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Groupers, as a popular economic fish species, are now more frequently cultured

in land-based facilities, however, traditional pond-farming methods are plagued

by frequent disease outbreaks, unstable economic benefits, and environmental

pollution. To explore a new farming mode for a grouper, an 80-day cultivation

experiment was conducted using both a simulated pond system (SPS) and a

recirculating aquaculture system (RAS). The research aims to evaluate the growth

performance, health (pathogenic bacteria, intestinal microbiota), off-flavor

compounds (geosmin, 2-methylisoborneol), and nutritional component (amino

acids, fatty acid composition and content) of a hybrid grouper (Pinephelus

fuscoguttatus ♀ × Epinephelus lanceolatus ♂) under different aquaculture

systems. The results showed that the hybrid grouper in a RAS exhibited better

growth performance; the concentration of Vibrio in the fish tissue in the RAS was

significantly lower than that in the SPS. Moreover, the content of fresh amino

acids in the RAS was significantly higher, and the levels of saturated fatty acids

(SFAs) and w-6 polyunsaturated fatty acids (w-6PUFAs) were significantly higher

in the RAS. This finding indicates the superior flavor and nutritional value of the

grouper. These results prove that the RAS is suitable for the widespread

cultivation of grouper.
KEYWORDS

hybrid grouper, recirculating aquaculture system, pond system, intestinal flora,
nutritional component
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1 Introduction

The rapidly growing world population has led to a rising demand

for food, with seafood serving as an important source of protein for

human consumption. In recent years, the decline in marine fisheries

has driven the escalating interest in aquaculture. It is anticipated that

aquaculture production will exceed 100 million tons by 2027 (FAO,

2022). The grouper, a tropical fish prized for its high nutritional and

economic value, has become a popular species in both the Asian

culinary and aquaculture industries. Hybrid grouper (Epinephelus

fuscoguttatus ♀ × ♂ Epinephelus lanceolatus) shows superior growth

performance and enhanced disease resistance compared to the

parental strains, which has made it a popular choice in grouper

aquaculture (Bunlipatanon and U-taynapun, 2017). Currently, the

majority of grouper production comes from Asia, with China,

Taiwan, and Indonesia, contributing to 92% of the global

production (Rimmer and Glamuzina, 2019). Common forms of

grouper farming include nearshore cage culture and pond culture

(Rimmer and Glamuzina, 2019). Traditional modes of aquaculture

have numerous drawbacks, including relatively outdated technology,

frequent disease outbreaks, and wastage of water resources. Most

importantly, the discharge of large quantities of nitrogen,

phosphorus, solid waste, and chemical residues from traditional

open aquaculture can lead to water pollution, adversely influencing

the aquatic ecosystem at greater depths (Yue and Shen, 2022; Cherian

et al., 2023). These problems have attracted widespread attention

from various sectors of society. Additionally, climate change and

extreme weather events have caused significant economic losses for

traditional aquaculture (Muhala et al., 2021). This trend has

prompted the search for more sustainable ways to meet the

demand for seafood, with new aquaculture technologies being

crucial in addressing the current challenges.

In recent years, the recirculating aquaculture system (RAS) has

emerged as a hot topic in the aquaculture industry due to its high

productivity and eco-friendly performance. The industrial-scale

RAS is an environmentally friendly, water-saving, and land-saving

intensive farming model. In a RAS, harmful substances such as

high-concentration ammonia nitrogen and nitrite produced in the

aquaculture ponds were treated through mechanical filtration,

biological purification, and sterilization before being returned to

the aquaculture ponds, forming a closed-loop system (Li et al.,

2023b). This system was unaffected by external environmental

conditions and enabled precise control of aquaculture conditions.

Additionally, its extremely low water exchange volume meant

minimal wastewater discharge, contributing to water resource

conservation. Therefore, an industrial-scale RAS was considered

to be a highly promising, environmentally friendly, aquaculture

mode (Li et al., 2023a).

Factors such as the location, water quality, and farming

conditions of different aquaculture modes can affect the growth

metabolism, intestinal status, and nutritional composition of

farmed organisms (Zhang et al., 2020). Hu et al. (2021) compared

the nutritional quality differences of bighead carp in regular farming

ponds, natural lakes, and reservoirs, and discovered that the bighead

carp from the reservoirs contained a wider variety of unsaturated

fatty acids and higher levels of total polyunsaturated fatty acids,
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while those from farming ponds contained more off-flavor

substances. Ma et al. (2023) compared the differences in the

quality of carp in ponds and RASs, revealing significant

influences of the farming mode on the physical properties,

nutritional components, mineral elements, volatile substances,

and serum biochemistry of the carp. Pond aquaculture is a widely

used traditional land-based aquaculture model, accounting for

15.75% of China’s marine aquaculture production, while

industrialized aquaculture (including RASs) only accounts for

2.1% (Edwards et al., 1997; Fisheries Bureau of the Ministry of

Agriculture and Rural Affairs, 2023). As a modern and emerging

system of land-based aquaculture, there have been reports of the use

of RASs for grouper farming; however, there is limited comparative

research available into the health and nutritional value of grouper

under pond and land-based recirculating water farming systems.

This study aims to compare the growth performance, safety, and

nutritional value of groupers under two different farming

conditions, offering valuable insights into the sustainable

development of grouper aquaculture.
2 Materials and methods

2.1 Experimental material

The experimental fish could be procured from the same batch of

grouper from Shandong Rizhao Hongqi Aquatic Products Co., Ltd.

The SPS used PVC water tanks, with a depth of 700 mm, a bottom

composed of silt, and a volume of 500 L and operated as a static

water environment, with a daily water exchange rate of 50%. The

RAS consisted of fish tanks, a microfilter, biofilters (fixed bed

bioreactor), and ultraviolet sterilization tanks. The fish tank had a

volume of 1200 L and a water flow rate of 200 L/h, with a daily water

exchange rate of 5% (Figure 1). Each system comprised three

parallel fish tanks. Lively and active groupers were selected and

reared for 80 days using the simulated pond and RAS. The initial

weight of the grouper was 115.58 ± 18.51 g. The initial stocking

density was 30 fish/m3 in both systems. Both systems were

maintained within the same indoor environment and utilized the

same water source. During the experimental procedure, the

temperature was maintained at 25.63 ± 0.38°C, dissolved oxygen

(DO) levels were 6.68 ± 0.18 mg/L, salinity was 32.05 ± 1.28 ppt,

and pH was 7.91 ± 0.10. The concentration of NH4
+-N in the RAS

during the experimental period was 0.38 ± 0.02 mg/L, and the

concentration of NO2
–N was 0.51 ± 0.001 mg/L. In the SPS, the

concentration of NH4
+-N ranged from 0.86 ± 0.30 mg/L to 1.26 ±

0.21 mg/L, while the concentration of NO2
–N ranged from 1.02 ±

0.31 mg/L to 1.60 ± 0.17 mg/L.
2.2 Daily management

During the experiment, the fish were fed at 9:00 and 17:00, with

a daily total feeding amount of 1.5% of the grouper’s body weight,

manual feeding is adopted The grouper feed from Shandong

Shengsuo Technology Co., Ltd was used, with the main
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composition being 48% crude protein, 9% crude fat, 17% crude ash,

and 6% crude fiber. The ponds were inspected three times daily to

observe any abnormalities in the grouper, and in the event of

discovering dead fish, they were promptly removed and recorded.
2.3 Experimental method

2.3.1 Growth parameter
After the experiment, the individual weight and total weight of

the grouper in both the SPS and RAS were measured to calculate the

growth parameters of the grouper.

Survival rate:c ̧  = (N0  −  Nd )=N0 �  100%

Weight gain rate:WGR = (mt −m0 )=m0 �  100%

Specific growth rate: = SGR ( lnmt − lnm0)=t

Feed conversion ratio: FCR = G=(mt −m0)

In the formulae: N0 represents the initial number of fish; Nd is

the number offish deaths;mt andm0 denote the final and initial fish

body masses, g; t denotes the duration of the experiment, d; G

represents the total feed amount, g.

2.3.2 Common pathogen examination
Three fish were randomly selected from each fish tank in both

breeding systems, and 0.1 g of intestinal contents from each fish

were ground. The resulting samples were then diluted 100-fold with

sterile phosphate buffer saline (PBS) and evenly spread onto

thiosulfate citrate bile-salt sucrose (TCBS) agar plates, followed by

incubation at 37°C for 24 hours for Vibrio quantification (Mougin

et al., 2021).

Bacterial genomic DNA was extracted using a commercial kit,

and the 16S rDNA segment was amplified using PCR. After

sequencing, the obtained sequences were compared against the

NCBI database. Sequences with a similarity of over 99% could be

considered to belong to the same bacterial species. Additionally, a

small section of the grouper intestinal tract was fixed in 95%

alcohol, and the genomic DNA was extracted for PCR
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amplification. Agarose gel electrophoresis was then adopted to

ascertain whether the PCR products contained typical pathogens.

2.3.3 Analysis of intestinal flora
2.3.3.1 Structure and diversity of intestinal flora

The intestinal DNA samples were extracted using a commercial

kit, and the extracted genomic DNA was checked by 1% agarose gel

electrophoresis. Specific regions were amplified by using PCR with

primers containing barcode tags. The PCR products from the same

sample were pooled and checked via 2% agarose gel electrophoresis.

The PCR products were then purified by the AxyPrep DNA Gel

Extraction Kit (AXYGEN) and eluted with Tris_HCl. After

purification, the DNA was quantified using the QuantiFluorTM-

ST blue fluorescence quantification system (Promega).

Subsequently, Illumina MiSeq 2 × 300 bp high-throughput

sequencing and bioinformatics analysis were performed. Using

QIIME Version 1.8.0 software, alpha diversity analysis of

operational taxonomic units (OTUs) was conducted,

encompassing Ace, Chao, and Shannon indices.

2.3.4 Analysis of off-flavor compounds
The gill, skin, intestinal, and muscle samples were extracted

using acetonitrile. After adsorbing lipids, polymers, pigments, and

other impurities using C18 and PSA, the samples were analyzed

using a 6890N GS-5975 MS gas chromatography-mass

spectrometer. The analysis utilized a DB-624UI capillary column

(30 m × 0.25 mm × 1.40 mm). The temperature ramping program

consisted of an initial temperature of 60°C, held for 2.5 minutes,

followed by an increase at a rate of 15°C/min to 150°C, where it was

maintained for five minutes, and then increased to 250°C at a rate of

5°C/min. The ion source was an electron impact ionization (EI)

source at an ionization energy of 70 eV and a source temperature of

280°C. The scanning mode employed was selected ion monitoring

(SIM) (Wang et al., 2023).

2.3.5 Analysis of muscle nutrients
Three fish were randomly selected from each fish tank in both

the SPS and RAS systems, and their muscle tissues were subjected to

measurements following the industrial standards below. The water

content: the direct drying method, GB5009.3–2016. The ash
A B

FIGURE 1

Two aquaculture systems, (A) SPS; (B) the RAS.
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content: the dry ashing method, GB5009.4–2016. The crude protein

content: the Kjeldahl method, GB500. 5–2016. Crude lipid: The

Soxhlet extraction method, GB5009. 6–2016 (Jia et al., 2022).

According to the industry standard (GB 5009.124–2016), the

fatty acid composition was determined using a 7890 B gas

chromatograph, and the relative percentage content of each major

fatty acid was calculated using the area normalization method.

Additionally, the amino acid composition of the muscle tissue of the

grouper was determined using an A300 amino acid analyzer as per

industry standard (GB 5009.124–2016), and the relative percentage

content of each major amino acid was calculated using the area

normalization method (Jia et al., 2022).

The nutritional value evaluation method: amino acid scores

(AAS), chemical scores (CS), and the essential amino acid index

(EAAI) were calculated based on the amino acid scoring pattern

suggested by the Food and Agriculture Organization/World Health

Organization, and the amino acid pattern of whole egg protein,

using the following formulae (FAO/WHO,1973):

AAS =
The amino acid content of the sample ( % )

Amino acid content of the same species in FAO scoring standard model ( % )

CS =
The amino acid content of the sample ( % )

The corresponding amino acid content in whole eggs ( % )

EAAI =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100A
AE

� 100B
BE

� 100C
CE

�…� 100I
100IE

n

r

EA, EB, …, EH represent the content of those essential amino

acids (EAAs) compared, EEA, EEB, …, EEH denote the content of

EAAs in whole egg proteins, n is the number of EAAs compared.
2.4 Data processing

The data were analyzed using two-sample t-test in SSPS

software. A difference with P < 0.05 was considered statistically

significant, while that at P < 0.01 was deemed highly significant. The

experimental data were presented as mean ± standard deviation.
3 Results

3.1 Growth performance

The growth parameters of the grouper in the two systems are

listed in Table 1. In both aquaculture systems, the survival rate of

the grouper was 100%. In the SPS, the individual weight of the

grouper increased from 121.15 ± 17.32 g to 208.57 ± 37.38 g,

resulting in a weight gain rate (WGR) of 72.16%. The SGR was 0.73,

and the feed conversion ratio (FCR) was 1.21. In the RAS, the

individual weight of the grouper increased from 115.58 ± 18.51 g to

233.81 ± 29.97 g, resulting in aWGR of 102.36%. The SGR was 0.87,

and the FCR was 0.88. The SGR and FCR in the RAS were

significantly higher than those in the SPS (P < 0.05). The
Frontiers in Marine Science 04
performance of the grouper in the RAS was superior to that in

the pond aquaculture system.
3.2 Analysis of pathogenic bacteria and
intestinal microorganisms

3.2.1 Comparison of pathogenic bacteria in two
culture modes

Both aquaculture systems were found to have predominantly

harbored Vibrio harveyi. The average count of Vibrio harveyi in the

fish intestines within the RAS was 2.1 × 104 CFU/g, while in the

pond simulation, the average count was 8.21 × 104 CFU/g. The

pond count was significantly higher than that in the RAS (Figure 2).

In both the SPS and the RAS, Singapore grouper iridovirus

(SGIV), acute hepatopancreatic necrosis disease (AHPND), and

Enterocytozoon hepatopenaei (EHP) were not detected.

3.2.2 Comparison of intestinal microbes in two
culture modes

The composition of intestinal microbiota in both aquaculture

systems is shown in Figure 3. At the phylum level, the predominant

microbial communities in both aquaculture systems were Firmicutes

(45.76–58.51%), Proteobacteria (13.93–23.31%), Actinobacteriota

(10.92–16.75%), Bacteroidota (4.58–6.53%), Desulfobacterota (1.62–

3.86%), Chloroflexi (1.30–2.43%), Gemmatimonadota (0.86–1.53%),

and Spirochaetota (1.07–1.31%). Significantly different relative

abundances were observed in Proteobacteria, Bacteroidota, and

Desulfobacterota (P < 0.05), while Actinobacteriota exhibited highly

significant differences (P < 0.01).

Microbial diversity analysis (Figure 4) indicated that there were

no significant differences in the Ace index, Chao index, and

Shannon index in the intestinal microbiota of the grouper

between the two aquaculture systems.
3.3 Off-flavor compounds

In samples of gills, skin, liver, and muscle from both

aquaculture modes, geosmin and 2-methylisoborneol were not

detected. Off-flavor compounds in both aquaculture modes did

not reach the limit of detection.
TABLE 1 Growth indicators of the grouper in two aquaculture models.

Index SPS RAS

Initial individual
mass (g)

121.15 ± 17.32 115.58 ± 18.51

Final individual mass (g) 208.57 ± 37.38 233.81 ± 29.97

WGR (%) 72.16 102.36

SGR(%/d) 0.73* 0.87

FCR 1.21* 0.88
*Indicates a significant difference (P < 0.05).
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3.4 Nutrient analysis

3.4.1 Conventional nutrients
The conventional nutritional composition of the grouper in the

two farming systems is displayed in Table 2. The muscle moisture,

ash, crude protein, and crude lipid content of the grouper in both

farming systems were found to be similar, with no significant

differences (P > 0.05).

3.4.2 Amino acids
The muscle amino acid content of the grouper in two

aquaculture systems is displayed in Table 3. A total of 18 amino
Frontiers in Marine Science 05
acids and taurine were detected, including eight EAAs, six non-

essential amino acids (NEAAs), and four delicious amino acids

(DAAs). The levels of threonine, lysine, histidine, and proline in the

RAS were significantly higher than those in the SPS. Meanwhile, the

levels of serine, isoleucine, and tyrosine in the SPS were significantly

higher than those in the RAS. There were no significant differences

in the total amounts of EAAs and NEAAs between the two systems.

The DAA content in the RAS was significantly higher than that in

SPS, indicating that the culture system significantly affects the

muscle flavor of the grouper.

Table 4 shows that the EAA content in both aquaculture

systems was close to the FAO/WHO pattern but lower than that
A

B

FIGURE 2

Comparison of vibrio in the grouper (Pinephelus fuscoguttatus ♀× Epinephelus lanceolatus ♂) in two culture modes. (A) The RAS; (B) SPS.
A B

FIGURE 3

Composition and abundance of intestinal microorganisms on phylum level in two different cultured grouper species (*, significant differences,
P < 0.05,** indicates a highly significant difference (P < 0.01).
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of whole egg protein model. In the AAS scoring results, both lysine

and methionine-cysteine scores were higher than 1. In both the

SPS and RAS, the first and second limiting amino acids were valine

and isoleucine.

3.4.3 Fatty acids
According to Table 5, a total of 17 fatty acids were detected,

including four saturated fatty acids (SFAs), four monounsaturated

fatty acids (MUFAs), and nine polyunsaturated fatty acids (PUFAs).

The most abundant fatty acid in the grouper from both aquaculture

systems was C18:2n-6. The levels of C17:1n-7, C20:3n-3, and w-
3PUFA in the muscle of grouper from the SPS were significantly

higher than those in the RAS (P < 0.05). Conversely, the relative

contents of C14:0, SFA, C18:2n-6, C20:2n-6, and w-6PUFA in the

muscle of grouper from the RAS were significantly higher than

those in the SPS (P < 0.05), enhancing the maintenance of human

health and nutritional balance.
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4 Discussion

4.1 Effects of culture modes on the growth
of cultured organisms

The results of this study indicate that under the same stocking

density, the FCR and SGR of the grouper in the RAS were both

higher than those in the SPS, showing superior growth performance

(Table 1). Additionally, the output in the RAS was higher than that

in the SPS within the same culture period. This aligns with the

findings of Zhang et al. (2011) who reported that the growth

performance of yellow catfish (Pelteobagrus fulvidraco) in a RAS

was superior to that of the control group. As a result, the high

production performance of industrialized recirculating aquaculture

as an eco-friendly aquaculture mode has attracted significant

attention. By comparing the growth performance of yellow catfish

in the RAS and open pond aquaculture system, Paolo Melotti

(2014) found that under significantly higher stocking densities in

the RAS, the final body length, weight, survival rate, and SGR of the

yellow catfish were all higher than those in pond aquaculture. This

suggested that from the perspective of increasing production, the

performance of the RAS was superior to extensive open pond

aquaculture. Fish as poikilothermic vertebrates were susceptible to

environmental factors such as water flow, depth, temperature, and

water quality (Oca and Masalo, 2013). Compared to traditional

pond aquaculture, the RAS had stronger water flow, more stable

temperature control, and could maintain key water quality factors

(e.g. NH4
+-N, NO2

–N) at lower levels, providing a favorable growth
TABLE 2 Essential nutrients in muscle of the grouper in two systems (%,
n = 3, fresh sample).

Items SPS RAS

Moisture 75.14 ± 0.22 75.57 ± 0.12

Ash 1.32 ± 0.01 1.33 ± 0.003

Crude protein 20.93 ± 0.12 21.3 ± 0.16

Crude lipid 2.54 ± 0.08 2.62 ± 0.06
FIGURE 4

Intestinal microbial diversity index in two different aquaculture modes.
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environment for aquaculture organisms, thereby exerting a positive

influence on their growth.
4.2 Effects of culture modes on the health
of cultured organisms

Vibriosis is one of the most severe bacterial diseases in marine

aquaculture. Wei et al. (2020) found that vibriosis accounted for

66.7% of the diseases in grouper, with a mortality rate of 50%. In the

process of aquaculture, high abundance of Vibrio or environmental

stimuli could lead to outbreaks of vibriosis in cultured organisms

(Stalin and Srinivasan, 2017). The results of this experiment showed

that the concentration of Vibrio in the intestines of grouper in the

RAS was significantly lower than that in the SPS, indicating better

safety performance. This matched the findings reported by

(Middlemiss et al., 2015) demonstrating that ultraviolet light

devices could reduce Vibrio levels and enhance the safety of

aquaculture systems.
TABLE 3 The composition acid in muscle of the grouper in two systems
(%, n = 3, dry matter).

Amino acids SPS RAS

Taurine 0.93 ± 0.06 0.96 ± 0.06

Aspartic acid 7.88 ± 0.01 7.80 ± 0.02

Threonine 3.26 ± 0.02* 3.44 ± 0.02

Serine 3.48 ± 0.05* 3.06 ± 0.07

Glutamic acid 11.92 ± 0.32 11.69 ± 0.49

Glycine 3.43 ± 0.03* 4.15 ± 0.13

Alanine 4.45 ± 0.19 4.49 ± 0.28

Cysteine 1.78 ± 0.11 1.78 ± 0.15

Valine 2.77 ± 0.02* 2.60 ± 0.07

Methionine 2.29 ± 0.02 1.98 ± 0.10

Isoleucine 2.61 ± 0.32 2.56 ± 0.04

Leucine 5.70 ± 0.14 5.52 ± 0.19

Tyrosine 2.56 ± 0.06* 2.27 ± 0.01

Phenylalanine 3.03 ± 0.08 2.96 ± 0.11

Lysine 6.87 ± 0.14 6.69 ± 0.27

Histidine 1.43 ± 0.02* 1.82 ± 0.06

Arginine 4.27 ± 0.08 4.16 ± 0.13

Proline 2.33 ± 0.07* 2.41 ± 0.13

Tryptophan 3.57 ± 0.3 4.05 ± 0.72

EAA 26.00 ± 0.27 26.63 ± 0.21

NEAA 20.60 ± 0.20* 21.85 ± 0.25

DAA 27.31 ± 0.26* 28.66 ± 0.03

TAA 70.47 ± 0.52 71.32 ± 0.88
*indicates a significant difference (P < 0.05). EAA refers to the total content of essential amino
acids; NEAA refers to the total content of non-essential amino acids; DAA represents the total
content of delicious amino acids, and TAA refers to the total amino acid content.
TABLE 4 Comparison of AAS, CS, and EAAI between two systems
cultured grouper (%, n = 3, fresh sample).

Essential
amino
acid

AAS CS

SPS RAS SPS RAS

Threonine 0.82 0.83 0.70 0.72

Valine 0.56 0.52 0.42 0.41

Isoleucine 0.64 0.65 0.48 0.46

Leucine 0.81 0.78 0.67 0.65

Lysine 1.25 1.23 0.96 0.95

Methionine-
cysteine

1.12 1.13 0.64 0.65

Tyrosine-
phenylalanine

0.91 0.87 0.61 0.59

EAAI – – 62.06 61.2
TABLE 5 The composition and content of total fatty acids and free fatty
acids of grass carp under different modes of aquaculture (%, n = 3,
dry matter).

Fatty acid SPS RAS

C14:0 3.22 ± 0.14* 3.50 ± 0.49

C16:0 19.55 ± 0.13 19.47 ± 0.03

C18:0 4.98 ± 0.12 4.78 ± 0.08

C20:0 0.27 ± 0.01 0.29 ± 0.01

SSFA 27.94 ± 0.04* 28.38 ± 0.03

C14:1n-5 0.27 ± 0.003 0.29 ± 0.09

C16:1n-7 4.53 ± 0.15 4.39 ± 0.08

C17:1n-7 0.24 ± 0.01* 0.18 ± 0.01

C18:1n-9c 17.20 ± 0.76 17.68 ± 0.77

SMUFA 22.21 ± 0.72 22.55 ± 0.66

C18:2n-6c 22.44 ± 0.03* 24.05 ± 0.56

C18:3n-6 0.84 ± 0.01* 1.23 ± 0.13

C20:2n-6 0.66 ± 0.07** 0.79 ± 0.03

C20:3n-6 1.05 ± 0.07 1.15 ± 0.16

Sn-6PUFA 25.00 ± 0.15* 27.22 ± 0.61

C18–3n-3 2.41 ± 0.12 2.53 ± 0.07

C20:3n-3 0.43 ± 0.02** 0.33 ± 0.01

C22:5n-3 1.37 ± 0.10 1.42 ± 0.14

C20:5n-3(EPA) 4.05 ± 0.72 3.57 ± 0.3

C22:6n-3(DHA) 5.80 ± 0.66 5.45 ± 0.46

Sn-3PUFA 14.70 ± 0.47* 12.97 ± 0.61
*denotes a significant difference (P < 0.05), ** indicates a highly significant difference (P <
0.01). SFA indicates the saturated fatty acids. MUFA indicates the monounsaturated fatty
acids. PUFA indicates the polyunsaturated fatty acids. Sn-3 indicates the total content of w-3
fatty acids. Sn-6 represents the total content of w-6 fatty acids.
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Intestinal microbiota were found to play a crucial role in

regulating the nutrition, immunity, and pathogen antagonism of

fish, and its composition and abundance were important

indicators of the health of cultured organisms (Banerjee and

Ray, 2017). The experimental results (Figure 4) indicated that

there was no significant difference in the microbial diversity of

grouper intestines between the SPS and RAS groups (P > 0.05),

but the diversity in the RAS group was slightly lower than that in

the SPS group. This might be attributed to the UV sterilization

device in the RAS system, which sterilized the culture water

during the circulation process. This could result in fewer

environmental bacteria in the RAS group, thus affecting the

intestinal microbiota of grouper. The higher diversity of

microbiota indicated a greater stability, but it might also harbor

potential pathogens, which was closely related to dominant

microbial communities (Vine et al., 2004). Analysis of the

intestinal microbiota composition of the grouper implied that

the dominant phyla in the intestines of grouper in both

aquacu l tu r e modes a r e F i rmicu te s , P ro t eobac t e r i a ,

Bacteroidetes, and Actinobacteria. This finding was consistent

with the composition of the intestinal microbiota in healthy fish

reported by Wang et al. (2018). The aquaculture mode did not

change the microbial species in the fish intestines, but it exerted a

certain influence on their abundance. In the RAS, the relative

abundance of Firmicutes and Bacteroidetes was significantly

higher than that in the SPS, while the relative abundance of

Proteobacteria was lower than that in the SPS, and the relative

abundance of Actinobacteria was significantly lower than that in

the SPS. Firmicutes could produce various enzymes to promote

the decomposition and absorption of nutrients. Zhu et al. (2021)

discovered that an increase in the abundance of Firmicutes in the

intestines under the same dietary conditions was conducive to

yellow catfish obtaining more energy from food. Bacteroidetes

could participate in carbohydrate decomposition and protein

metabolism, and its increased abundance was beneficial for

enhancing mucosal barrier function and body immune

response (Hiippala et al., 2018). Desulfobacterota was a rare

aquatic microbial group in the fish intestines, and the relatively

high abundance of this group in the experiment was speculated to

be related to the aquaculture water environment.

In the aquaculture industry, fish diseases spread rapidly, are

highly infectious, and are difficult to treat. Once a disease occurs, it

can affect the quality of aquatic products and the stability of

aquaculture systems, causing significant economic losses (Lafferty

et al., 2015). Accumulation of sediment and aging of water quality

in pond aquaculture systems were potential factors for disease

outbreaks, and pond systems, being open aquaculture systems,

were also susceptible to disease introduction through water

exchange with the external environment (Wanja et al., 2020).

RASs were independent and closed systems equipped with

sediment filtration, UV or ozone sterilization, and the microbiota

in the biofilter could regulate water quality and produce

antagonistic effects against pathogens such as Vibrio within the

system, which enhanced the overall safety (Holan, 2020; Schinke

et al., 2017).
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4.3 Effects of culture modes on off-flavor
compounds in fish

Off-flavor compounds could significantly affect the flavor and

commercial value of aquatic products. Geosmin and 2-

methylisoborneol were commonly encountered off-flavor

compounds in aquaculture. They were primarily produced by

cyanobacteria, various species of Streptomyces and fungi (Abd El-

Hack et al., 2022). When absorbed through the gills, skin, and

intestines, these substances could cause fish to develop off-flavors,

thus reducing the quality and economic value of the fish (Nerenberg

et al., 2000).

While reports on off-flavor compounds in aquaculture

primarily focused on freshwater systems, some studies found that

Actinomycetes in marine water systems could also produce off-

flavor compounds, which could accumulate in RASs (Azaria and

Van Rijn, 2018). In this study, geosmin and 2-methylisoborneol

were not detected in the tissues of fish from both the SPS and the

RAS. This absence might be associated with the species of cultured

organisms, as there was limited information regarding the presence

of off-flavor compounds in the grouper. However, the relative

abundance of Actinomycetes in the RAS was significantly lower

than that in the SPS (P < 0.01). This was due to the fact that the

ultraviolet germicidal system in the RAS could eradicate

microorganisms in the aquaculture systems (Semenov and

Semenova, 2022). Furthermore, the advanced oxidation process

(Bunlipatanon and U-taynapun, 2017; Zorzi et al., 2023) and

biological treatment in the recirculating water system could

degrade geosmin and 2-methylisoborneol (Lindholm-Lehto and

Vielma, 2019). This suggested that, for marine aquaculture

systems, the likelihood of off-flavor compounds accumulating was

higher in pond systems than in the RAS.
4.4 Effects of culture modes on muscle
nutrient composition

The muscle is the main nutritional part of fish, and the

composition and content of moisture, ash, crude protein, and crude

lipid are the basic indicators for assessing the nutritional value of

muscle (Ahmed et al., 2022). The experimental results (Table 2)

showed that there were no significant differences in the moisture, ash,

crude protein, and crude lipid content between the RAS and SPS

groups. This finding indicated that, compared to the pond

aquaculture mode, the recirculating aquaculture mode did not

reduce the nutritional value of the grouper.

As shown in Table 3, 18 amino acids were detected in the

muscles of both grouper in the experiment, which was consistent

with the amino acid composition reported by Feng et al. (2020) for

grouper muscle-tissue samples. Although the types of amino acids

detected in the two aquaculture modes were the same, their

contents differed: the RAS group exhibited higher total amino

acid content, essential amino acid content, NEAA content, and

DDA content compared to the SPS group, with the NEAA and

umami amino acid content being significantly higher than those in
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the SPS group. This finding indicated that the aquaculture mode did

not affect the types of amino acids in the muscle of the grouper, but

it did affect the amino acid composition.

The freshness and deliciousness of fish protein depended on the

composition and level of DAAs, including aspartic acid, glutamic

acid, glycine, and alanine. In this experiment, the DAAs in the RAS

group were significantly higher than those in the SPS group,

indicating that the umami flavor of the grouper in the RAS was

superior to that of the SPS grouper. The accumulation of DAAs was

significantly related to the mode of aquaculture.

From the perspective of AAS and CS scores, both aquaculture

modes showed lysine and methionine scores higher than 1

(Table 4), indicating that consumption of grouper could

compensate for the lack of lysine and methionine in the human

body and promote normal growth and development (Tomé and

Bos, 2007).

Fatty acids are mainly divided into SFAs and UFAs. The SFAs

are important sources of energy, and are consumed first

(Trushenski et al., 2013). UFAs are a unique bioactive substance

that exerts various effects on the human body, including regulating

blood lipids, reducing cholesterol, suppressing inflammation, and

preventing cardiovascular diseases. Among them, the w-6 series,

w-3 series, EPA, and DHA were important indicators used when

evaluating the nutritional value of fatty acids, which can improve

human health and nutritional status (Alagawany et al., 2022). In

the present study, the total amounts of SFAs and UFAs in the RAS

group were higher than that in the SPS group, and the w-6 series in
PFAs was significantly higher than that in the SPS group (Table 5).

This was related to the different water-flow environments. In this

experiment, the RAS had flowing water with a flow rate of 200 L/h,

and the grouper remained active in the system, while the SPS group

was in relatively quiescent water. Previous research showed that the

activity of fish increased the overall energy consumption, requiring

more feed to be converted into body-energy substances for

supplementation, thereby altering the proportion of fatty acids

(Palstra and Planas, 2011). This finding was consistent with the

findings reported by Jia et al. (2022). Additionally, the water quality

conditions in the RAS were superior to those in the SPS, which had

a positive effect on the accumulation of UFAs (Copeman et al.,

2013). It is worth mentioning that the contents of linoleic acid and

linolenic acid, as essential fatty acids that the human body could

not synthesize, were higher in the RAS group than in the

SPS group.

In conclusion, based on the experimental data, the nutritional

value of the grouper muscle produced by the RAS was superior to

that of the SPS.
4.5 Economic analysis of RASs versus
traditional pond systems

Compared to conventional pond aquaculture, the establishment

and operation expenses of RASs were notably elevated. The RAS

necessitated meticulous precision in system design and control

parameters due to its incorporation of temperature regulation and
Frontiers in Marine Science 09
water circulation functionalities, which could in turn escalate

expenditure on electricity. Consequently, RASs predominantly

served for the cultivation of high-value and economically

consequential species, frequently alongside intensified stocking

densities, thereby typically yielding substantial returns. In this

study, under equivalent initial stocking densities, the FCR and

growth rate of the grouper in the RASs were significantly higher

than those in SPSs, In comparison to the findings of De et al. (2016)

regarding the FCR of hybrid groupers in pond farming, our study

observed higher FCR values. Huang et al. (2023) reported FCR values

ranging from 6 to 17 in grouper cage farming. Therefore, RASs

facilitated enhanced feed utilization efficiency, resulting in cost

savings in production. Moreover, the pathogen concentration in

RASs was lower than in SPSs, indicating superior disease

management over traditional pond farming. Hybrid groupers were

highly favored in aquaculture due to their rapid growth and strong

disease resistance (Natnan et al., 2023). With diminishing wild fish

resources, there was considerable potential for the aquaculture of

hybrid groupers. From a long-term perspective, although RASs

involved a higher initial operational investment, its ability to

achieve higher FCR and SGR, and reduce pathogen levels could

make it suitable for implementation in hybrid grouper farming.

This study focused on the influences of macroscopic

aquaculture patterns on the growth and nutritional quality of

hybrid groupers. Subsequent experiments could further explore

differences in aquaculture patterns, such as the effects of various

water-quality parameters, temperature, pH, and their influences on

cultured organisms.
5 Conclusion

In this study, the hybrid grouper (Pinephelus fuscoguttatus ♀ ×

Epinephelus lanceolatus ♂) demonstrates superior growth

performance, muscle nutrition, and taste in a RAS. Additionally,

the groupers in the RAS demonstrated lower pathogen levels, and a

better flavor and nutritional composition. Therefore, as a novel

aquaculture system, the RAS not only possesses high productivity

but also offers enhanced safety and reliability. This mode of

aquaculture presents advantages in terms of flavor and nutritional

composition, and thus, warrants further promotion.
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