

methods relying on paired datasets are limited due to their

relatively poor generalization ability, additional artifacts, and

color shifts. Although unsupervised underwater image

enhancement doesn’t require paired datasets, it still necessitates

carefully selected unpaired training data. Recognizing the

challenges of insufficient image samples and acquiring paired/

unpaired images in certain underwater scenarios, this paper

proposes an underwater image adaptive enhancement framework

based on Zero-UAE. Compared to other deep learning methods, the

training process of the proposed method doesn’t rely on any

reference images. Additionally, to adapt to the unique

characteristics of the deep-sea environment, this study specifically

devises a lightweight network architecture and employs non-

reference loss functions tailored for underwater scenes to enhance

the network’s generalization capabilities. The objective of this

method is to make deep learning more practical and effective in

the field of underwater image processing.

The proposed Zero-UAE framework, as shown in Figure 1,

relies solely on pixel features from a limited number of non-

reference underwater data samples. Image enhancement is

achieved through a straightforward mapping of underwater

adaptive enhancement curves. This framework comprises a

crucial component known as UAE-Net (Underwater Adaptive

Enhancement Parameter Estimation Network), tasked with

estimating the optimal fit of the underwater adaptive

enhancement curve (UAE curve) for a given input image.

Subsequently, the framework iteratively applies these curves,

systematically mapping all pixels within the input RGB channels,

ultimately generating the enhanced image. The key components of

Zero-UAE will be detailed in subsequent sections, including UAE

curves, UAE-Net, and non-reference loss functions.
FIGURE 1

Framework of Zero-UAE.
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3.1 Underwater adaptive
enhancement curve

Inspired by the curve adjustment feature in photo editing

software and the Zero-DCE method proposed by (Guo et al.,

2020), this study presents a curve model suitable for underwater

adaptive image enhancement. We utilize the curve adjustment

method to automatically map degraded underwater images to

normal underwater images, where the network-estimated

parameter feature mapping relies entirely on the input image.

When designing a differentiable curve model for underwater

parameter mapping, there are two requirements: 1) Each pixel

value of the enhanced underwater image should be within the

normalized range of [0,1] to avoid information loss, which can lead

to severe color bias; 2) The curve should be monotonous to

maintain the differences between neighboring pixels. To achieve

the requirements, a design similar to the previously mentioned

quadratic curve was adopted, which can be represented as:

UAE(I(x; b) = I(x) + bI(x)(1 − I(x)) (1)

where x represents pixel coordinates, and UAE(I(x);b) denotes
the enhanced version of the given input I(x). b ∈ [−1,1] is a

trainable curve parameter, learned through the underwater

adaptive enhancement parameter estimation network, used to

adjust the magnitude of the UAE curve and control the level of

underwater image enhancement. In order to preserve color

information in underwater images better, the curve is separately

applied to the three RGB channels of the image. Specifically, the

UAE curve defined in Equation (1) can be iteratively applied for

more versatile adjustments, adapting to complex underwater

conditions. This can be expressed by the following formula:

UAEn(x) = UAEn−1(x) + bnUAEn−1(x)(1 − UAEn−1(x)) (2)

where n is the iteration number controlling the curvature. The

value of n is set to 8, which can deal withmost cases satisfactorily. This

method takes into account more flexibility in adapting to color

variations and brightness differences in underwater images. Because

b is applied to all pixels, global adjustments may lead to potential local

over-enhancement/under-enhancement issues in underwater images.

To further enhance the capability of processing underwater images,

this study formulates d as a pixel-wise parameter, i.e., each pixel of the

given input image has a corresponding curve with the best-fitting d to
adjust its dynamic range, referred to as the underwater color adaptive

recoverymap and denoted as d, it has been introduced. Consequently,
Equation (2) can be expressed as Equation (3):
Frontiers in Marine Science 05
UAEn(x) = UAEn−1(x) + dn(x)UAEn−1(x)(1 − UAEn−1(x)) (3)

where d is a parameter map of the same size as the given image.

Here, this paper assumes that pixels in a local region have the same

intensity (also the same adjustment curves), and thus the

neighboring pixels in the output result still preserve the

monotonous relations. This pixel-wise higher-order curve not

only adapts to underwater conditions better but also ensures the

goals of normalization, monotonicity, and simplicity.

An example of the pixel-wise curve parameter maps is shown in

Figure 2. The curve parameter maps for the three channels of the

input image and the resulting image were respectively illustrated,

showcasing the adaptability of this new feature to underwater

images. This included the best-fitting parameter maps that

accurately reflected changes in different regions. The effectiveness

of revealing details in each region of the underwater image was

demonstrated through pixel-wise curve mapping.
3.2 UAE-Net

To understand the relationship between input images and their

most suitable underwater adaptive enhancement curves, this paper

transforms the underwater image enhancement task into an

estimation problem of specific curve parameters, rather than

directly conducting end-to-end mapping. End-to-end models are

much more complex than parameter mapping estimation. For

complex end-to-end networks, training results often fall short of

expectations when relying on only a small number of samples

without reference data. To better achieve lightweight and zero-

reference characteristics, for parameter mapping estimation tasks,

the network needs to be designed as simple as possible. Therefore,

this paper designs an Underwater Adaptive Enhancement

Parameter Estimation Network (UAE-Net), as shown in Figure 3.

This network takes underwater images as input and outputs a series

of pixel-level curve parameter maps corresponding to higher-order

curves. The network consists of three layers of traditional

convolution and four layers of depth-wise separable convolution.

The first two layers contain 32 convolutional kernels of size 3×3

with a stride of 1, using the LeakyReLU activation function; the

third layer comprises 32 convolutional kernels of size 1×1 with a

stride of 1, also using LeakyReLU. To capture advanced color

features of a large number of underwater degraded images while

maintaining the relationship between neighboring pixels, both the

fourth and fifth layers of depth-wise separable convolution take
FIGURE 2

An example of the pixel-wise curve parameter maps.
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parameters from the third layer and incorporate a GroupNorm

layer. Some skip connections are used to introduce the features

from shallow convolutional layers to obtain rich low-level

information. The final convolutional layer is followed by the

Tanh activation function, generating parameter maps distributed

over 8 iterations (n=8), where each iteration produces three curve

parameter maps for each of the three channels. It is noteworthy that

UAE-Net has only 17,699 trainable parameters and 1.15 billion

floating-point operations (FLOPs), making it suitable for processing

input images of size 256×256×3. More detailed network resource

information is provided in Table 1. Therefore, this network is

extremely lightweight so it is suitable for deployment on

computat ional ly l imited devices , such as underwater

exploration robots.
3.3 Nonreference loss functions

To achieve zero-reference learning in UAE-Net, a set of

differentiable non-reference loss functions was designed to

train the network, a imed at adapt ing to the unique

characteristics of underwater images for effective network

training. This series of loss functions not only serves training

purposes but also implicitly evaluates the quality of image

enhancement. An underwater color adaptive recovery loss is

employed to restore image colors, correcting potential color

biases in the enhanced image and establishing relationships

among the three adjustment channels. Additionally, an

illumination smoothness loss is introduced to maintain a

monotonic relationship between adjacent pixels, coupled with

exposure control loss for effective exposure level management.

Such a multi-loss strategy aids in comprehensively considering
Frontiers in Marine Science 06
various aspects of image quality, enhancing the network’s

performance in underwater environments.
3.3.1 Underwater color adaptive correction loss
Drawing inspiration from the underwater image fusion

algorithm (Babu et al., 2023), which utilizes the concept of

combining histogram stretching, contrast enhancement, and color

balancing, we design an underwater color adaptive correction loss

Luac that can be expressed as Equation (4):

Luac = (st − sR)
2 + (st − sG)

2 + (st − sB)
2 + (mt − mR)

2 + (mt − mG)
2 + (mt − mB)

2

= o
(p,q)∈e

(sp − sq)
2+ o

(p,q)∈e
(mp − mq)

2,     e = (t ,R), (t ,G), (t ,B)f g

(4)

in this context, t represents the enhanced image, while R,G and

B correspond to the values of the three channels in the enhanced

image, respectively. The smaller the underwater color Adaptive

correction loss, the closer the average values of the RGB

components are to each other, and the closer the output image is

to the real world.
3.3.2 Exposure control loss
To control exposure levels and mitigate underexposed or

overexposed areas, this study employed an exposure control loss,

Lexp, which measures the distance between the average intensity of

local areas and a well-exposed reference level E. Following existing

practices (Mertens et al., 2009, 2007), E was set as the gray level in

the RGB color space. E was adjusted to 0.43.M determines the patch

size for processing images, and based on experimental results and

performance evaluations, this paper sets M to 32. The loss Lexp can

be expressed as Equation (5):
TABLE 1 Resource occupancy of UAE-Net.

Term MemRead (B) MemWrite (B) Memory (MB) Flops (G) Trainable Params

Amount 8,388,608 8,388,608 128.75 1.15 17,699
FIGURE 3

Network structure of UAE-Net.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1378817
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Liu et al. 10.3389/fmars.2024.1378817
Lexp =
1
MoM

k=1 Yk − Ej j (5)

where M represents the number of nonoverlapping local

regions of size 32×32, Y is the average intensity value of a local

region in the enhanced image.
3.3.3 Illumination smoothness loss
To maintain the monotonic relationships between adjacent

pixels, an illumination smoothness loss is incorporated into each

curve parameter map d. The illumination smoothness loss LTVd can

be expressed as Equation (6):

Ltvd =
1
N o

N

n=1
o
c∈x

( mxd
n
cj j + myd

n
c

�
�

�
�)2, x = (R,G,B)f g (6)

where N is the number of iteration, ∇x and ∇y represent the

horizontal and vertical gradient operations, respectively.

3.3.4 Spatial consistency loss
The spatial consistency loss Lspa encourages spatial coherence of

the enhanced image through preserving the difference of neighboring

regions between the input image and its enhanced version. The

spatial consistency loss Lspa can be expressed as Equation (7):

Lspa =
1
Ko

K

i=1
o

j∈W(i)

( Yi − Yj

�
�

�
� − Ii − Ij

�
�

�
�)2 (7)

where K is the number of local regions, and Ω(i) represents the

four neighboring regions (top, down, left, right) centered at the

region i. This study denotes Y and I as the average intensity values

of the local region in the enhanced version and input image,

respectively. The size of the local region is empirically set to 4×4.

This loss is stable given other region sizes.

3.3.5 Total loss
The total loss can be expressed as Equation (8):

Ltotal = WuwcolorLuwcolor +WexpLexp +WspaLspa +Wtvd Ltvd (8)

whereWuwcolor Wexp Wspa andWtvd are the weights of the losses.
4 Experiments

In order to enhance the network’s generalization performance,

underwater images of various degradation types are incorporated

into the training set. Specifically, 1000 images from the SUIM
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dataset (Islam et al., 2020a) and 800 underwater images from the

NUICNet dataset (Cao et al., 2020) are selected for training. The

number of iterations is set to 100. The experiment is implemented

using the PyTorch framework, and the training images are resized

to 256 × 256 × 3. The Adam optimizer is used with default

parameters and a fixed learning rate of 1e-4. The experimental

environment includes an NVIDIA GeForce RTX 3080Ti GPU,

32GB RAM, and an AMD Ryzen 7-5800X CPU.

Several underwater image processing algorithms were compared,

including two traditional methods, three supervised methods, and one

similar unsupervised method: the underwater depth estimation and

image restoration method (UDCP) by (Drews et al., 2016), the

underwater image restoration method based on image blurring and

light absorption (IBLA) by (Peng and Cosman, 2017), the underwater

image enhancement network (UWCNN) by (Li et al., 2020a), fast

underwater image enhancement to enhance visual perception

(FUnIEGAN) by (Islam et al., 2020b), the medium transmission

guided multi-color space embedding (Ucolor) underwater image

enhancement method by (Li et al., 2021), and the unsupervised

underwater image restoration method (UDNet) by (Saleh et al., 2022).
4.1 Evaluation on RUIE data sets

To evaluate the effectiveness of the proposed method across

different standards, this paper selected 100 underwater photographs

from the RUIE dataset (Liu et al., 2020). Several non-reference

image quality assessment metrics were employed, including

Underwater Image Quality Metric (UIQM) (Panetta et al., 2015),

Multi-Scale Image Quality Transformer (MUSIQ) (Ke et al., 2021),

and No-Reference Image Quality Evaluator (NIQE) (Mittal et al.,

2012). Higher UIQM and MUSIQ values indicate better algorithm

performance, while lower NIQE values signify better performance.

In comparative experiments, the proposed method demonstrated

the best performance with UIQM and NIQE evaluation metrics

scoring 5.2196 and 3.3951, respectively, and maintained

competitiveness in the MUSIQ evaluation metric as well.

4.1.1 Quantitative performance analysis
Table 2 presents the average quantitative evaluation of the RUIE

dataset. Among the results, red indicates the best performance, and

green signifies the second best. Moreover, an upward arrow denotes

that higher values represent better algorithm performance, while a

downward arrow signifies that lower values indicate better

performance. It can be observed that Ucolor and UDnet exhibit

suboptimal performance on UIQM and NIQE, respectively. In
TABLE 2 Quantitative evaluation on RUIE Datasets using UIQM, NIQE, and MUSIQ metrics.

Metrics Prior-based Supervised Unsupervised

UDCP IBLA UWCNN FuniE-GAN Ucolor UDnet Ours

UIQM↑ 4.4309 3.0605 4.8406 5.1152 5.1246 5.0306 5.2196

NIQE↓ 3.6618 4.0997 3.7018 3.6486 3.5765 3.5178 3.3951

MUSIQ↑ 40.3264 42.1293 38.5612 39.8785 41.0003 43.4489 40.0973
front
Red indicates the best performance, and green signifies the second best. An upward arrow denotes that higher values represent better algorithm performance, while a downward arrow signifies
that lower values indicate better performance.
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contrast, the proposed method achieves optimal levels across the

entire dataset. It is noteworthy that, unlike other deep learning

methods, the proposed method does not utilize any reference

images during the training process. Overall, extensive experiments

on benchmark datasets demonstrate that the proposed method

outperforms current state-of-the-art methods both subjectively and

objectively, showcasing the potential of zero-reference image

enhancement in underwater applications.

4.1.2 Performance evaluation
As shown in Figure 4, UDCP performs poorly in enhancing

image brightness and color. While the IBLA method exhibits issues
Frontiers in Marine Science 08
of blurring and color bias, it is not entirely effective. The UWCNN

and FUnIE-GAN exhibit suboptimal performance on the dataset.

Despite making some progress in color adjustment, they cannot

completely solve the problem of color distortion. Additionally, in

terms of brightness enhancement, they demonstrate certain

shortcomings in their ability to improve the overall brightness

of images. Despite its ability to increase brightness, Ucolor is

unable to fully rectify color distortion issues. The unsupervised

scheme UDNet also fails to completely eliminate color bias. In

contrast, our proposed method demonstrates outstanding

performance in color restoration, contrast enhancement, and

brightness improvement.
B C D E F G HA

FIGURE 4

Comparison on RUIE data sets. (A) Original image. (B) UDCP (Drews et al., 2016). (C) IBLA (Peng and Cosman, 2017). (D) UWCNN (Li et al., 2020a). (E)
FUnIEGAN (Islam et al., 2020b). (F) Ucolor (Li et al., 2021). (G) UDNet (Saleh et al., 2022). (H) Proposed.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1378817
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Liu et al. 10.3389/fmars.2024.1378817
4.2 Evaluation on UIEB data sets

To comprehensively assess the quantitative performance of the

proposed method on the UIEB dataset (Li et al., 2019), 800

underwater images are selected for evaluation. Performance

evaluation uses the nonreference metrics UIQM, NIQE, and

MUSIQ. In comparative experiments, the proposed method

performs the best in the NIQE and MUSIQ evaluation metrics,

scoring 4.4538 and 49.8793, respectively.
4.2.1 Quantitative performance analysis
Table 3 presents the average evaluation results of UIQM, NIQE,

and MUSIQ metrics on the UIEB dataset. The proposed algorithm

achieved either optimal or suboptimal results on most images.

While the similar unsupervised scheme UDNet showed

acceptable results on some images, the proposed method

consistently obtained optimal values across the entire dataset.
4.2.2 Performance evaluation
As observed in Figure 5, various existing methods exhibited

different shortcomings. UDCP failed to effectively eliminate color

cast, while IBLA introduced brightness distortion in certain images.

Although UWCNN, Ucolor, and UDNet showed some capability in

removing haze and blur, issues with color cast persisted in some

images, and UWCNN suffered from insufficient brightness. FUnIE-

GAN managed to restore color in most images but encountered

difficulties with specific ones, resulting in a grayish tone. In contrast,

the proposed method outperformed in color restoration and

contrast enhancement, particularly excelling in target restoration

and brightness improvement.
4.3 Evaluation on U45 data sets

To validate the performance of the proposed method across

multiple benchmark tests, this paper performs experiments on the

U45 dataset and assesses its performance using non-reference

metrics such as UIQM, MUSIQ, and NIQE. In comparative

experiments, the proposed method performs the best in the

NIQE and MUSIQ evaluation metrics, scoring 4.4738 and

47.1163, respectively.

4.3.1 Quantitative performance analysis
Table 4 presents the average quantitative evaluation of the U45

dataset. The proposed method achieves the optimal level on the
T
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dataset at both NIQE and MUSIQ metrics. In contrast, traditional

algorithms UDCP and Ucolor show suboptimal performance.

4.3.2 Performance evaluation
As shown in Figure 6, UDCP performs poorly in enhancing

image brightness and color. Although the IBLA method exhibits

issues of blurring and color bias, it is not entirely ineffective.

UWCNN and FUnIE-GAN both exhibit problems such as

excessive saturation and uneven brightness in the U45 dataset.

Despite some adjustments in saturation, Ucolor and UDNet are

unable to fully correct color distortion issues in underwater

images. In contrast, our proposed method demonstrates good

performance in color restoration, brightness enhancement, and

contrast improvement.
4.4 Ablation study

For the purpose of conducting a more detailed analysis of the

proposed method, extensive ablation studies were performed to

examine the impact of each stage of the proposed framework. This

was done to demonstrate the effectiveness of each component in

Zero-UAE, with a particular focus on the loss functions and

training datasets.

4.4.1 Ablation study on loss functions
The outcomes produced by various combinations of loss

functions are depicted in Figure 7, where “w/o” denotes “without.”

For a direct visual comparison of the impact of loss functions on

network training, only the network output results are presented.

When the underwater color adaptive correction loss Luac is not

considered, the underwater blue-green color tone cannot be

completely eliminated, leading to potential color bias issues, such

as over-enhancement of underwater environmental regions. The

absence of illumination balance loss Ltvd hinders correlations

between adjacent regions, resulting in noticeable artifacts and

imbalanced areas in the images. Without exposure control loss

Lexp, underwater images may experience overexposure issues.

Without spatial consistency loss Lspa, underwater images may

encounter issues of insufficient contrast saturation. Therefore,

these several loss functions complement each other, allowing the

resulting images to achieve optimal color restoration and

haze removal.

Table 5 presents the average quantitative evaluation of the

ablation study on UIEB, yielding the following observations: 1)

The stability of our zero-shot framework is primarily governed by
ABLE 3 Quantitative evaluation on UIEB Datasets Using UIQM, NIQE, and MUSIQ metrics.

Metrics Prior-based Supervised Unsupervised

UDCP IBLA UWCNN FuniE-GAN Ucolor UDnet Ours

UIQM↑ 3.4562 3.2765 4.0080 4.6295 4.5430 4.4238 4.2650

NIQE↓ 4.7232 5.0372 4.8304 4.8023 5.0327 4.6259 4.4538

MUSIQ↑ 47.3516 48.2857 46.0137 47.1942 47.7998 47.5742 49.8793
frontie
Red indicates the best performance, and green signifies the second best. An upward arrow denotes that higher values represent better algorithm performance, while a downward arrow signifies
that lower values indicate better performance.
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TABLE 4 Quantitative evaluation on U45 Datasets using UIQM, NIQE, and MUSIQ metrics.

Metrics Prior-based Supervised Unsupervised

UDCP IBLA UWCNN FuniE-GAN Ucolor UDnet Ours

UIQM↑ 3.7547 3.0355 3.9533 4.6263 4.6287 4.4238 4.2981

NIQE↓ 4.4574 4.9209 4.9095 4.5379 4.7838 4.6259 4.4738

MUSIQ↑ 45.9806 45.9502 42.5958 45.6756 47.0200 45.4132 47.1163
F
rontiers in Marine Sc
ience
 10
 front
Red indicates the best performance, and green signifies the second best. An upward arrow denotes that higher values represent better algorithm performance, while a downward arrow signifies
that lower values indicate better performance.
B C D E F G HA

FIGURE 5

Comparison on UIEB data sets. (A) Original image. (B) UDCP (Drews et al., 2016). (C) IBLA (Peng and Cosman, 2017). (D) UWCNN (Li et al., 2020a). (E)
FUnIEGAN (Islam et al., 2020b). (F) Ucolor (Li et al., 2021). (G) UDNet (Saleh et al., 2022). (H) Proposed.
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the losses Ltvd and Luac; removing either significantly diminishes

restoration performance. 2) Both Lexp and Lspa losses are not

indispensable for stabilizing network training. Lexp effectively

controls complex underwater lighting conditions, while Lspa
enhances image contrast. Visual inspection indicates favorable image

results, and although the inclusion of Lspa leads to a slight decrease in

evaluationmetrics, thisdoesnot significantly impact overall perceptual

quality. 3) Each loss contributes to restoring underwater images in its

respective role, and the combination of all losses achieves

optimal performance.
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4.4.2 Impact of training data
In order to test the impact of the training dataset, Zero-UAE is

retrained on different datasets: 1) the original images from the UIEB

dataset (Li et al., 2019) (a), 2) the original training data (b), 3) 3,700

underwater images provided by the EUVP dataset (Islam et al.,

2020b) (c), and 4) 2,000 unlabeled underwater images from the

HICID dataset (Han et al., 2022) (d). As shown in Figures 8C, D,

after switching to different datasets, the color bias issue in

underwater images cannot be completely eliminated in Zero-

UAE. For instance, if the input underwater image has a bluish
B C D E F G HA

FIGURE 6

Comparison on U45 data sets. (A) Original image. (B) UDCP (Drews et al., 2016). (C) IBLA (Peng and Cosman, 2017). (D) UWCNN (Li et al., 2020a). (E)
FUnIEGAN (Islam et al., 2020b). (F) Ucolor (Li et al., 2021). (G) UDNet (Saleh et al., 2022). (H) Proposed.
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TABLE 5 Ablation study on UIEB dataset.

Ablation Input Total w/o UAC w/o Tv w/o Exp w/o Spa

UIQM↑ 3.7659 4.2650 1.6919 3.3481 4.1763 4.2669

NIQE↓ 4.9529 4.4538 5.7862 5.0789 4.7157 4.4608

MUSIQ↑ 45.7716 49.8793 38.2450 46.7958 48.7699 50.1512
F
rontiers in Marine Scienc
e
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Red indicates the best performance, and green signifies the second best. An upward arrow denotes that higher values represent better algorithm performance, while a downward arrow signifies
that lower values indicate better performance.
B C D E FA

FIGURE 7

Ablation study of the loss functions (underwater color adaptive correction loss Luac, illumination smoothness loss Ltvd, exposure control loss Lexp, and
spatial consistency loss Lspa). (A) Input. (B) Total. (C) w/o Luac. (D) w/o LTVd. (E) w/o Lexp. (F) w/o Lspa.
TABLE 6 Comparison on Testing Runtime (RT) (in seconds).

Metrics Prior-based Supervised Unsupervised

UDCP IBLA UWCNN FuniE-GAN Ucolor UDnet Ours

RT↓ 1.8903 3.4355 0.2199 0.0052 4.0786 0.0072 0.0017

NIQE↓ 4.7232 5.0372 4.8304 4.8023 5.0327 4.6259 4.4538

MUSIQ↑ 47.3516 48.2857 46.0137 47.1942 47.7998 47.5742 49.8793
ont
Red indicates the best performance, and green signifies the second best. An upward arrow denotes that higher values represent better algorithm performance, while a downward arrow signifies
that lower values indicate better performance.
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tint, the resulting image will maintain the bluish tint of the input.

These results indicate the rationality and necessity of using the

current training dataset in the training process of our network.
4.5 Testing runtime

To research the efficiency of the proposed model, this paper

compares the average testing runtime of different methods.

These comparisons help assess the speed performance of this

paper’s model in processing underwater images, comparing it

with other methods to validate its superiority. This is crucial for

understanding the practicality and performance of the method in

real-world applications. This paper selected images from the

256×256 UIEB dataset for testing. The runtimes were measured

on a computer equipped with an NVIDIA RTX 3080Ti GPU and

AMD Ryzen 7-5800X CPU. The average runtimes are shown in

Table 6, where “RT” represents the required runtime per image.

Image quality evaluation metrics NIQE and MUSIQ are also

provided for reference. The time efficiency of the proposed Zero-

UAE is slightly better than that of FuniE-GAN and UDNet. Some

other methods have relatively longer runtimes, requiring complex

inference for each image. Additionally, our proposed method

achieves the optimal metric evaluation results with the least

time consumption.
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5 Conclusion

This paper presents a novel lightweight zero-reference deep

network for underwater image enhancement (Zero-UAE),

eliminating the requirements for paired or unpaired data. The

image enhancement problem is transformed into the task of

estimating parameters for a curve model mapping. A set of

differentiable underwater non-reference loss functions is designed

to guide the network training. The method can adaptively

compensate for image color and brightness to enhance visual

quality. It is noteworthy that, compared to other deep learning

methods, the proposed method does not require any reference

images during the training process. Under zero-reference training,

Zero-UAE exhibits satisfactory visual performance in brightness,

color, contrast, and underwater environments. Extensive

experiments on multiple benchmarks demonstrate that the

proposed method outperforms state-of-the-art methods both on

qualitative and quantitative evaluations. Due to these advantages, it

holds significant value in practical applications such as real-time

processing tasks on underwater robots in marine exploration.

In the future, our goal is to improve the generalization

performance of the zero-reference network in underwater sonar

image and underwater optical image processing tasks. We plan to

further refine the loss functions to enhance the underwater image

color restoration and uniform contrast capabilities in challenging
B C DA

FIGURE 8

Ablation study of the Training Data. (A) Input (Li et al., 2019). (B) The results of this method. (C) EUVP Dataset. (D) HICID Dataset.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1378817
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Liu et al. 10.3389/fmars.2024.1378817
underwater scenes. Additionally, we intend to explore the

possibility of integrating additional datasets and other models to

further enhance the network’s ability to preserve low-level features,

thereby increasing its applicability in real-world underwater

environments and contributing to underwater autonomous

detection tasks.
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