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Insufficient studies in characterizing vertical structure of Chlorophyll-a (Chl-a) in

the ocean critically limit better understanding about marine ecosystem based on

global climate change. In this study, we developed a Gaussian-activation deep

neural network (Gaussian-DNN) model to assess vertical Chl-a structure in the

upper ocean at high spatial resolution. Our Gaussian-DNN model used the input

variables including satellite data of sea surface Chl-a and in-situ vertical physics

profiles (temperature and salinity) in the northwestern Pacific Ocean (NWPO).

After validation test based on two independent datasets of BGC-Argo and ship

measurement, we applied the Gaussian-DNN model to reconstruct temporal

evolution of 3-D Chl-a structure in the NWPO. Ourmodelling results successfully

explain over 80% of the Chl-a vertical profiles in the NWPO at a horizontal

resolution of 1° × 1° and 1 m vertical resolution within upper 300 meters during

2004 to 2022. Moreover, according to our modelling results, the Subsurface

Chlorophyll Maxima (SCMs) and total Chl-a within 0-300 m depths were

extracted and presented seasonal variability overlapping longer-time trends of

spatial discrepancies all over the NWPO. In addition, our sensitivity testing

suggested that sea-water temperatures predominantly control 3-D structures

of the Chl-a in the tropical NWPO, while salinity played a key role in the

temperate gyre of the NWPO. Here, our development of the Gaussian-DNN

model may also be applied to craft long term, 3-D Chl-a products in the

global ocean.
KEYWORDS

deep neural network, Gaussian activation, 3-D chlorophyll structure, subsurface

chlorophyll maximum, long-term trend
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1 Introduction

Marine phytoplankton provides nearly half of the global

primary production (Behrenfeld, 2001) and plays critical roles in

regulating ecosystem and carbon cycle in the global ocean (Gregg

et al., 2003; Anderson et al., 2021). Popularly, Chlorophyll-a

concentration (Chl-a) has served as an index in estimating

phytoplankton biomass, primary production, and the trophic

condition in the ocean (Volpe et al., 2012; Colella et al., 2016;

Hammond et al., 2020). So far, satellite remote sensing is a major

source of marine Chl-a data, meanwhile these data are limited

within the surface ocean that contains generally less than 20% of the

euphotic depths for phytoplankton photosynthesis process (Gordon

and McCluney, 1975; Matthes et al., 2023), thus unable to reveal

subsurface chlorophyll maxima (SCMs) beneath the surface mixed

layer. The SCMs are a ubiquitous and prominent characteristic in

both coastal seas and open oceans, commonly believed to form in

specific regions of the water column where opposing gradients of

light and nutrients, coupled with turbulent mixing, create

conditions conducive to optimal phytoplankton growth (Cullen

and Eppley, 1981; Letelier et al., 2004; Beckmann and Hense, 2007;

Cullen, 2015; Cornec et al., 2021). The SCMs significantly

contribute to primary production, highlighting their crucial role

in marine ecosystems (Fennel and Boss, 2003; Gong et al., 2015,

2017). Therefore, the mis-detection of SCMs by satellite leads to

limitation and also significant errors in estimating temporal

evolution of 3-D structure in the Chl-a production, with regional

errors even to 120% (Piatt et al., 1989; Fernand et al., 2013; Bouman

et al., 2020).

Since the 1980s, how to retrieval Chl-a vertical distributions

from surface-ocean data has been a subject of considerable attention

since the 1980s (Morel and Berthon, 1989). Statistical extrapolation

method is employed to derive vertical profile of Chl-a, commonly

by incorporating satellite-derived data (Morel and Berthon, 1989;

Richardson et al., 2003; Uitz et al., 2006). This approach involves

partitioning oceanic waters into trophic categories based on their

surface Chl-a values, ranging mainly from 0.01 mg m-3 to over 10

mg m-3. The mean vertical Chl-a profile in each category is then

computed using generalized Gaussian functions (Platt et al., 1988;

Gong et al., 2015). However, this method fails adequately describing

the shape of Chl-a profiles in various areas and on daily timescales.

In parallel, numerical models simulating gridded vertical Chl-a

profiles show large discrepancies, likely attributed to inconsistent

modeling parameters strategy and various grid-mesh resolutions

(Varela et al., 1992; Moeller et al., 2019; Masuda et al., 2021; Shu

et al., 2022).

Recently, more and more artificial intelligence technology is

employed to reconstruct vertical structure of ocean Chl-a on the

basis of satellite remote sensing data. For instance, Sammartino

et al. (2018) utilized an artificial neural network (ANN) model

(single hidden layer) on sea surface temperature (SST) and surface

Chl-a data, to infer the vertical profiles of Chl-a in the

Mediterranean Sea. Similarly, also based on SST and surface-

ocean Chl-a datasets, Chen et al. (2022a) and Wang et al. (2023a)

analyzed SCMs in the northwestern Pacific Ocean (NWPO) using

deep learning models. However, their studies commonly overlooked
Frontiers in Marine Science 02
potential impacts of network design along ocean depths in accuracy

to the results. There are some studies that utilize vertical variables as

predictors. For example, Sauzède et al. (2016) utilized an ANN

model to infer vertical profiles of the particulate backscattering

coefficient based on surface ocean-color estimates, vertical potential

densities, and mixed-layer depths. Similarly, Hu et al. (2023)

employed a Random Forest (RF) method to retrieve vertical Chl-a

profiles in the northern Indian Ocean, utilizing surface ocean-color

estimates, vertical temperature and salinity, and mixed-layer depths

as inputs. Although their studies improved the estimation accuracy

of 3-D structure by incorporating vertical physical properties, they

solely demonstrate the feasibility of climatology monthly vertical

structure or are restricted to the time span of the input data, leaving

the long-term 3-D Chl-a reconstruction problem unresolved.

The NWPO boasts one of the richest marine ecosystems

(Naiman et al., 1992) with abundant and diverse fishery resources

in the global ocean (Chikuni, 1986), and the atmosphere-ocean

coupled system in the NWPO is closely linked to the global

warming and also provides critical feedbacks (Xie et al., 2009;

Kulk et al., 2020; Shi et al., 2023). A few of studies investigated

the variabilities of surface Chl-a on the long-term trends in the

NWPO (Hammond et al., 2020; Chen et al., 2022b; Yu et al., 2023).

Significant negative trends of surface Chl-a are generally observed

in the oligotrophic gyres of the NWPO during 1998–2020 (Yu et al.,

2023). In the subarctic gyres of the NWPO, surface Chl-a presented

an increased tendency during 1997–2020 (Chen et al., 2022b).

However, given the prevailing SCMs in the NWPO (Cornec et al.,

2021; Chen et al., 2022a; Wang et al., 2023a), caution is warranted

when extending conclusions from surface Chl-a to water-column

integrated Chl-a. Meanwhile, the lack of long-term 3-D Chl-a

structure means that trends in water-column integrated Chl-a in

the NWPO remain an open question.

In this study, we engaged in extrapolative prediction for long-

term, gridded vertical Chl-a profiles in the NWPO using an

enhanced deep neural network (DNN) model. DNN models, as a

subset of deep learning, are distinguished by their multiple hidden

layers compared to ANN models, which typically have a single

hidden layer. They possess the capability to autonomously extract

intricate features from raw data and demonstrate higher scalability

in managing extensive and complex datasets (Li et al., 2020).

Moreover, DNN models have been certified to exhibit superior

performance in retrieving vertical bio-optical properties (e.g., Chl-a,

nitrate) compared to ANN models (Chen et al., 2022a; Wang et al.,

2023a, b) and RF models (Wang et al., 2023a) in the NWPO.

Therefore, through the precise reconstruction of 3-D Chl-a using

an enhanced DNN model, our study aims to an improved

understanding of the variability of SCMs characteristics and long-

term trends in depth-integrated Chl-a in the NWPO. This, in

turn, aids in elucidating the regional carbon cycle and marine

ecosystem dynamics, while also offering valuable insights for

future projections.

This paper is organized as: Section 2 provides the detailed

information on the DNN model based on a Gaussian activation

function (named as Gaussian-DNN), along with the data used for

model training, validation, and reconstruction, as well as the

evaluation methods employed in this study. In Section 3, the
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trained Gaussian-DNN was validated using two independent

datasets and proceeded to reconstruct long-term 3-D Chl-a

structures in the NWPO. Furthermore, based on the

reconstruction, Section 3 analyzed the spatiotemporal variations

of SCM characteristics and long-term trends in depth-integrated

Chl-a in water columns. Section 4 includes a sensitivity test for

input variables and a discussion on the importance of each input in

the developed DNN model for controlling the spatiotemporal

distribution of Chl-a in the NWPO, along with a discussion on

the uncertainties of our DNN model. In the end, a summary of our

key findings are illustrated in Section 5.
2 Data and methods

2.1 Data processing

2.1.1 Training data from Biogeochemical-
Argo dataset

The BGC-Argo program, a pioneering initiative utilizing profiling

floats for ocean-wide and distributed ocean monitoring (Bittig et al.,

2019), collects 3-D ocean variables including temperature, salinity and

Chl-a (https://biogeochemical-argo.org/). Field data utilized to train the

DNN model were obtained from 35 BGC-Argo profiling floats in the

NWPO region of 123 - 180°E, 12 - 54°N, as shown in Figure 1A. In

total, BGC-Argo floats provide 3941 vertical Chl-a profiles, spanning all

seasons from July 2017 to October 2022. In the data preparation stage,

we first corrected the overestimation of BGC-Argo Chl-a by

implementing a factor-two adjustment, as recommended by Cornec

et al. (2021). Subsequently, we identified and removed 9 vertical Chl-a

profiles with sea surface values exceeding 6.5 mg m-3, following the

criteria established by Venrick et al. (1987). Additionally, upon visual

inspection, 173 profiles were flagged as abnormal and excluded from

the dataset. Among these, 123 profiles exhibited consistent

concentrations with minor fluctuations within the surface 20 m,

while the remaining 50 profiles displayed anomalously high values

below a depth of 250 meters, identified using the 3s rule. Furthermore,

we applied the Savitzky-Golay filtering method to refine the remaining

profiles (Press and Teukolsky, 1990). Ultimately, a dataset comprising
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3,759 vertical Chl-a profiles, along with paired temperature and salinity

data, was retained for training the Gaussian-DNN model. Following

the assumptions of Cornec et al. (2021) about phytoplankton living

habitat, we applied our model for the ocean of 0–300 m.

In our analysis, based on our statistical analysis on SCMs

characteristics (See Chen et al., 2022a), the 35 profiling floats of

the BGC-Argo are catalogued to three boxes to represent the tropics

(12–24°N), the subtropical (24–38°N) and temperate (38–54°N)

gyres, respectively (Figure 1A), aiming to illustrate the variations in

vertical Chl-a distribution across latitudes in the NWPO.

2.1.2 Validation data from ship measurements
To assess the robustness and generalization of the trained DNN

model on datasets from different sources, the datasets of Japan

Meteorological Agency (JMA) from April 2015 to March 2021

(https://www.jma.go.jp/jma/indexe.html) are obtained, as shown in

Figure 1B. We retained a total of 937 profiles of Chl-a and their

corresponding temperature-salinity profiles. The Chl-a data from

JMA spans a range of 0 to 19.83 mg m-3. Similar to the data

processing for BGC-Argo float data, after filtering out Chl-a profiles

with sea surface values greater than 6.5 mg m-3, 924 profiles

remained for deployment in the trained Gaussian-DNN model.

The vertical resolution of the Chl-a data in the JMA dataset is at

standard layers of 0, 5, 10, 25, 50, 75, 100, 150, 200, 250, and 300 m,

and the predicted Chl-a values at these depths were output from the

trained Gaussian-DNN model.

All retained measurement points were utilized for validating the

Gaussian-DNN model. The choice of N-S transects at 137°E and

165°E was driven by their comprehensive tempo-spatial coverage

across all seasons and multiple sub-regions, rendering them ideal

for elucidating the validation process.

2.1.3 Reconstruction data from satellite and Argo
Satellite Chl-a data were obtained to reconstruct gridded

vertical distribution of Chl-a in the NWPO by using the trained

DNN model. Monthly Level-3 Chl-a data products from the

MODIS Aqua satellite, with a standard resolution of 9 km, were

collected from January 2004 to June 2022, sourced from the NASA

Goddard Space Flight Center (http://oceancolor.gsfc.nasa.gov/,
A B

FIGURE 1

(A) Locations and measurement months of 35 BGC-Argo buoys in the Northwest Pacific Ocean. (B) Ship measured sites during cruises RF and KS
from Japan Maritime Agency (JMA). Data at N-S transects of 137°E and 165°E highlighted to present the validation process.
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accessed on 13 April 2023). Subsequently, we conducted a

comparative analysis between MODIS Chl-a values and those

derived from BGC-Argo datasets. The results are comparable

between them, although some discrepancies are noted within the

domain of 0–0.2 mg m-3 (Supplementary Figure 1). This indicates

the potential effectiveness of MODIS data in complementing our

Gaussian-DNN model trained with BGC-Argo data.

Within the MODIS Chl-a dataset we acquired, there is an overall

missing rate of approximately 5% in the NWPO, primarily attributable

to cloud cover. Spatially, the regions with high missing data rates are

temperate waters (BOX3), with an average missing data rate of about

30% (Supplementary Figure 2). Following this, the subtropical area

(BOX2) exhibits an average missing data rate of about 10%.

Conversely, the tropical region (BOX1) shows minimal missing data.

Given our focus on reconstructing the 3-D gridded Chl-a structure

using surface Chl-a, we applied the Data Interpolating Empirical

Orthogonal Functions (DINEOF) method to fill in the gaps of

MODIS Chl-a (see Supplementary Figure 3). DINEOF is an

interpolation method suitable for handling remote sensing and

oceanographic data with missing values (Beckers and Rixen, 2003;

Alvera-Azcárate et al., 2005; Liu andWang, 2018, 2023). It decomposes

data into spatial and temporal components using empirical orthogonal

functions (EOFs) and utilizes linear combinations of orthogonal

functions to estimate missing values. By selecting the most important

spatial and temporal modes and employing an iterative optimization

strategy to progressively refine the estimates, DINEOF is capable of

producing relatively accurate interpolation results, contributing to the

restoration of data integrity and accuracy.

Additionally, temperature-salinity profiles obtained from Argo

profiling buoys were utilized as gridded high-resolution data,

allowing the incorporation of known deep hydrographic

information into the inference of gridded Chl-a vertical profiles.

These temperature and salinity profiles were obtained from the

global ocean Argo grid dataset (BOA-Argo), accessible through the

China Argo Real-Time Data Center websi te (http : / /

www.argo.org.cn/) or the Argo Program Office website (http://

www.argo.ucsd.edu/). This dataset is available from January 2004

onwards, with a spatial resolution of 1°×1°. The BOA-Argo dataset

was generated through Barnes successive corrections following

stringent quality recontrol of real-time global ocean Argo data (Li

et al., 2017). It is also available for download from the Argo

Program Office website (http://www.argo.ucsd.edu/). Extensive

evaluations have confirmed its robust comparability with various

other Argo gridded datasets, including WOA13, Roemmich-Argo,

Jamestec-Argo, EN4-Argo, and IPRC-Argo, across multiple metrics

such as climatology, independent observations, mixed-layer depth,

and more (Li et al., 2017). This dataset comprises 48 vertical levels

between 0 and 1975 meters in depth, with intervals as follows: 5 m,

10–200 m at 10 m intervals, 220–500 m at 20 m intervals, 600–1500

m at 100 m intervals, 1750 m, and 1950 m. To retrieve the depth-

resolved Chl-a profiles, we employed linear interpolation to adjust

the BOA-Argo temperature-salinity profiles to a 1-meter interval

within the 0–300 m depth range.

The monthly MODIS Chl-a and BOA-Argo thermohaline data

were synchronized to create the input dataset for reconstructing
Frontiers in Marine Science 04
3-D Chl-a structures. This synchronization began in January 2004,

aligning with the earliest available thermohaline data provided by

the BOA-Argo dataset. Additionally, to ensure compatibility with

the BOA-Argo data, the MODIS gap-free Chl-a data underwent

processing to achieve a spatial resolution of 1°×1° using a bilinear

interpolation method. This yielded a surface Chl-a dataset

containing a total of 400,044 data points, with 109 points

surpassing 6.5 mg m-3. Given the negligible influence of relatively

small percentage of high values (0.03%) on network performance

and the constitution of data, we retained these 109 points. Overall,

the input data used for reconstruction consisted of monthly datasets

spanning from January 2004 to June 2022, characterized by a spatial

resolution of 1°×1° and a vertical resolution of 1 meter.
2.2 DNN model configuration

DNN, a deep learning method characterized by multiple hidden

layers in its neural network architecture, was employed in our study

with 4 hidden layers (Figure 2). Compared with a conventional

ANN, the use of multiple hidden layers allows DNNmodels to learn

more efficient and compact representations of the data, leading to

better scalability and performance on large-scale datasets (Li et al.,

2020). Generally, operation of our DNN model involves two main

steps of forward propagation and backward propagation. In the

back-propagation step, our DNN model is trained with the Adam

optimizer utilized gradient descent. To prevent overfitting, we

additionally employed a dropout technique, strategically

discarding some neurons. Through continuous iterations between

these two steps, our DNN model minimizes the loss value within

training procedure.

Our DNN model employed a Gaussian radial basis function

(Equation 1) as the nonlinear activation function (Figure 2).

f =  e−p(Xj−b)
2

(1)

where Xj is the value of the j
th output in the hidden layer, b is the

bias term. The Gaussian radial basis function exhibits a bell-shaped

curve, resembling a quadratic function for the center values of input

variables (Sharma et al., 2020). Compared to conventional

activation functions such as sigmoid or tanh, the Gaussian

activation function has been shown to offer superior performance

in solving nonlinear problems (Gundogdu et al., 2015). It is notable

that Chen et al. (2022a) demonstrated that the Gaussian activation

function is more effective in capturing SCMs features compared to

the sigmoid activation function.

In the set-up of our DNN model, we deliberately initialize the

bias term b in the Gaussian radial basis function to 0. It diverges

from the methodology employed by Chen et al. (2022a), who

computed the bias term based on the annual mean of SCMs

depth. This deliberate choice empowers our DNN model to not

only replicate the SCMs phenomena, as demonstrated by Chen et al.

(2022a), but also to invert vertical Chl-a profiles for other types in

the NWPO (see Section 3).

As is widely acknowledged in the field, neural networks lack a

singular configuration or definitive solution (Scardi, 1996;
frontiersin.org
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Sammartino et al., 2018). Therefore, in determining the setup of the

parameters in our DNN model, we engaged in an exhaustive

exploration through numerous empirical simulations, selecting

configurations that showcased superior performance on the

validation set. Among the numerous of tests conducted, each

varying in momentum, learning rates, the number of hidden layers,

and the number of units in the hidden layers, the configuration we

settled upon demonstrated the most optimal performance relative to

our desired output, as detailed in Table 1. For example, with setting

the batch size set to 100,000, we achieved convergence of both

training and validation losses, indicating that the model adeptly

learns the intricate patterns embedded within the data. This batch

size translates to selecting 333 profiles from the pool of 3,759 profiles

for training during each iteration. Given that our dataset comprises

3,759 Chl-a profiles, each containing 300 values in depths, this

configuration ensures efficient utilization of the available data.

In our Gaussian-DNN model, input variables included sea

surface Chl-a and 3D-structure of sea-water temperatures and

salinities, as well as their geographic (latitude, longitude and

depth) and time (year and month) information (see Figure 2).

Physically, the inclusion of temperature and salinity in the

Gaussian-DNN model aids to capture the vertical stratification

structure, and thus improves model ability in discerning vertical

patterns of Chl-a (Sauzède et al., 2016; Hu et al., 2023). Thus, in the
Frontiers in Marine Science 05
Gaussian-DNN output, vertical structure of Chl-a within 0–300 m

water depths at 1 m resolution is predicted.

Before the training process, all the data employed for model

training processes a normalization to ensure dimensionless and

within the same magnitude, as illustrated in Supplementary Equation

S1. Then, all variables at each data point were centered around 0 with a

variance of 1 (Supplementary Equation S1). Our utilization of the

Gaussian-DNN model used randomly selected 75% of all the available

input data for training, with the rest 25% data for test. In addition, 15%

of the training set was randomly chosen as a validation set to assess

whether the Gaussian-DNNmodel is overfitting or not. It is noted that,

to ensure the stability and reliability of the subsequent data analysis, we

ran the trained model 10 times and analyzed the average of the results

from these 10 runs.
2.3 Statistical evaluation indexes

Multiple metrics capture various aspects of model performance.

Nash-Sutcliffe model efficiency (NSE) evaluates accuracy and

precision, while Root Mean Squared Error (RMSE), Mean

Absolute Error (MAE), and Mean Absolute Percentage Error

(MAPE) specifically measure accuracy by assessing the difference

between model results and observations. These accuracy metrics are

less sensitive to covariance and are often used alongside a

correlation metric. To ensure comprehensive model performance

assessment, at least four indices are recommended (Olsen et al.,

2016). Therefore, our modeling results underwent validation using

five statistical metrics on the validation datasets: NSE (Equation 2),

Pearson’s Correlation [r, (Equation 3)], RMSE (Equation 4), MAE

(Equation 5), and MAPE (Equation 6).

NSE = 1 −o
n
i=1(pi − xi)

2

on
i=1(xi − �x)2

(2)

r = on
i=1(pi − �p)(xi − �x)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

on
i=1(pi − �p)2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(xi − �x)2
q (3)
TABLE 1 Parameters of the Gaussian-DNN model.

Network Parameter Parameter

Hidden layer depth 4

Number of hidden neurons 64,128, 128, 64

Momentum 0.9

Epoch 150

Batch size 100000

Learning rate 0.01

Dropout rate 0.1
FIGURE 2

The structure of the enhanced Gaussian-activation deep neural network (Gaussian-DNN). The input elements for the Gaussian-DNN include sea
surface Chl-a, vertical properties such as temperature and salinity, along with corresponding geographical coordinates (longitude, latitude, and water
depth) and temporal information (month). The output predictor represents the vertical distribution of Chl-a concentrations with a 1 m interval within
the 0–300 m water depth range.
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RMSE =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i=1 pi − xið Þ2

r
(4)

MAE =
1
no

n
i=1 pi − xij j (5)

MAPE =
1
no

n
i=1

pi − xi
xi

����
���� (6)

where n is the number of samples, pi is the model estimated

values and xi is the observed Chl-a concentration.

3 Results

3.1 Validation of Gaussian-DNN model

The effective performance of our Gaussian-DNN model was

assessed against BGC-Argo in the test set of the BGC-Argo dataset
Frontiers in Marine Science 06
all over the NWPO. Subsequently, we applied the trained Gaussian-

DNN model to the three sub-regions.

As shown in Figure 3, scatter plots spanning 0–300 m water

depth range were generated for the entire NWPO and also each

individual sub-region. The estimated Chl-a values within 0–200 m

are closely aligned with the observed data. Specifically, points within

the SCMs layer, notably those surpassing 0.1 mg m-3 at 100–150 m

in BOX1, 0.5 mg m-3 at 50–100 m in BOX2, and 1 mgm-3 at 0–50 m

in BOX3) were brought into line with the diagonal bisector. The

slightly overestimated low Chl-a concentrations (< 0.01 mg m-3)

occurred below 200 m of water depth, which may be attributed to

errors in the predicted Chl-a values obtained from low quality of

BGC-Argo measurements due to a high noise-to-signal ratio (the

background noise in the measurements is significant compared to

the actual signal representing Chl-a concentrations). Similar

instances of overestimation for small Chl-a values have been

observed in other artificial intelligent models (Sammartino et al.,

2018; Chen et al., 2022a; Hu et al., 2023).
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FIGURE 3

Evaluation of the model’s performance on the test set in the entire NWPO (A, E, I) and three BOXes (B-D, F-H, J-L). (A-D) Scatter plot depicting the
observed Chl-a concentration (x-axis) versus the Gaussian-DNN-estimated Chl-a values (y-axis). (E-H) The mean of observed value (blue line) and the mean
of DNN predicted values (orange line) in each BOX. The blue and yellow shades are the standard variance of the model results and observations,
respectively, which overlap and form the gray shade. (I-L) The RMSE and MAE between observation and model estimates at different depths.
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Figure 3 also provides the statistical evaluation of our Gaussian-

DNN model. The NWPO and its three sub-regions consistently

exhibit high NSE values, ranging from 80% to 90%. This suggests

that the input variables, including sea surface Chl-a, depth-resolved

water temperature and salinity, can effectively account for the

majority of vertical Chl-a variability. The strong correlations

(r>0.89) coupled with low errors (RMSE<0.21 mg m-3,

MAE<0.10 mg m-3, and MAPE<37%) indicate that the Gaussian-

DNN model accurately captures the vertical structure and

magnitudes of Chl-a concentrations in all regions of the NWPO.

Additionally, in the three sub-regions, the errors (RMSE, MAE, and

MAPE) increase along with latitudes, although MAPE in BOX2 is

close to that in BOX3. This trend indicates that the model performs

better in low-latitude waters (BOX1) than in higher-latitude waters

(BOX2 and BOX3). The observed difference in performance can be

attributed, in part, to the varying change rate of Chl-a vertical shape

(SCMs characteristics) with latitudes. As illustrated in Figure 4,

vertical Chl-a profiles in the tropical region maintain nearly

constant SCMs characteristics, while in subtropical and temperate

regions, SCMs are more prominent during summer, and surface
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blooms occur in winter. In summary, this quantitative analysis

enhances the credibility of our Gaussian-DNNmodel outputs in the

test set at a daily time scale, demonstrating accuracy and precision.

In our modeling results across various water depths, the

averaged vertical Chl-a profiles for the NWPO and each sub-

region closely mirror their BGC-Argo structures, respectively

(Figures 3E-H). More specifically, the Gaussian-DNN results

exhibited smaller fluctuations in the surface and SCM layers. The

generally low RMSEs (MAEs) within the 0–300 m depth range

exhibit maximal values of less than 0.2 mg m-3 (0.1 mg m-3) across

the entire NWPO (Figure 3I). Within each sub-region, the highest

RMSE and MAE are consistently observed within the SCM layers

(Figures 3J-L). Additionally, high errors in BOX2 and BOX3 are

also observed at the surface layer, with RMSE values close to 0.2 mg

m-3 and MAE up to 0.1 mg m-3 in BOX3. Such discrepancy may

become larger due to higher Chl-a variance within the SCM layer

(e.g., the yellow shaded area in Figures 3F-H). Potentially, this will

affect network’s prediction accuracy for vertical Chl-a profiles.

Furthermore, we compared monthly averaged Chl-a profiles in

the Gaussian-DNN model output with the BGC-Argo (Figure 4).
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FIGURE 4

Aggregated Chl-a vertical profiles from the test set in the overall region are in terms of months. The blue and orange solid lines represent the mean
of observed value and the mean of Gaussian-DNN predicted Chl-a, respectively. The blue and yellow shades are the standard variance of the model
results and observations, respectively, which overlapped and formed the gray shade. (A) Overall area, (B) BOX1 (12–24°N waters), (C) BOX2 (24–38°N
waters), and (D) BOX3 (38–54°N waters).
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Across the entire NWPO, monthly mean of predicted Chl-a profiles

align well with the observed values, especially during the summer

and fall seasons (Figures 4A1-12). This suggests that the Gaussian-

DNN method effectively captures various types of the vertical Chl-a

profiles in the NWPO.

In the tropical sub-region (BOX1), our Gaussian-DNN model

effectively reproduced seasonal cycle of the SCM phenomena.

Though seasons, SCMs consistently occur near 100–150 m and

exhibit an overall low intensity less than 0.3 mg m-3 (Figures 4B1-

12). The predicted mean vertical Chl-a profiles overlapped with

observed profiles, along with their corresponding standard variance

ranges, demonstrating the effective performance of our model in

predicting the SCMs characteristics in the tropical area. In the

subtropical sub-region (BOX2), the significant SCMs occur from

June to November, with smaller fluctuations in Gaussian-DNN

modeling results than observed Chl-a, especially within SCM layers

(Figures 4C6-11, green shades). From early winter to late spring,

vertical Chl-a profiles in this region exhibit surface blooms, which

are well reproduced by the Gaussian-DNN model with smaller

shaded areas than observed variance (Figures 4C1-5, C12). Toward

higher surface Chl-a concentrations in the temperate gyre (BOX3),

the network exhibits a slight overestimation of Chl-a during

summer and autumn (Figures 4D6-10), possibly influenced by the

high variability of Chl-a values in the upper layer, which poses

challenges for accurate predictions, particularly in the upper layers.

Overall, the comparison of Gaussian-DNN model outputs with

BGC-Argo profiles shows mostly overlapping shaded areas in

Figures 4D1-12. This strengthens the ability of the Gaussian-

DNN model to integrate, in its response, the variability of the

Chl-a field in the NWPO.

Additionally, we conducted a comparative analysis on diverse

vertical distributions of Chl-a, involving our Gaussian-DNN
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alongside MLP and RF methods. In contrast to the Gaussian-

DNN model, the MLP model utilizes the Rectified Linear Unit

(ReLU) as the activation function and consists of four hidden layers

(also named ReLU-DNN). To assess and quantify the enhancement

in the performance of Gaussian-DNN model, we employed

identical datasets for training and testing across all three models.

Figure 5 presents a radar diagram depicting the relative

deviation between MLP, RF, and the Gaussian-DNN model. In

comparison with the RF method, MLP exhibits a reduced bias,

particularly in mid-to-high latitude regions where relative

deviations fall within the range of -13% to 12%. These findings

underscore the superior accuracy and performance of the DNN

models (Gaussian-DNN, ReLU-DNN) over RF, especially in the

high-latitude areas of the NWPO.

When contrasting the results of our Gaussian-DNN model with

that of MLP in the NWPO (Figure 5A), we observed a slight

decrease (less than 5.5%) in the values of NSE and r. Meanwhile,

RMSE, MAE, and MAPE displayed a more significant increase,

reaching up to 26.8%. Specifically, in tropical waters the disparities

in outcomes among these three models are negligible, except for the

MAE derived from the MLP model (Figure 5B). This variation is

attributed to the small MAE values observed in the tropical gyre,

approximately (~0.01 mg m-3). However, as we move to higher

latitudes (Figures 5B, C), particularly in subtropical waters, the

disparities in outcomes among these three models become more

pronounced (from -24.4% to 28.2%). These findings suggest that the

utilization of the Gaussian activation function has a positive impact

on the accuracy of Chl-a estimation than that of ReLU. It is

noteworthy that the improvement aligns with the results obtained

by Chen et al. (2022a), who reported similar enhancements when

comparing the Gaussian function with the Sigmoid activation. This

consistency across studies underscores the effectiveness of the
B
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A

FIGURE 5

Comparing the MLP, RF and Gaussian-DNN performance in the test set by the Radar diagram of relative deviations in the NWPO (A) and three sub-
regions (B-D).
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Gaussian activation function in refining the accuracy of Chl-

a estimation.
3.2 Robustness validation of Gaussian-DNN
on independent data sets

To evaluate the generalization and robustness of our trained

Gaussian-DNN model, we applied it to estimate Chl-a

concentrations using ship measurements from JMA. The JMA

data, including Chl-a, temperature, salinity, were input into the

trained Gaussian-DNN model using JMA data, while maintaining

the same training and test sets initially utilized with the BGC-Argo

data. The identical statistical parameters utilized to evaluate the

model’s performance with the BGC-Argo data were also applied to

assess its performance with the JMA dataset. The statistical

indicators in Table 2 are comparable to those obtained by the

trained Gaussian-DNN for the entire NWPO (refer to Figure 3A),

indicating that our Gaussian-DNN model maintains robust

performance across different datasets. The slight discrepancy may

be attributed to the ship survey data having fewer profile sample

points and a potential limitation in capturing deep Chl-a

profile features.

Furthermore, two transects were selected to demonstrate the

model effectiveness, as indicated in Figure 1B by the two red vertical

dashed lines representing the 137°E and 165°E transects. When

compared to ship measurements, the Gaussian-DNN model

successfully reproduced the vertical distribution of Chl-a along

the 137°E section, with most differences falling within the range

of -0.1 to 0.1 mg m-3 (Figures 6A-C). The predicted values for the

165°E section correspond well to the observed values (Figures 6D-

F). However, relatively large deviations (0.2 to 0.3 mg m-3) are

mainly observed at high latitudes above 40°N, such as 40°N, 44°N,

and 48°N. These discrepancies could stem from variations in the

input data sourced from JMA and BGC-Argo (Supplementary

Figure 4). For example, water temperatures between 2–5°C

recorded by JMA appear lower compared to those derived from

BGC-Argo floats, particularly evident in areas above 40°N along

165°E (Supplementary Figure 5). Additionally, there are similar

observations regarding salinity levels, where values between 32–36

from JMA are notably lower than those recorded by BGC-Argo

floats, especially in regions above 40°N along 165°E (Supplementary
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Figure 5). Overall, the performance of the trained Gaussian-DNN

model is satisfactory when tested with ship measurement data.
3.3 Reconstruction of long-term 3-D Chl-
a structure

To project the long-term 3-D Chl-a structure in the NWPO, the

MODIS Chl-a and BOA-Argo global gridded thermohaline data

were merged as the input dataset in the deployment phase of the

trained Gaussian-DNN model. The reconstructed monthly 3-D

structure of Chl-a in the NWPO has a spatial resolution of 1°×1°

with fully depth-resolved vertical profiles in 0–300 m layer, covering

the period from January 2004 to June 2022.

We conducted a comparative analysis to evaluate the

performance of Gaussian-DNN on 3-D structures and backward

time-series prediction. Figure 7A showed the DNN-estimated surface

Chl-a values against MODIS observed ones. A high density of data

points is concentrated around the bisector, especially in the range

from 0.01 to 0.1 mg m-3. On contrary, the scatter increases in the

higher domain of Chl-a concentrations, in which the data density is

reduced (Figure 7A), revealing an underestimation of the Gaussian-

DNN predicted values in BOX3 (see Figures 7H-J). The main factor

contributing to this discrepancy is likely the potential uncertainties in

gap filling for missing MODIS Chl-a data, particularly influenced by

the high solar zenith angle, which tends to affect prediction accuracy

in high-latitude waters (Supplementary Figure 6). In depicting the

time-series patterns of surface Chl-a spanning the entire decade from

2004 to 2022, our Gaussian-DNN models effectively capture the

observed seasonal and interannual variations from MODIS, despite

an overall slight overestimation of 0.1 mg m-3 (Figure 7K). It is

noteworthy that we trained the Gaussian-DNN models using data

from the period of 2017–2022, extending backward to 2004 during

the deployment phase. This outcome underscores the impressive

generalization ability of our Gaussian-DNN model.

The vertical patterns of reconstructed Chl-a by the Gaussian-DNN

model align closely with those observed by the BGC-Argo floats within

the 0–300 m layer (Figures 7B-J). In the tropical region (BOX1), the

predicted Chl-a values with a prominent SCM in all seasons closely

match the measurements obtained from BGC-Argo float data

(Figures 7B-D). Within the subtropical gyre of the NWPO (BOX2),

a dynamic interplay between surface blooms and the SCMs

characterizes the seasonal cycle. Our Gaussian-DNN model has

demonstrated its capability to accurately reproduce both blooms in

the surface and subsurface layer (Figures 7E-G). In the temperate

region (BOX3), our Gaussian-DNNmodel demonstrates a high level of

accuracy in capturing Chl-a patterns as observed in BGC-Argo data.

However, it consistently tends to slightly underestimate the Chl-a

values in the 0–50meter depth range, particularly during themonths of

July to September (Figures 7H-J). This deviation is likely attributed to

disparities in input data sources used for reconstruction (MODIS) and

training (BGC-Argo) (see Figure 7K; Supplementary Figure 1).

Furthermore, the same statistical indicators that was used for

the overall evaluation of the Gaussian-DNN performance were

considered (see satellite matchup set in Table 2). The NSE (0.85)
TABLE 2 The statistical results obtained from the validation model using
JMA hydrological data.

Metrics
Ship Measurements

Test Set
Satellite Matchup

Test Set

NSE 0.85 0.84

r 0.92 0.91

RMSE 0.12 0.08

MAE 0.06 0.04

MAPE 44.90% 36.01%
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was close to those obtained on BGC-Argo (0.93) and ship

measurements (0.84), indicating the effectiveness of input

variables on predicting Chl-a. The others statistical parameters,

r=0.91, RMSE = 0.08 mg m-3 and MAE = 0.04 mg m-3, were of the

same order of magnitude of those obtained on test sets of BGC-

Argo and ship measurements (Figures 3A–D; Table 2). Analogous

results were obtained in previous and similar works as, e.g., that of

Hu et al. (2023), in which the vertical profile of Chl-a in the
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Northern India Ocean is inferred by the combined use of 18

input variables from BGC-Argo and satellite data in the RF

model, obtaining an NSE and RMSE of 0.96 and 0.01 mg m-3,

respectively. The comparison of our statistical results with those of

Hu et al. (2023) highlighted that, even with some uncertainties and

some limits, our network, applied on 7 out of 18 input variables

shows a prediction accuracy very close to other models. Overall, the

validation confirms that the Gaussian-DNN model serves as an
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FIGURE 7

(A) Density plot of DNN-reconstructed surface Chl-a values against MODIS values. Monthly vertical Chl-a from 2004 to 2022 in (B–D) BOX1, (E–G)
BOX2, and (H–J) BOX3 from BGC-Argo (top panel), Gaussian-DNN model (middle panel), and the differences between them (Gaussian-DNN model
outputs minus BGC-Argo, bottom pane), respectively. (K) Comparison of Gaussian-DNN reconstruction results with time-series patterns of sea
surface Chl-a from MODIS and BGC-Argo observations for the period 2004–2022.
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FIGURE 6

Vertical distribution of Chl-a concentrations along the 137°E section derived from (A) observation data and (B) the model estimates. (C) The difference
between (A, B). (D-F) Same as (A-C) but along the 165°E section.
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effective tool for generating long-term, 3-D Chl-a data by merging

satellite Chl-a information and temperature-salinity float profiles.
3.4 Spatio-temporal patterns of
SCMs characteristics

Using the reconstructed long-term 3-D Chl-a profiles in the

NWPO, we calculated the depth of the Chl-a maximum in each

individual profile which has the 1 m vertical resolution. Here, we

designated the peak Chl-a value in each individual profile as SCMs

intensity and identified its location as SCMs depth, taking

advantage of the notably high vertical resolution. Subsequently,

we assessed the spatio-temporal variability of SCMs characteristics

(depth and intensity).

Spatially, the intensity of SCMs exhibits a distinct upward trend

across latitude zones (Figure 8A), ranging from 0.21±0.03 mg m-3 in

the tropical gyre to 0.36±0.16 mg m-3 in subtropical waters, and

peaking at 0.79±0.50 mg m-3 in the temperate area. Concurrently, the

SCMs depth decreases with higher latitude zones, measuring 121 ± 17

m, 54 ± 31 m, and 13 ± 14 m, respectively. A distinct transition band

was evident between the high intensity of SCMs temperate waters and

the low-intensity subtropical waters (Figures 8A, B). The

geographical location of subsurface Chl-a transition bands near the

Kuroshio–Oyashio convergence region exhibited seasonal migration

dynamics, extending equatorward in spring and summer and shifting
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poleward in fall and winter. In parallel, the majority of oligotrophic

subtropical and tropical waters began expanding in the late summer,

reached their spatial maximum in the autumn, and then contracted in

the winter and spring.

The seasonal indices were calculated using an additive

decomposition model (Hyndman and Athanasopoulos, 2021),

with the calculation formula represented by (Supplementary

Equation S2). SCMs exhibit distinct patterns in both intensity and

depth (Figures 8C, D), showcasing intriguing seasonal variations

across different regions. Within temperate waters, SCMs intensity

displays bi-modal peaks from late spring through early fall,

featuring a shallow SCM during summer (Figures 8C, D).

Conversely, subtropical waters experience a singular peak in

SCMs intensity during spring, with the deepest SCM recorded in

the fall (Figures 8C, D). In tropical oligotrophic waters, while the

SCMs intensity remains stable, there are noticeable seasonal

variations in SCMs depth, with the shallowest SCMs occurring in

May and the deepest in December (Figure 8D).
3.5 Long-term trend of total Chl-a during
2004–2022

To broaden insights beyond surface-level observations, we

conducted an assessment of the long-term trends in total Chl-a

within the water column. This involved computing the monthly
A B
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FIGURE 8

Climatological monthly SCMs intensity (A) and SCMs depth (B) in the NWPO and the corresponding seasonal indices of SCMs intensity (C) and SCMs depth (D).
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mean of depth-integrated Chl-a within the 0–300 m depth range,

utilizing the reconstructed monthly 3-D Chl-a data in the NWPO

from 2004 to 2022. Subsequently, we evaluated the trends of total

Chl-a using a Locally Weighted Scatterplot Smoothing (LOWSS)

method (Cleveland et al., 1990). The LOWSS smoother operates by

fitting a weighted polynomial regression for a given time of

observation, with weights decreasing as the distance from the

nearest neighbor increases (Dagum and Luati, 2003). This

approach enables us to separate the seasonal component from the

trend component, providing a deseasonalized trend component

(Supplementary Figure 7).

The average depth-integrated Chl-a in the NWPO for the period

2004–2022 stood at 35 ± 19 mg m-2, exhibiting noteworthy spatial

distinctions across the tropical (20 ± 4 mg m-2), subtropical (36 ± 13

mgm-2), and temperate (55 ± 20mgm-2) gyres. For the long-term time

series analysis, the depth-integrated Chl-a exhibits significant
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interannual variability in the NWPO during the period of 2004–

2022, with notable linear trends observed in tropical and subtropical

gyres (Figure 9). For instance, the depth-integrated Chl-a in the tropical

gyre shows a minimum in 2007 and a peak value in 2009. On average,

the depth-integrated Chl-a in the tropical region exhibits an increasing

trend of 0.0016 mg m-2 yr-1 (p=0.05). In the subtropical region, a more

pronounced decreasing trend of 0.0033 mg m-2 yr-1 is observed

(p<0.01). However, no significant linear trend is found in the

temperate area (p=0.12). To provide a detailed depiction of the

spatial distribution of long-term variations in the NWPO, we

calculated the linear trend for each pixel (Figure 9G). Noted that all

trends mentioned in the following sections are statistically significant at

a significance level of p< 0.05.

The locations with significant increasing (decreasing) patterns

in depth-integrated Chl-a exhibit a patchy distribution (Figure 9G).

Predominantly, increasing trends were observed in the tropical
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FIGURE 9

(A-C) Time series of depth-integrated Chl-a in three BOXes of the northwest Pacific Ocean during the period of 2004–2022. (D-F) Interannual
variation of depth-integrated Chl-a in three BOXes. (G) Spatial pattern of trends (unit: mg m-2 yr-1) of depth-integrated Chl-a. Warm colors indicate
positive trends, cold colors represent negative trends, and white signifies no detected trends. Note that only data that passed the confidence tests
(p< 0.05) were displayed.
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gyre, while negative trends were notable in the subtropical section.

In the temperate gyre, originating from the marginal seas,

continuous patches with increasing depth-integrated Chl-a

extended toward the northeast in the NWPO, forming a nearly

contiguous belt with positive interannual trends. Off the Sea of

Okhotsk, patches with positive depth-integrated Chl-a trends were

consistently distributed along the chain of islands, exhibiting an

annual increasing rate of ~0.002 mg m−2 yr−1. Further northeast,

similar patches with increasing depth-integrated Chl-a were

observed off the southern region of the Bering Sea. However, in

the remaining part of the temperate gyre, the depth-integrated Chl-

a exhibited a decreasing trend at a rate of ~-0.002 mg m−2 yr−1.

Overall, the linear trend across the entire temperate area was not

found to be statistically significant.
4 Discussion

4.1 Sensitivity of input variables

As a data-driven model, the effectiveness of a DNN is notably

influenced by the selection of input variables (Reichstein et al., 2019).

We conducted a series of sensitivity experiments for three watersheds

to examine how sea surface Chl-a and vertical physical properties

(water temperature and salinity) influence the accuracy of our

estimations. In each experiment, only one input variable was

removed, keeping the other input variables unchanged.

As depicted in Table 3, in Exp-without T, where we removed the

temperature variable, a notable reduction in model performance is

observed, particularly in low-latitude seas, with the RMSE

decreasing by 17.62% and the MAE decreasing by 13.71%. In

mid- and high-latitude waters (BOX2 and BOX3), the influence

of water temperature on the estimated Chl-a profiles appears to be

less significant. In Exp-without S, the reduction in model

performance after removing salinity was not as substantial as

when temperature was removed. The influence of salinity was

only observed to some extent in mid- and high-latitude waters

(less than 5%). Nonetheless, the significance of salinity’s

contribution to the model’s effectiveness should not be overlooked.

When sea surface Chl-a was removed in Exp-without Chl-a, the

model performance in the three sub-regions was diminished,

particularly in the high-latitude gyre. The RMSE decreased by

5.24%, 11.76%, and 95.10%, respectively, and the MAE also

exhibited varying degrees of reduction from 4.84% to 48.4% along
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latitude increasing (Table 3). This underscores the substantial

contribution of sea surface Chl-a as an input variable to the

Gaussian-DNN model, especially in the temperate waters with

high Chl-a concentrations.

Generally, vertical distribution of water temperature plays a

more important role in estimation of Chl-a in comparison with

salinity in tropical and subtropical gyres of the NWPO; for the

temperate areas, the latter is more essential than the former. This is

consistent with the understanding from the in situ observations. For

example, in the tropical area of NWPO the everlasting SCMs were

found in the vicinity of the thermocline, consisting with the

nitracline, hence being of an essential feature of the typical

tropical structure (Herbland and Voituriez, 1979; Cullen, 1982;

Radenac and Rodier, 1996; Cullen, 2015). While in the high-

latitude waters, observations revealed that the vertical distribution

of Chl-a that was closely related to the seasonal evolution of

halocline and pycnocline (Anderson, 1969; Ishida et al., 2009).

In addition, the sensitivity results illustrate that the vertical

physical properties should be deliberated in reconstructing the

vertical Chl-a profiles. Analogous results have been found in

northern India Ocean (Hu et al., 2023). Compared with previous

studies applied on surface measurements only (SST and surface

Chl-a), adding vertical physics properties (water temperature and

salinity) as input variables leads the NSE increasing from ~70% to

~90% (Sammartino et al., 2018; Chen et al., 2022a; Wang et al.,

2023a). Here, we emphasize that in the tropical area of the NWPO,

surface Chl-a and vertical temperature profiles are two effective

input variables in accurately estimating vertical Chl-a profiles. For

the high-latitude waters, both vertical profiles of temperature and

salinity together with surface Chl-a are non-negligible.
4.2 Variability discrepancy between
subsurface Chl-a and surface Chl-a

It is well-established that the satellite record effectively captures

global phytoplankton responses but is confined to present changes

in the surface ocean environment. However, the presence of SCMs

necessitates caution when extrapolating conclusions from the

surface to water-column-integrated production or when

predicting potential impacts of future ocean warming (Behrenfeld

et al., 2016).

The characteristics of SCMs in the NWPO demonstrate

significant spatial variability along with seasonal fluctuations
TABLE 3 Relative deviation of sensitivity experiments from the trained Gaussian-DNN models with Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE).

Experiment
RMSE MAE

12 -24°N 24 -38°N 38 -54°N 12 -24°N 24 -38°N 38 -54°N

Exp-without T -17.62% -6.72% -3.26% -13.71% -6.02% -3.19%

Exp-without S -0.48% -3.64% -4.90% 0% -4.87% -4.52%

Exp-without Chl-a -5.24% -11.76% -95.10% -4.84% -11.17% -48.4%
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during 2004–2022 (Figure 8). This spatial variability of SCMs

characteristics closely resembles the observed patterns in surface

Chl-a levels based on ocean color data in the NWPO (Hou et al.,

2016; Chen et al., 2022b). As latitudes increase, SCMs intensity (its

depth) also tends to increase (decrease), leading to the formation of

a distinct transition band between the high intensity of SCMs in

temperate waters and the low-intensity subtropical waters

(Figures 8A, B). This transition band has also been noted in the

spatial patterns of surface Chl-a (Chen et al., 2022b). During cold

seasons (winter and spring), the transition band of subsurface Chl-a

extends equatorward, while during warm seasons (summer and

fall), it shifts poleward. This seasonal migration correlates with

variations in the strength of the Kuroshio Extension surface

transport and its associated southern recirculation (Qiu et al.,

2014; Yang and Liang, 2018). Notably, the seasonal migration

pattern of the transition band of subsurface Chl-a differs from

that of surface Chl-a, with the surface transition band moving

equatorward in fall and winter, and poleward in spring and summer

(Chen et al., 2022b). Further exploration is needed to understand

the reasons for this discrepancy in seasonal cycles between

subsurface and surface Chl-a transition bands.

For the seasonality, the dual peaks of SCM intensity in the

temperate waters during spring and autumn (Figure 8C) are mainly

triggered by reduced vertical stability (Bailey and Werdell, 2006).

Due to intensified vertical mixing in early winter, phytoplankton in

the SCM layer is entrained upward to the surface mixed layer,

leading to enhanced surface Chl-a during this period (Behrenfeld

and Boss, 2014; Lacour et al., 2019; Xing et al., 2020). For the

subtropical gyre, the initiation of high values in SCMs intensity

during spring resembled that observed in temperature oceans

(Figure 8C). This occurrence can be attributed to sufficient

nutrients brought to the ocean upper layer by previous

wintertime mixing, higher temperature, light and vertical stability

conditions (Sverdrup, 1953; Siegel, 2002). During summertime, the

mixed layer depths were notably shallow, and robust stratification

confined nutrient supplementation within the subsurface layer,

resulting in evaluations of ecological significance of SCMs

(Furuya, 1990; Venrick, 1993). In the tropical NWPO, the

existence of a permanent halocline and pycnocline, hinders the

vertical transport of nutrient-rich deep water to the nutrient-

exhausted surface mixed layer, giving rise to a persistent SCM

throughout the year (Anderson, 1969; Cullen, 2015). Consequently,

the SCMs intensity shows minimal seasonal variations in the

tropical gyre of the NWPO.

In general, the seasonal dynamics of subsurface Chl-a

resembled those observed in surface Chl-a based on ocean color

data in the NWPO (Hou et al., 2016; Chen et al., 2022b). However,

there is a temporal disparity in the onset of seasonal peaks between

the surface layer and subsurface layer. As shown in Figures 8C, D,

there is a two-month delay in the intensity of SCMs as latitude

increases. In contrast, the surface bloom exhibits a one-month delay

(Chen et al., 2022b). For instance, in the subtropical gyre, the

maximal SCMs intensity is reached in March, extending into May

in temperate waters. In comparison, the surface bloom extends

from March in subtropical waters to April in the temperate gyre

(Chen et al., 2022b). This temporal discrepancy is likely attributed
Frontiers in Marine Science 14
to the response of phytoplankton to factors such as light availability

and water stratification. The observed patterns underscore the

intricate interplay between environmental factors and

phytoplankton dynamics in shaping the seasonal variability of

Chl-a in both surface and subsurface layers of the NWPO.

Furthermore, we conducted a comparative analysis of the long-

term trends of Chl-a in the surface layer and depth-integrated Chl-a

within the water column of the NWPO. Notably, distinct trends

between depth-integrated Chl-a and surface Chl-a were observed

across the NWPO. For instance, during the period from 2004 to

2022, the estimated depth-integrated Chl-a exhibited opposite

trends in the tropical and subtropical regions, with a more

significant decreasing tendency observed in the latter region

(Figure 9). Conversely, no significant trend in surface Chl-a was

observed in the subtropical water during 1997–2020 (Chen et al.,

2022b), while a clear positive trend was evident in the tropical water

(Chen et al., 2022b; Yu et al., 2023). Moving toward higher latitude

waters (BOX3, Figure 9G), our analysis revealed increasing

interannual trends for depth-integrated Chl-a in parts of the

temperate section, which aligned with trends noted in remote-

sensing Chl-a (Chen et al., 2022b). This disparity between the trends

of depth-integrated Chl-a and surface Chl-a can be attributed to the

presence of SCMs in the tropical and subtropical gyres, which

contrasts with the near-surface blooms observed in the temperate

gyre of the NWPO.
4.3 Uncertainties and implication in 3-D
Chl-a reconstruction

In this study, vertical physical properties such as water

temperature and salinity within the 0–300 m water depth were

utilized as crucial predictors. These properties are essential for

accurately predicting vertical Chl-a profiles in the NWPO

(Table 3) as they govern the availability of nutrients for

phytoplankton across different layers of the water column. The

fluctuations in thermohaline observations directly influence the

prediction of Chl-a concentrations. For example, significant

variations were observed in the vertical distributions of

temperature and salinity in three profiles from Float 2903354 in

BOX3 compared to other locations (Supplementary Figure 8). This

discrepancy resulted in predicted Chl-a values within the upper 100

m depth that were notably higher than the observed values, leading

to several scattered points between 0.1 and 1 mg m-3 on the y-axis

exhibiting considerable deviation from the 1:1 line, indicative of a

nearly horizontal distribution (Figure 3D). In addition, the

uncertainties associated with thermohaline profiles from BGC-

Argo and BOA-Argo floats significantly influence the accuracy of

our developed Gaussian-DNN model, particularly noticeable in the

temperate gyre of the NWPO. For instance, in the tropical gyre,

there is an evident upwelling in April presented by BGC-Argo

(Supplementary Figure 9), resulting in a shoaling SCM (Figure 7),

while a constantly reconstructed SCM based on stable stratification

is presented by BOA-Argo (Supplementary Figure 9). In the

temperate waters, salinities from BOA-Argo are higher than those

from BGC-Argo in the 0–50 m depth, especially during summer
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and autumn seasons (Supplementary Figure 9), leading to an

overestimation of Chl-a in the upper layer (Figure 7J).

To further assess the model’s sensitivity to the uncertainty of

input physical variables, we conducted eight experiments in each

BOX region. Specifically, we introduced temperature uncertainties

of ±0.2°C within both the surface 20 meters and the depth range of

0–300 meters. For salinity, uncertainty was assumed to be ±1% of

the average surface values in each BOX region, resulting in values of

±0.349, ± 0.345, and ±0.328, respectively. The results, depicted in

Supplementary Figure 10, reveal that slight variations in

temperature or salinity have a negligible effect on the model’s

performance compared to its original state in BOX1. However, In

BOX2 and BOX3, we observed a notable increase in RMSEs above a

depth of 150 meters. This suggests that even minor variations in

water temperature and salinity occurring within the surface layer,

can have a significant impact on the performance of our DNN

model in these regions. This finding underscores the significance of

water temperature and salinity as critical predictors for vertical Chl-

a profiles, particularly in mid- and high-latitude waters.

Furthermore, the accuracy of surface Chl-a is a crucial input

variable that significantly impacts the reconstruction outcomes,

particularly in temperate waters (Table 3). Two main uncertainties

are associated with surface Chl-a. One arises during the preprocessing

of surface Chl-a derived from different datasets (BGC-Argo and

MODIS data). To address this, we conducted a retraining of the

Gaussian-DNN model. This involved incorporating half of the Chl-a

values from BGC-Argo in BOX3 while leaving the rest of the training

data unchanged. The results showed a significant reduction in

disparities between our Gaussian-DNN model and the MODIS

(refer to Supplementary Figure 11), which also helps clarify the

overestimation illustrated in Figure 7K.

The other significant source of uncertainty arises from the gap

filling process of MODIS data, particularly pronounced in high-

latitude waters where the missing rate of MODIS Chl-a data tends

to be higher (refer to Supplementary Figure 2). The accuracy of this

filling process may be compromised by the elevated solar zenith

angle prevalent in these regions, thereby influencing prediction

accuracy. To address this, we conducted a re-run of the Gaussian-

DNN model by masking the missing MODIS data. The resulting

density scatter plot revealed the disappearance of the severe

underestimation for high Chl-a concentration in Figure 6A (see

Supplementary Figure 6), highlighting the influence of interpolation

uncertainty on the accuracy of Chl-a reconstruction. Therefore,

integrating a diverse range of Chl-a data sources, such as individual

satellites like MODIS, SeaWiFS, MERIS, and VIIRS, as well as

composite satellite products like OC-CCI, and enhancing the

accuracy of gap filling techniques, can help to improve the

performance of our Gaussian-DNN model in reconstructing long-

term 3-D Chl-a structures.

With the continuous and anticipated future availability of

spatio-temporal depth-resolved physics datasets, the prospect of

developing long-term 3-D global Chl-a datasets is becoming

feasible. This product is positioned to comprehensively capture

the multifaceted changes expected with upcoming climate change,

offering a holistic understanding of phytoplankton dynamics across

different dimensions of the water column.
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5 Conclusion

In this study, we developed a Gaussian-DNN model to construct

long-term 3-D Chl-a structures by inputting satellite Chl-a with

BOA-Argo thermohaline profiles, featuring a spatial resolution of

1°×1° and a vertical resolution of 1 m within the 0–300mwater depth

from 2004 to 2022 in the NWPO. The trained Gaussian-DNNmodel

using BGC-Argo float data was successfully applied to JMA ship

measurements, demonstrating its robust generalization ability. The

experiments for input sensitivity demonstrated a crucial role of ocean

water temperatures in estimating Chl-a in the subtropical gyre, while

a switch to salinity in the temperate gyre. The estimated SCMs in the

NWPO exhibited spatial divergence of significant seasonality.

Opposing trends of total Chl-a in water columns were observed in

the tropical and subtropical gyres during 2004–2022, insignificant

trend was characterized in the temperate area, mostly attributed to

spatial discrepancies in tendencies. Overall, the developed Gaussian-

DNN model, alongside the growing availability of thermohaline

datasets, holds significant promise for constructing long-term 3-D

Chl-a in the NWPO, offering comprehensive insights into the

multifaceted changes expected in future climate change scenarios.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Author contributions

XZ: Data curation, Formal analysis, Investigation, Methodology,

Software, Validation, Visualization, Writing – original draft. XiaG:

Conceptualization, Formal analysis, Funding acquisition,

Investigation, Methodology, Project administration, Resources,

Validation, Writing – review & editing. XunG: Formal analysis,

Funding acquisition, Writing – review & editing. JL: Data curation,

Formal analysis, Methodology, Writing – review & editing. GW:

Data curation, Formal analysis, Methodology, Writing – review &

editing. LW: Data curation, Formal analysis, Methodology, Writing –

review & editing. XinG: Data curation, Formal analysis, Writing –

review & editing. HG: Formal analysis, Funding acquisition,

Supervision, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by the Ministry of Science and Technology of the

People’s Republic of China (2019YFE0125000), National Nature

Science Foundation of China-Shandong Joint Fund (U1906215),

and the National Natural Science Foundation of China (41406010).

This work was also supported by the Key Laboratory of Coastal

Environmental Processes and Ecological Remediation, Chinese

Academy of Sciences Opening Fund (2020KFJJ04).
frontiersin.org

https://doi.org/10.3389/fmars.2024.1378488
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhao et al. 10.3389/fmars.2024.1378488
Acknowledgments

The authors would like to thank the International Argo

Program and the China Argo Real-Time Data Center that

contribute to the BGC-Argo data and BOA-Argo, which were

collected and made freely available. The Argo Program is part of

the Global Ocean Observing System. The authors are very grateful

to Jianqiang Chen for his helpful advices.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Frontiers in Marine Science 16
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fmars.2024.

1378488/full#supplementary-material
References
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