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low-salinity summer water
masses in the northeastern
East China Sea
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and Ho Young Soh1,2*

1Graduate School of Chonnam National University, Yeosu, Republic of Korea, 2Department of Ocean
Integrated Science, Chonnam National University, Yeosu, Republic of Korea, 3School of Earth
Sciences and Environmental Engineering, Gwangju Institute of Science and Technology,
Gwangju, Republic of Korea
We investigated the trophic dynamics between neustonic copepod communities

and particulate organic matter (POM) sourced from contrasting water masses,

i.e., high- and low-salinity areas, within the northeastern East China Sea. The

sampling of neustonic copepod communities occurred three times in the

summer (June, August, and September) of 2021, and considered the influx of

the Yangtze River DilutedWater (YRDW) and the extension of the TsushimaWarm

Current (TWC). To examine the relationship between the neustonic copepods

and surface POM, we employed stable isotope techniques. Surprisingly, the

neustonic copepod community exhibited a reluctance to feed on surface

POM. The neustonic copepod community in the YRDW-dominated area in

August showed higher d13C values than those in the TWC-dominated area. The

trophic groups within the neustonic copepod population appeared to consume

selectively depending on the individual preferred prey sizes and composition.

Using the POM from the water masses that affected the food sources consumed

by neustonic copepods, we found a strong dependence on prey items

originating from the TWC. This result suggests that the marine neustonic

copepod community does not rely significantly on food sources derived from

riverine freshwater.
KEYWORDS

neustonic copepods, Tsushima warm current, Yangtze River Diluted Water, stable
isotopes, trophic niche
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1 Introduction

Neuston, as defined by Naumann (1917), are organisms that

float near the water surface. They are classified into the following

three ecological categories: euneuston, which permanently exist on

the surface; facultative neuston, which move to the surface by diel

vertical migration; and pseudoneuston, which live in the deeper

layers but sporadically occur on the surface (Zaitsev, 1971).

Facultative neuston and pseudoneuston tend to be commonly

regarded as temporary neuston (Rawlinson et al., 2005). Neuston

are important components of the marine ecosystem because they

connect the surface and deeper layers of the ocean, providing food

and energy for many organisms (Albuquerque et al., 2021; Dipper,

2022). Among them, neustonic copepods are a dominant

component of marine zooplankton, and their feeding habits fall

into two categories: particulate feeders (detritivores and omnivores)

and carnivores (Hirabayasi et al., 2016; Kaji et al., 2019), as

determined based on their mouthpart morphology, rather than

on food type (Ohtsuka and Onbé, 1991; Schmidt et al., 2004;

Michels and Stanislav, 2015). This diversity adds complexity to

their role in the ecosystem. Suspended particulate organic matter

(POM) serves as a significant food source for neustonic copepods

(Chen et al., 2018; Im and Suh, 2019), because it consists of various

components, such as zooplankton and fish fecal pellets, marine

aggregates (marine snow), and phytodetritus from sinking

phytoplankton (Turner, 2015). Considering the diel vertical

migration of neustonic copepods, there is a potential for them to

ingest POM within their vertical migration range. Neustonic

copepods exhibit selectivity regarding the ingestion of POM

within the pico- to microsize range (Im et al., 2015; Im and Suh,

2023). Understanding their feeding strategies from a morphological

perspective is essential for comprehending their nutritional

dynamics and trophic interactions within pelagic food webs,

particularly in the context of their diel vertical migration.

The northeastern East China Sea (nECS) features an expansive

continental shelf with water depths of less than 200 m along the

southern coast of the Korean peninsula. The Tsushima Warm

Current (TWC), which is a branch of the Kuroshio, flows

northward from the Okinawa Trench, passing through the

eastern region of Jeju Island and the Korea Strait before entering

the East/Japan Sea (Lie and Cho, 2016; Park et al., 2017). During the

summer monsoon (late June to August), Yangtze River Diluted

Water (YRDW) travels eastward from mainland China and meets

the TWC, creating a salinity front (Park et al., 2017). The YRDW

also extends into the northwestern waters around Jeju Island,

establishing a front through tidal mixing with the South Korea

Coastal Water (SKCW) (Meng et al., 2020). These fronts

significantly influence the temporal and spatial fluctuations in

water masses, which, in turn, affect the composition and

distribution of neustonic copepod species (Jeong et al., 2014; Choi

et al., 2020). Variations in size-based phytoplankton compositions,

such as picosized cyanobacteria in offshore warm waters vs.

microsized diatoms in coastal cold waters, correspond to the

distribution of these water masses (Yoon et al., 2020; Kang et al.,

2022). In the nECS, the feeding strategies of Euchaeta sp. and

Pleuromamma spp. have been found to vary according to latitude
Frontiers in Marine Science 02
using fatty acid biomarkers (Ju et al., 2011). Although there are

reports of the trophic levels and energy flow within the zooplankton

community (Chi et al., 2020; Kim et al., 2022), and of feeding

relationships with apex predators (such as jellyfish and fish) in this

shelf sea (Wang et al., 2020; Bai et al., 2021), the precise feeding

relationships at lower trophic levels, particularly regarding the

different copepod and phytoplankton species compositions in

contrasting water masses, remain unknown.

Gut-content analyses serve to confirm the dietary items

consumed by the copepods within a brief time frame (Ohtsuka

and Onbé, 1991; Nishida and Ohtsuka, 1996; Wu et al., 2004);

however, it is significantly affected by the extent of digestion,

contingent upon food selection (Baker et al., 2014). In instances

where no hard parts are present, the identification of food items

becomes challenging because of rapid digestion. In contrast, stable

isotope analysis, which is a relatively more recent technique, offers a

more precise depiction of dietary assimilation over an extended

temporal scale (Chen et al., 2018; Im and Suh, 2019; Pizarro et al.,

2019). Consequently, carbon and nitrogen stable isotopes possess

an advantage in providing longer-term cumulative insights into the

dietary preferences of consumers, thus offering a valuable means to

interpret trophic levels within marine ecosystems (Minagawa and

Wada, 1984; Kang et al., 2021). Carbon stable isotope ratios (d13C)
are particularly suited for identifying food sources because of their

minimal fractionation (0‰–1‰) between diets and consumers.

Therefore, d13C values have found application as useful indicators

of the original carbon source in marine food webs. Nitrogen stable

isotope ratios (d15N) are well suited for comprehending the trophic

levels of organisms because of their relatively substantial and

consistent increments of around 3.4‰ per trophic step (i.e.,

between prey and consumers) (Minagawa and Wada, 1984;

Post, 2002).

In this research, we analyzed the d13C and d15N values of

neustonic copepods and size-fractionated POM to investigate the

variations in trophic niches within the neustonic copepod

community in contrasting water masses. We anticipated that the

food sources of neustonic copepods would exhibit differences

because of the influence of the distinct water masses (with unique

characteristics) of the nECS. Furthermore, we expected the trophic

position of neustonic copepods to vary according to their respective

food sources. Based on these expectations, we hypothesized that, if

the feeding habits of neustonic copepods (i.e., carnivorous or

particle feeders) resulted in distinct trophic relationships, their

d13C and d15N values would exhibit variations between the

different water masses. Consequently, this would lead to a spatial

shift in the isotopic niche of the entire copepod community as a

response to the differing compositions of copepod and phytoplankton

species within these contrastingwatermasses. Specifically, because the

YRDW plays a crucial role in shaping the spatial distribution of the

surface water masses in the nECS, our research aimed to elucidate the

impact of YRDW intrusion on the complex trophic interactions that

underlie the neustonic copepod food web in this region during

the summer monsoon. To accomplish this, we performed a

comparative analysis of food web characteristics—focusing on

community-wide metrics—regarding the temporal features of the

spatial distribution of surface water masses.
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2 Material and methods

2.1 Site description

The study area included areas with other physicochemical

characteristics, such as YRDW outflow from China during the

summer rainy period, TWC expansion with high water

temperature, salinity, and inflow of SKCW into Korea. The

discharge of YRDW varies from year to year. According to the

YRDW discharge provided by the ocean and fisheries research

institute in the Jeju special self-governed province (https://

www.jeju.go.kr/jori/monitor/imap.htm), YRDW was continuously

discharged at about 60,000 tons in June 2021, which was the largest

value of the year. It gradually decreased from August to September.

In contrast, TWC has increased relatively. The inflow of YRDW

with low salinity and density characteristics can characterize the

fluctuations in water masses across time and space. The variation of

heterogeneous water masses affects the copepod community

structure and, thus, the complexity of the food web. We

performed three onboard observations considering the discharge

of YRDW and the expansion of the TWC. We collected POM and

neustonic copepod specimens in June (western Jeju Island), August

(southern Jeju Island), and September (northeastern Jeju Island)

2021 using a research vessel (Saedongbaek) from the Chonnam

National University in South Korea (Figure 1 and Supplementary

Table 1). We utilized the period-specific geographical areas

identified by Choi et al. (unpublished) based on the neustonic

copepod community structure: areas A (affected by the YRDW) and

B (remaining shelf water that had a relatively high salinity) in June;

areas A (affected by the YRDW) and B (affected by the TWC) in

August; and areas A (broad frontal area formed over the coast of

Korea) and B (strongly influenced by the TWC) in September. The
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range of salinity by areas within month is as follows: areas A (25.7 to

31.3) and B (28.8 to 32.0) in June; areas A (27.9 to 29.7) and B (27.9

to 30.9) in August; and areas A (31.1 to 31.6) and B (31.2 to 32.3)

in September.
2.2 Sampling methods

The seawater samples (45 L) of the surface layer were used to

treat pico- to microsize POM samples. All filter paper used for

treatment was prewashed and precombusted (450 °C for 4 h), then

filtered in triplicate. The seawater samples were continuously

prefiltered through 200 mm and 20 mm sieves, and particles with

a size above 20 mmwere collected in Ø 47 mm GF/F filter paper (0.7

mm pore size; Whatman, Merck KGaA, Darmstadt, Germany), to

obtain microsized POM (mPOM). Nanosized POM (nPOM) was

collected by filtering seawater through a 20 mm sieve on Ø 47 mm

GF/D filter paper (2.7 mm pore size; Whatman), whereas picosized

POM (pPOM) was collected by filtering water through GF/D filter

paper with GF/F filter paper. All filters were immediately frozen and

stored at –80°C until the stable isotope analysis was performed. In

the laboratory, all filter samples were completely dried (60 °C for

48 h) in an oven (ThermoStable SON-155, Daihan Scientific, Seoul,

Korea). For stable isotope analysis, the filter samples were cut in half

and, to remove inorganic carbon and obtain accurate d13C values,

acid treatment was performed by fuming it within the acid-

containing desiccator overnight. The remaining filter samples

were used to obtain d15N values. All filter samples were folded

and packed into a tin disk.

All copepods collected with neuston net were considered

neustonic copepods because of the difficulty in distinguishing

euneuston, facultative neuston and pseudoneuston in this study.
FIGURE 1

Map showing the distribution of surface salinity at the sampling station [(A), study area; (B), June (J); (C), August (A); (D), September (S)] in the
northeastern East China Sea. For each sample, the study area was divided into (A) (red, low-salinity) and (B) (blue, high-salinity) according to the
non-metric multidimensional scaling (nMDS) model via a Bray–Curtis similarity index correction based on the distribution of neustonic copepods at
the species level. The areas used for stable isotope analysis were selected among the two study areas (circles). Summary of the study area is
provided in Supplementary Table 1.
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A neuston net (70 cm width; 40 cm height; mesh size 333 mm) used

for neustonic copepod sampling was towed horizontally at a ship

speed of 2.5 to 4 knots at a distance of 2–5 m from the shipside. A

flowmeter (model 438 115, Hydro-Bios Co., Altenhoz, Germany)

was attached to the mouth of the net, to estimate the volume of the

filtered seawater. The collected neustonic copepod samples were

divided on board using a Folsom-type plankton splitter, for species

identification and stable isotope analysis. The samples used for

species identification were preserved in 5%–8% neutralized

formalin–seawater solution. Subsamples were frozen (–80°C) on

board the ship and stored frozen in the laboratory for subsequent

stable isotope analysis. After transportation to the laboratory,

preserved samples were once more divided using a Folsom

plankton splitter before estimating abundance. Neustonic

copepod species were identified and counted using a dissecting

stereo microscope (SMZ645, Nikon, Tokyo, Japan). When detailed

observation was required for species identification, the appendages

and any other parts required for this were dissected and observed on

a slide glass by mounting in 70% glycerin under high magnification

of an optical microscope (ECLIPSE E200, Nikon, Tokyo, Japan).

The classification system was devised based on the World Register

of Marine Species (WoRMS, https://www.marinespecies.org). The

density of neustonic copepod was measured and converted into

abundance per unit volume (ind. m−3). Log (x + 1) transformation

of data was performed to avoid bias due to differences in population

abundance between survey areas and species and normalize data

distribution. To measure the similarity between neustonic copepod

stations, hierarchical cluster analysis was performed based on the

Bray–Curtis similarity index (Shannon andWeaver, 1963) using the

PRIMER software (version 6.1.6., Auckland, New Zealand; Clarke

and Gorley, 2006). Subsequently, the cluster was arranged using the

non-metric multidimensional scaling (nMDS) model (Figure 1).

Based on the nMDS, stations with high abundance of neustonic

copepods were selected, and the sampling area for stable isotope

analysis was reorganized into areas A and B for each month. The

neustonic copepod species in the reconstructed areas were

converted to percentages to select dominant copepod species.

The chosen dominant copepod species were as follows

(Table 1): areas A (Calanus sinicus and Labidocera rotunda) and

B (Paracalanus parvus s. l. and L. rotunda) in June; areas A (Acartia

pacifica, Canthocalanus pauper, L. rotunda, Centropages furcatus,

Temora discaudata and T. turbinata) and B (A. pacifica, L. acuta, C.

furcatus, T. discaudata and C. pauper) in August; and areas A (C.

pauper, C. furcatus, L. acuta, Subeucalanus crassus, T. turbinata and

T. discaudata) and B (Undinula vulgaris, L. acuta and C. pauper) in

September. In addition to the dominant species, the minor species

were selected based on their feeding relationships (area A in June:

Pontellopsis yamadae; and area B in September: T. discaudata, S.

crassus and C. furcatus). The feeding type of the selected neustonic

copepod species was classified as either particle feeder or

carnivorous based on the literature (Anraku and Omori, 1963;

Acros and Fleminger, 1986; Price and Paffenhöfer, 1986; Turner,

1986; Ohtsuka and Onbé, 1991; Ohman and Runge, 1994; Hu et al.,

2014; Al-Hanoun and Mayya, 2020).

Sufficient individuals of each species (0.3–0.5 mg) selected for

stable isotope analysis were collected onto precombusted GF/F (Ø
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47mm), dried in an oven (60°C for 48 h), and packed (triplicated) into

a tin capsule.Moreover, radiolarians, which were predominant in area

B in June, were considered as a food source for the copepods and were

selected for analysis (Supplementary Figure 1). Radiolarians have

silica-based skeletons, and CaCO3 content is minimal or negligible

(Anderson, 2001;Matsuzaki et al., 2016). Single-celled species range in

size from less than 100 mm to very large species reaching 1 to 2 mm in

diameter (Anderson, 2001), but radiolarians from the northern East

China Sea are reported to be small case (Matsuzaki et al., 2016).

Additionally, the radiolarians in this study are relatively very small

compared to L. rotunda (body length: >1.0 mm; Razouls et al., 2005–

2024a). Thus, it was determined that therewas a risk of loss during acid

treatment; and, after drying, the sampleswere packed into a tin capsule

with a weight of 0.3–0.5 mg.
2.3 Stable carbon and nitrogen
isotope analysis

Stable isotope data for all packed POM, copepod, and

radiolarian samples were obtained using continuous-flow isotope

ratio mass spectrometry (CF-IRMS). Samples were oxidized at a

high temperature (980°C) in an Elemental Analyzer (Flash 2000,

Thermo Scientific, Waltham, MA), and the resultant CO2 and N2

were swept by Helium carrier gas in continuous flow mode and

analyzed for stable isotope ratio using a Conflo IV (Thermo

Scientific) interfaced with an isotope ratio mass spectrometer

(Delta VPlus, Thermo Scientific). Analyses were conducted by the

Alaska Stable Isotope Facility (ASIF) at the University of Alaska

Fairbanks. The abundance of each stable isotope is expressed in d
notation as parts per thousand (‰) deviation from the

international standards Vienna Pee Dee Belemnite for carbon and

Air for nitrogen according to the following formula:

dX =
Rsample

Rstandard
− 1

� �
� 103

where X is 13C or 15N, and Rsample and Rstandard are the ratios of

heavy to light isotopes in the samples and standards, respectively. All

stable isotope results were subjected to two-point calibrations. Stable

isotope ratios were calibrated using international standards of sucrose

(ANU C12H22O11; National Institute of Standards and Technology

(NIST), Gaithersburg, MD, United States) for carbon and of

ammonium sulfate ([NH4]2SO4; NIST) for nitrogen. Using this

calibration, the average d13C and d15N obtained for the ASIF

calibration verification standard (ref/chk/peptone) were –15.8‰ ±

0.3‰ (n= 10) and 7.1‰± 0.1‰ (n= 10), respectively, which compare

well with their accepted values of –15.8‰ and 7.0‰, respectively. The

instrument precisionwas approximately 0.3‰ and 0.1‰ for d13C and

d15N, respectively. Lipid extraction was not performed for each

copepod sample because it may affect the value of d15N (Bodin et al.,

2007;Mintenbeck et al., 2008); rather, the d13C of the copepod samples

was calculated according to Smyntek et al. (2007), as follows:

d 13Cex = d 13Cbulk + 6:3  
C :Nbulk − 4:2

C :Nbulk

� �
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where d13Cex is the predicted d13C value of the defatted copepod

sample, and d13Cbulk and C:Nbulk are the d13C value and the C:N

ratio of the experimental samples, respectively.
2.4 Data analysis

Any outliers identified among the calculated stable isotope

analytical values were excluded from further analysis. Before the

statistical analyses, the normality and homogeneity of variance for

all isotopic data were confirmed using the Shapiro–Wilk test and

Levene’s test, respectively. The significance of the differences in the
Frontiers in Marine Science 05
d13C and d15N values of neustonic copepod communities observed

between the different months and areas was assessed using a

permutational multivariate analysis of variance (PERMANOVA)

based on the Bray–Curtis similarity method (Anderson, 2017), as

well as a multilevel pairwise PERMANOVA using adonis2 and

pairwise adonis2 from the “vegan” package. The significance level

for all statistical tests was set at 5%. Analyses were conducted using

the R software (version 4.2.3) (R Core Team, 2013).

A hierarchical cluster analysis based on the d13C and d15N
values of neustonic copepod species was performed using PRIMER,

version 6.1.6, to identify trophic groups according to the Bray–

Curtis similarity method. Because the isotope values within
TABLE 1 The dominant species, relative abundance and feeding habits of dominant neustonic copepods in the study areas (low salinity, A and high
salinity, B) by months (June, August, and September).

Month Area Dominant species Relative abundance Feeding habit Reference

June A Calanus sinicus 84.0 PF Ohman and Runge (1994)

Labidocera rotunda 7.6 C Anraku and Omori (1963)

Pontellopsis yamadae 0.2 C Ohtsuka and Onbé (1991)

B Paracalanus parvus s. l. 46.7 PF Al-Hanoun and Mayya (2020)

L. rotunda 34.0 C —

August A Acartia pacifica 33.6 PF Anraku and Omori (1963)

Canthocalanus pauper 16.7 PF Hu et al. (2014)

L. rotunda 13.9 C —

Centropages furcatus 8.3 PF Anraku and Omori (1963)

Temora discaudata 7.9 PF Acros and Fleminger (1986)

T. turbinata 8.7 PF —

B A. pacifica 42.3 PF —

L. acuta 27.2 C —

C. furcatus 12.6 PF —

T. discaudata 6.5 PF —

C. pauper 4.4 PF —

September A C. pauper 47.4 PF —

C. furcatus 11.8 PF —

L. acuta 8.7 C —

Subeucalanus crassus 8.2 PF Price and Paffenhöfer (1986)

T. turbinata 5.0 PF —

T. discaudata 4.2 PF —

B Undinula vulgaris 28.2 PF Turner (1986)

L. acuta 27.3 C —

C. pauper 27.1 PF —

T. discaudata 2.2 PF —

S. crassus 1.0 PF —

C. furcatus 0.8 PF —
It was assumed that the feeding habits of species without reference is the same as that of Genus.
The minor species were selected by considering their feeding relationship: area A (Pontellopsis yamadae) in June and area B (Temora discaudata, Subeucalanus crassus and Centropages furcatus)
in August. PF, particle feeder; C, carnivorous. References are to the feeding habits of dominant species.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1378025
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Choi et al. 10.3389/fmars.2024.1378025
individual trophic groups met the assumptions of normality and

equality of variance, multivariate and univariate analyses of

variance (MANOVA and ANOVA, respectively) were performed

using the Bray–Curtis similarity method, to test the significance of

the differences between trophic groups. Subsequently, ANOVA of

d13C and d15N was followed by multiple comparisons using Tukey’s

honestly significant different (HSD) test, to detect differences

among the trophic groups. These statistical tests were performed

at P < 0.05 using IBM SPSS statistics (version 27.0 IBM Corp.,

Armonk, NY; George and Mallery, 2019).

The trophic niche of the dominant neustonic copepod

community in the two areas according to the month of the year

was described using stable isotope Bayesian ellipses in R (SIBER)

(Jackson et al., 2011). The Layman metric of the total area of the

convex hull (TA) can be directly converted to a measure of

population niche area; however, it is very sensitive to sample size

and, consequently, its value increases as the sample size increases

(Layman et al., 2007). In contrast, the standard ellipse area (SEA)

asymptote with a sample size of 30 and the TA increase as the

number of added samples increases, with a standard ellipse

containing 40% of the data, regardless of sample size (Syväranta

et al., 2013). The corrected standard ellipse area (SEAc) provides a

highly satisfactory estimate for all sample sizes (Jackson et al., 2011;

Syväranta et al., 2013); therefore, we used SEAc as a measure of the

mean core population isotopic niche. Other Layman metrics

included NR (d15N range), to provide information on the trophic

length of the community, and CR (d13C range), to estimate the

diversity of the basal resources. TA and the mean distance to the

centroid (CD) were used to indicate the niche width and diversity of

the diet or trophic diversity of the population, respectively.

We estimated the relative contributions of the different sources

[Yangtze River Water (YRW), TWC, and riverine freshwater

discharge from the Korean peninsula] to the trophic groups of

neustonic copepods (based on cluster groups) using a Bayesian

isotope mixing model. We employed the Stable Isotope Mixing

Model in R (SIMMR)−an upgraded version of the Stable Isotope

Analysis in R (SIAR) (Parnell et al., 2013)—for this purpose. The

d13C and d15N end-member values of POM originating from the

YRW were obtained from the values reported from upstream to

downstream (Supplementary Table 2). The d13C and d15N end-

member values of suspended POM originating from the TWC in

the eastern Jeju Island in summer were obtained from the values

reported from subsurface and bottom layers. The d13C and d15N
end-member values of suspended POM from the riverine

freshwater discharge from the Korean peninsula were the values

reported for the Seomjin River and Tamjin River, which are

prominent rivers in the South Sea of Korea. Similar to SIAR, the

SIMMR integrates stable isotope values from terminal end-

members and consumers, together with the uncertainty of trophic

enrichment factors, to generate credible intervals for potential

dietary solutions (Parnell et al., 2010, 2013). Default settings for

the number of iterations, burn-in, and Markov chain Monte Carlo

chains were employed by SIMMR to explore possible solutions,

excluding those that were not probabilistically consistent with the
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data. The accuracy of the Gellman–Rubin statistic for curve analysis

was as high as 1.00. In this study, trophic enrichment factors of

0.3‰ (± 0.1‰) for d13C and 2.2‰ (± 2.1‰) for d15N were used for

the SIMMR calculation (McCutchan et al., 2003). The SIMMR

results are presented as the median (50% quartile) and the 5%–95%

Bayesian credible intervals of diet proportions.
3 Results

3.1 Isotope values of the primary sources
of organic matter

The d13C values of pico- to microsized POM in the surface layer

fell within narrow ranges of –23.7‰ to –25.4‰, –21.9‰ to –

24.8‰, and –23.2‰ to –24.1‰ in both areas A and B in June,

August, and September, respectively (Table 2). Their d15N values

fell within nearly identical ranges of 4.9‰ to 7.3‰, 5.1‰ to 7.2‰,

and 4.9‰ to 8.0‰ in both areas A and B at the three time points,

respectively. The radiolarians were highly abundant in area B in

June and had high d13C values, with a mean of –20.0‰.
3.2 Isotope values of neustonic copepods

The d13C values of the dominant neustonic copepodswere distinct

from those of all size fractions of POM (Table 2). In area A, the mean

d13C values of copepod were consistent on each sampling occasion: –

21.3‰ to –20.8‰ in June, –17.9‰ to –16.5‰ in August, and –20.1‰

to –19.0‰ in September. The values were highly elevated in August

compared with the values recorded in June and September. The mean

d13C values of copepod were highly uniform in area B during the

sampling period: –21.3‰ to –20.0‰ in June, –20.5‰ to –19.6‰ in

August, and –21.0‰ to –19.4‰ in September.

The mean d15N values of the dominant neustonic copepods in

area A varied from 5.1‰ to 7.9‰ in June, 8.2‰ to 9.4‰ in August,

and 6.0‰ to 7.7‰ in September. The values were highly elevated in

August compared with the remaining two time points. The mean

d15N values of copepod in area B were also highly variable on each

occasion: 2.7‰ to 7.9‰ in June, 5.8‰ to 8.0‰ in August, and

6.4‰ to 8.2‰ in September.

A multivariate two-way PERMANOVA revealed a strong

interaction between area and month (F2, 64 = 17.36, P < 0.001) in

terms of the d13C and d15N values of the neustonic copepod

community (Table 3). In turn, a univariate two-way

PERMANOVA also denoted a strong interaction of area × month

for both d13C (F2, 64 = 46.95, P < 0.001) and d15N (F2, 64 = 7.460, P <

0.001) values. Pairwise comparisons within area showed significant

differences in the d13C (P < 0.001) and d15N (P < 0.001, except for

June vs. September) values between months in area A, but not in

area B (P > 0.054 for all cases). Further pairwise comparisons within

month revealed significant differences in the d13C (P < 0.004) and

d15N (P < 0.005) values between areas in August and September, but

not in June (P = 0.202 and 0.317 for d13C and d15N, respectively).
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TABLE 2 Values of d13C and d15N of copepods and particulate organic matter according to area (A, low salinity; and B, high salinity) of the
northeastern East China Sea.

Month Area Producers and consumers
d15N d13C

Code
Mean SD Mean SD

June A mPOM 5.4 0.5 –24.7 0.1 m

nPOM 5.1 0.3 –24.5 0.1 n

pPOM 4.9 0.4 –24.2 0.1 p

Calanus sinicus 7.9 0.2 –20.8 0.1 CS

Labidocera rotunda 5.1 0.1 –20.8 0.2 LR

Pontellopsis yamadae 7.4 0.1 –21.3 0.3 PY

B mPOM 4.7 0.4 –25.1 0.3 m

nPOM 5.7 0.4 –25.4 0.2 n

pPOM 7.3 0.4 –23.7 0.1 p

Radiolarian 6.3 0.2 –20.0 0.3 r

Paracalanus parvus s. l. 2.7 0.2 –21.3 0.2 PP

L. rotunda 7.9 0.1 –20.0 0.1 LR

August A mPOM 7.2 0.2 –23.4 0.4 m

nPOM 6.0 0.2 –23.5 0.0 n

pPOM 5.9 0.3 –23.8 0.5 p

Acartia pacifica 9.4 0.0 –17.7 0.0 AP

Canthocalanus pauper 9.2 0.2 –17.6 0.2 CP

L. rotunda 8.7 0.2 –17.9 0.1 LR

Centropages furcatus 9.3 0.1 –17.6 0.2 CF

Temora discaudata 8.2 0.0 –17.1 0.1 TD

T. turbinata 8.5 0.2 –16.5 0.6 TT

B mPOM 6.0 0.4 –21.9 0.4 m

nPOM 5.1 0.1 –24.8 0.5 n

pPOM 6.4 0.1 –22.3 0.3 p

A. pacifica 8.0 0.1 –19.6 0.2 AP

L. acuta 7.4 0.3 –20.3 0.1 LA

C. furcatus 7.4 0.2 –20.0 0.2 CF

T. discaudata 5.8 0.0 –19.8 0.2 TD

C. pauper 7.7 0.1 –20.5 0.1 CP

September A mPOM 5.1 0.1 –23.5 0.1 m

nPOM 8.0 0.2 –24.0 0.0 n

pPOM 7.1 0.2 –23.8 0.2 p

C. pauper 6.6 0.2 –20.1 0.1 CP

C. furcatus 6.5 0.1 –19.9 0.2 CF

L. acuta 7.7 0.2 –20.1 0.1 LA

Subeucalanus crassus 7.2 0.2 –19.0 0.1 SC

T. turbinata 6.0 0.2 –19.8 0.1 TT

(Continued)
F
rontiers in Marine S
cience
 07
 front
iersin.org

https://doi.org/10.3389/fmars.2024.1378025
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Choi et al. 10.3389/fmars.2024.1378025
3.3 Identification of trophic groups

A cluster analysis based on the average d13C and d15N values

classified neustonic copepods into five distinct groups (designated

as groups I, II, III, IV, and V) throughout the sampling occasions

(Supplementary Figure 2). The copepod assemblages were

separated into two groups in each area, except for area A in

August (Figure 2). In June, group I consisted of carnivorous

species (L. rotunda and P. yamadae) and a particle feeder (C.

sinicus), whereas groups IV and V included a carnivorous species

(L. rotunda) and a particle feeder (P. parvus s. l.) in areas A and B,

respectively. In August, group I contained a carnivorous species (L.

acuta) and particle feeders (C. pauper, A. pacifica, and C. furcatus),

and group II consisted of a particle feeder (T. discaudata) in area B.

In turn, group III comprised species of groups I and II and another

carnivorous species (L. rotunda) and particle feeder (T. turbinata)

in area A, with no segregation. In September, group I included a

carnivorous species (L. acuta) and particle feeders (C. pauper and S.

crassus) in both areas A and B, and particle feeders (C. furcatus and

U. vulgaris) in area B. Group II consisted of a particle feeder (T.

discaudata) in both areas A and B, and other particle feeders (C.

furcatus and T. turbinata) in area A, with no carnivorous species

identified in this group.

Significant differences were observed between trophic groups

(one-way MANOVA, F4, 65 = 56.77, P < 0.001) in terms of the d13C
and d15N values (Table 4). A subsequent univariate ANOVA

revealed significant differences for both d13C (F4, 65 = 77.29,

P < 0.001) and d15N values (F4, 65 = 160.4, P < 0.001). Tukey’s

HSD test of the d13C values between trophic groups revealed

significant differences (P < 0.001), except for groups I vs. IV and

IV vs. V). In fact, group III displayed considerably higher d13C
values than the remaining groups (P < 0.05 for all cases). In

contrast, the d13C values of groups II, IV, and V fell within

the range of group I (–21.3‰ to –19.0‰). The d15N values of

copepod assemblages were clearly differentiated between trophic
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groups (P < 0.05 for all cases), except for group IV vs. V. Conversely,

Tukey’s HSD test of each trophic group revealed slight differences in

both d13C and d15N values, with the differences between areas and

months being very small, within 1‰.
3.4 Community-wide trophic niche

The NR, CR, and CD values were lower in June and September

(0.71‰ and 0.72‰, 0.43‰ and 0.70‰, and 0.42‰ and 0.51‰,

respectively) than in August (1.60‰, 2.58‰, and 1.52‰,

respectively) (Table 5). The Layman metrics further showed that the

NR, CR, and CD values between two spatially different communities

(i.e., low- vs. high-salinity areas in each month) were much larger in

August than they were in June and September. The SEAc was much

wider in area B in June than it was in the remainingmonths and in area

A inall threemonths (Figure3).Thecopepodcommunities in Juneand

September exhibited a considerable overlap (17.0% and 13.6%,

respectively) of trophic niches between areas A and B. In contrast,

no niche overlap was observed between areas A and B in August.
3.5 Mixing-model quantification of
source contribution

The SIMMR model calculation showed that almost all of the

dietary nutrition of the neustonic communities in June, August, and

September originated from the subsurface and bottom POM of the

TWC rather than from the riverine discharge (Yangtze River and

Korean rivers; Figures 4A, C). Furthermore, the nutritional source

of the copepod community constituting the trophic group III (i.e.,

low-salinity area in August) was also calculated to be exclusively

dependent upon the subsurface and bottom POM originating from

the TWC (mean, 98.3%) than from the YRW (mean,

1.7%) (Figure 4B).
TABLE 2 Continued

Month Area Producers and consumers
d15N d13C

Code
Mean SD Mean SD

T. discaudata 6.3 0.0 –19.4 0.2 TD

B mPOM 7.2 0.6 –24.1 0.1 m

nPOM 5.6 0.2 –23.7 0.1 n

pPOM 4.9 0.1 –23.2 0.0 p

Undinula vulgaris 7.7 0.0 –20.7 0.3 UV

L. acuta 8.2 0.2 –20.6 0.2 LA

C. pauper 7.6 0.0 –21.0 0.1 CP

T. discaudata 6.4 0.0 –19.8 0.1 TD

S. crassus 7.4 0.1 –19.4 0.2 SC

C. furcatus 6.8 0.1 –20.3 0.1 CF
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TABLE 3 Results of the two-way PERMANOVA (multivariate and univariate) and the pairwise comparison of the differences in the stable isotope (d13C
and d15N) values of the copepod community.

Multivariate

d13C and d15N

Factors df SS F P

Area 1 0.015 21.68 < 0.001

Month 2 0.061 44.05 < 0.001

Interaction 2 0.024 17.36 < 0.001

Residual 64 0.045 — —

Univariate

d13C d15N

Factors df SS F P SS F P

Area 1 0.016 95.98 < 0.001 0.009 1.259 0.265

Month 2 0.034 100.8 < 0.001 0.208 14.34 < 0.001

Interaction 2 0.016 46.95 < 0.001 0.108 7.460 < 0.001

Residual 64 0.011 — — 0.465 — —

Pairwise “Area × Month” for pairs of levels of factor “Month”
Within “Area”

d13C d15N

Factors df SS F P SS F P

Area A

June vs. August 1, 19 0.003 229.3 < 0.001 0.082 27.85 < 0.001

June vs. September 1, 23 0.003 46.92 < 0.001 0.109 0.578 0.445

August vs. September 1, 30 0.005 175.2 < 0.001 0.045 108.4 < 0.001

Area B

June vs. August 1, 15 0.003 3.734 0.074 0.323 4.402 0.088

June vs. September 1, 17 0.004 0.233 0.646 0.313 5.762 0.054

August vs. September 1, 24 0.004 3.487 0.063 0.058 0.126 0.739

Pairwise “Area × Month” for pairs of levels of factor “Area”
Within “Month”

d13C d15N

Factors df SS F P SS F P

June

Area A vs. Area B 1, 10 0.002 1.729 0.202 0.362 0.997 0.317

August

Area A vs. Area B 1, 24 0.004 185.3 < 0.001 0.043 35.79 < 0.001

September

Area A vs. Area B 1, 30 0.005 14.66 < 0.004 0.06 10.36 < 0.005
F
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Bolds indicate significance at P < 0.05.
The tested factors included “area” (low salinity, A vs. high salinity, B) and “month” (June, August, and September), and their interaction.
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4 Discussion

Despite the expected increase in the contribution of the POM

originating from the YRDW during the summer, there were no

observable conspicuous changes in the trophic niche (including

trophic sources and positions) of neustonic copepods in the nECS.

Our findings suggest that the primary sources of organic matter

sustaining the neustonic copepod community were derived from

POM produced within the TWC itself, rather than from river

discharge. Although we observed slight temporal variations in

trophic niche and Layman metrics, these variations were
Frontiers in Marine Science 10
attributed to an increased contribution of phytoplankton locally

produced in situ, rather than POM originating from rivers.

Consequently, we sought to assess the relative importance of two

factors: (1) the exclusive contribution of local POM and (2) the

minimal contribution of riverine POM to support of the production

of neustonic copepods in the nECS, as evidenced by our SIMMR

mixing-model estimations.
4.1 Importance of local production for the
community trophic niche

The d13C and d15N values of POM in the surface water varied

according to sampling month and area and depended on

oceanographic characteristics and biogeochemical processes

(Michener and Kaufman, 2007). The d13C values of marine POM

typically vary from –18‰ to –23‰, whereas terrestrial POM

exhibits a range of –25‰ to –28‰ (Meyers, 1997). In this study,

an average range of –21.9‰ to –25.4‰ of POM of various sizes

indicated a mixture of POM from terrestrial and marine origins

(Table 2). The d13C values of the POM derived from the Yangtze

River estuary and riverine freshwater discharge from the Korean

peninsula exhibited ranges of –23.7‰ to –26.4‰ and –24.1‰ to –

26.9‰, respectively (Tan et al., 1991; Gal et al., 2012; Kang et al.,

2020). Notably, it has been observed that the d13C values tend to

increase gradually with the increase in salinity from coastal regions

to the open ocean (Tan et al., 1991; Wu et al., 2003; Gao et al., 2014).

Consequently, the d13C values observed across all POM sizes suggest a

discernible influence of themixing of riverine andmarine sources. The

d15N values of POM across all size categories ranged from 4.7‰ to

8.0‰, fallingwithina range thatwas comparable to thatof the copepod

community (2.7‰–9.4‰). Notably, the d15N values recorded in the

vicinity of Jeju Islandwere also elevated, varying from 5.4‰ to 10.3‰

(Min et al., 2020). In coastal areas (low salinity), the d15N values of

POM increase due to the influence of wastewater inflowing in through

riverinewater (McClelland et al., 1997). Conversely, the d15N values of

POM in the open ocean (high salinity) are depleted due to the N2

fixation prevails by diazotrophs and Trichodesmium (Montoya et al.,

2002;Wu et al., 2018).Nevertheless, POMof area affected by the TWC

showedhighd15Nvalues.Along the coastof Jeju Island, a large number

of fish farms discharge wastewater with high nutrient concentrations,

which contain high-protein fish tissue and feed, into the sea

surrounding the island (Samanta et al., 2019; Lee et al., 2020). In

addition, due to the recent increase in pig livestock, nitrate discharged

from the farms flows into the under-ground water, and groundwater

flows into the coastal seawater (Kim et al., 2021). For this reason, the

high-concentration nutrients discharged from the Jeju Island may

result in elevated d15N values of POM as they are transported and

diluted through the surrounding TWC. The surface layer, although

potentially rich in food resources, is expected to host a higher

concentration of predators, both visual and nonvisual (Leising et al.,

2005). Based on the feeding activities of predators, such as

chaetognaths and planktivorous fish, including those in the larval

stages, we inferred that POMexhibited elevated d15N values because of

its higher organic matter content, including zooplankton detritus and

proteins, compared with phytoplankton.
A

B

C

FIGURE 2

Trophic web structure of neustonic copepods in the northeastern
East China Sea. The sampling stations [(A), June; (B), August; (C),
September] were divided into areas (A) (low salinity, red color) and
(B) (high salinity, blue color) according to the characteristics of the
water masses. Codes are given by acronyms of the first letters of
genus and species name, and are listed in Table 2. The groups of
taxa (dotted circles) were chosen from the hierarchical cluster
analysis (Supplementary Figure 2).
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The d13C values measured in neustonic copepods and the

surface POM displayed a distinct discrepancy (Figure 2),

indicating the complexity of the relationships among neustonic

copepod communities. Notably, there was a clear distinction in

neustonic copepods between areas A (low-salinity level) and B
Frontiers in Marine Science 11
(high-salinity level) (Table 3). The influx of monsoon-induced river

discharge has been identified as a factor that reduces the density of

marine copepods (Chen et al., 2023). In area A (low-salinity level),

which is affected by river discharge, the neustonic copepod

communities refrained from feeding on the surface POM because
TABLE 4 Results of the one-way MANOVA, ANOVA, and Tukey’s HSD test results, for testing the differences in the stable isotope (d13C and d15N)
values among the trophic groups of the northeastern East China Sea.

MANOVA

d13C and d15N

Factors df Pillai’s Trace F P

Trophic group 4 1.555 56.77 < 0.001

Residual 65 0.998 — —

ANOVA

d13C d15N

Factors df SS F P SS F P

Trophic group 4 91.85 77.29 < 0.001 112.9 160.4 < 0.001

Residual 65 9827 — — 918.9 — —

Tukey’s HSD test

d13C d15N

(I) Factors (J) Factors Mean Difference
(I-J)

Std. Error P Mean Difference
(I-J)

Std. Error P

Group I Group II 0.540* 0.175 < 0.024 1.349* 0.135 < 0.001

Group III 2.796* 0.170 < 0.001 –1.393* 0.131 < 0.001

Group IV –0.583 0.327 0.392 2.491* 0.252 < 0.001

Group V –1.188* 0.395 < 0.030 4.835* 0.304 < 0.001

Group II Group III 2.256* 0.210 < 0.001 –2.742* 0.162 < 0.001

Group IV –1.123* 0.349 < 0.017 1.142* 0.269 < 0.001

Group V –1.728* 0.414 < 0.001 3.486* 0.319 < 0.001

Group III Group IV –3.379* 0.347 < 0.001 3.884* 0.267 < 0.001

Group V –3.984* 0.412 < 0.001 6.228* 0.317 < 0.001

Group IV Group V –0.605 0.498 0.742 2.344* 0.383 < 0.001
front
The mean differences significant at the 0.05 level are marked with an asterisk. Bolds represent significance at P < 0.05.
TABLE 5 Comparisons of the isotopic niche areas of each area (A, low salinity; and B, high salinity) according to month (June, August,
and September).

Month NR CR CD Area TA SEAc (‰2) Nestedness (%)

June 0.711 0.427 0.415 A 1.659 1.757 17.0

B 1.336 1.636

August 1.596 2.581 1.517 A 1.329 0.698 0.0

B 1.572 1.007

September 0.723 0.704 0.505 A 1.890 0.907 13.6

B 1.956 1.066
Results of the metrics of the d13C and d15N values pertaining to the month provided information on trophic diversity (d15N range, NR; d13C range, CR; mean distance to the centroid, CD). Each
area estimated the total area (TA), the corrected standard ellipse area (SEAc), and the overlap in SEAc (nestedness).
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of avoidance behaviors triggered by an osmotic and salinity

acclimation stress (Saiz et al., 2022; Weissenberg et al., 2022).

Conversely, in area B (high-salinity level), where the impact of

river discharge is minimal, the neustonic copepod communities

descended to avoid visual predators, such as chaetognaths and

planktivorous fish, including those in the larval stages.

Experimental evidence from a predator–prey system involving

Acartia hudsonica revealed that, in the absence of visual

predators, there was no vertical migration; however, such

behavior was observed after the introduction of predators

(Bollens and Frost, 1991). This pattern coincided with the arrival

of krill and the subsequent response to predation by Calanus

finmarchicus, which descended from the surface (Tarling et al.,

2002). Considering the influence of predators and freshwater

discharge, neustonic copepods are presumed to undergo vertical

migration, selectively consuming POM in the subsurface
Frontiers in Marine Science 12
chlorophyll maximum (SCM) or bottom layers. This selective

strategy is interpreted as a means to enhance feeding success by

increasing individual survival rates while concurrently reducing

mortality rates.

The d13C and d15N values differed between areas in August and

September, but not in June (Table 3). Approximately 60,000 tons of

YRDW were discharged from the Yangtze River over the month of

May (see “site description”). This discharge formed a tongue-

shaped streamer that was propelled by persistent southeast

monsoon winds, leading to the intermingling of areas A and B

over time (Supplementary Figure 3). Subsequently, YRDW

discharges decreased to 45,000 tons in August, whereas the TWC

experienced a relative increase. In September, the intrusion of the

TWC intensified, creating a broad frontal zone with the coastal

waters of the SKCW. This water mass arrangement was also

reflected in the trophic niche (Figure 3). The trophic-niche
A B

DC

FIGURE 3

Isotopic niches of the neustonic copepod community. The lines and colors are as follows: areas A (low salinity, solid line), B (high salinity, dashed
line), and total area (TA) of convex hull (gray line) of each area. (A) June (orange), (B) August (purple), (C) September (green), and (D) the entire study
areas in the northeastern East China Sea.
A B C

FIGURE 4

Comparison of the dietary compositions of the neustonic copepod community in (A) June–August, (B) August, and (C) September using a dietary
mixing model. TWC, Tsushima Warm Current; YRW, Yangtze River Water.
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variation in neustonic copepods revealed the presence of distinct

feeding strategies in response to the contrasting water masses.

Neustonic copepods exhibit trophic flexibility, with a complex

trophic structure that is affected by the environment (López-

Ibarra et al., 2018; Albuquerque et al., 2021). In June and

September, when the contrasting water masses became mixed, the

trophic niche of the neustonic copepod community overlapped

between the two areas; in contrast, this was not observed in August

(Table 5). The trophic-niche overlap resulting from the mixing of

contrasting water masses likely signifies an increased prey diversity

and potential competition among organisms. Conversely, the clear

separation of the water masses observed in August suggests a

trophic shift in the neustonic copepod community, indicating a

high prey diversity in each area. This underscores the high

adaptability of neustonic copepods as flexible feeders, even in

areas with diverse water masses, where specific feeding types are

better suited to variations in prey availability under local conditions.
4.2 Characterization of trophic groups

The cluster analysis of neustonic copepods based on d13C and

d15N values resulted in the broad categorization of the communities

into two groups based on the month of collection (Figure 2). In

June, P. yamadae, which is a neustonic copepod that is prevalent

near the surface during the day and night, fell into group I, whereas

L. rotunda was present in both groups I and IV. Pontellopsis

yamadae, which is known for its raptorial feeding habit involving

the consumption of copepodids or small copepods (such as Acartia,

Euterpina, and Paracalanus) (Ohtsuka and Onbé, 1991), exhibited

high d15N values, presumably indicating the in situ consumption of

large copepods. Labidocera rotunda, possessing a mouth structure

and feeding habits similar to P. yamadae, was considered

carnivorous in this study (Ohtsuka and Onbé, 1991). Despite its

robust and sharp teeth (Anraku and Omori, 1963), the genus

Labidocera can feed on phytoplankton. L. rotunda in group I was

found to consume the copepod nauplii, small copepods (P. parvus s.

l.), and dominant radiolarians (Ohtsuka and Onbé, 1991), resulting

in elevated d15N values (Supplementary Figure 1).

Conversely, group IV was linked to copepods that probably

ingested phytoplankton particles with low d15N values, possibly as a

response to a copepod avoidance behavior triggered by river

discharge. Calanus sinicus, which was identified as an indicator

species of the Yellow Sea Bottom Cold Water, displayed the highest

d15N values (Wang et al., 2003). In coastal areas with nutrient input

from river discharge, C. sinicus prefers nano- to microsized POM

(Lee et al., 2012; Chen et al., 2018). Even in the Ulleung Basin, where

river discharge is minimal, C. sinicus leans toward autotrophic and

heterotrophic protozoa in the nano- to microsize range, rather than

toward picosized prey (Yang et al., 2009). With the capability to

consume substantial quantities of nonphytoplankton prey (Yang

et al., 2009; Jang et al., 2010), C. sinicus exhibits higher d15N values

than carnivorous copepods because of the ingestion of a diverse

range of prey with elevated d15N values in the study area. In group

V, P. parvus s. l., which has been characterized as a particle feeder, is

believed to consume small-sized phytoplankton particles using
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short, sharp-edged teeth (Al-Hanoun and Mayya, 2020). During

feeding experiments, Paracalanus species exhibited an increased

rate of feeding ciliates and dinoflagellates within the size range of

15–20 mm, whereas the feeding rate on particles exceeding 40 mm
was decreased (Suzuki et al., 1999). The observed low trophic

position of P. parvus s. l. likely reflects its feeding preference for

picoplankton, which is characterized by low d15N values.

In August, the influence of contrasting water masses led to the

clear differentiation of groups I, II, and III. In group I, L. acuta

exhibited a feeding habit similar to that observed for L. rotunda in

June. Among the particle feeders, it was reported that C. furcatus

can feed on microzooplankton, including ciliates (Jang et al., 2010).

The assessment of the food-source contribution of Centropages

species confirmed their association with microsized POM (Chen

et al., 2018). Acartia pacifica, which is a member of group I,

selectively feeds on nanosized plankton (>20 mm) (Lee et al.,

2012). Acartia pacifica can rapidly consume nanoflagellates more

efficiently than large prey and shows a preference for tintinnid

ciliates with shells among ciliates (Vargas and González, 2004;

Gifford et al., 2007). Also in this group, C. pauper is known to

feed on a variety of particles, ranging from phytoplankton to

metazoan individuals (Hu et al., 2014), although the specific prey-

size preferences have not been established well. Nevertheless,

similar to that observed for C. sinicus, it is believed that they

exhibit a selective feeding behavior on plankton larger than 20

mm (Jang et al., 2010; Lee et al., 2012). In group II, Temora

discaudata displayed the ability to consume diatoms and

dinoflagellate particles in the range of 3–106 mm, with a

particular preference for food with a size between the pico- and

nanorange (Turner, 1984a). The presence of groups I and II seemed

to indicate the mitigation of interspecific competition by consuming

prey with the sizes preferred by each taxon.

Surprisingly, group III, which was expected to exhibit decreased

d13C values because of the influence of river discharge, displayed

enriched d13C values compared with groups I and II. The copepods

in group III exhibited high d13C and d15N values, potentially

indicating the consumption of 13C-enriched phytoplankton, such

as diatoms (Fry and Wainright, 1991), which can have relatively

high d15N values compared with other phytoplankton (Montoya

and McCarthy, 1995). The significant increase in the d15N values of

T. discaudata in group II suggested a substantial consumption of

diatoms, even though they are herbivorous prey. In particular, the

d15N values of T. discaudata in group II were significantly increased.

A fatty acid and gut-content analysis revealed that species of the

genus Temora are capable of feeding on small flagellates and

copepod nauplii (Gentsch et al., 2009). This suggests that they act

as particle feeders, consuming not only picosized phytoplankton

but also both autotrophic and heterotrophic prey.

In September, the neustonic copepod species became

intertwined because of the mixing of contrasting water masses.

Undinula vulgaris, which was part of group I, exhibited an

indiscriminate particle-feeding habit , as it consumed

phytoplankton of various sizes and shapes (Turner, 1986).

Specifically, U. vulgaris fed predominantly on nanosized plankton,

dinoflagellates, and diatoms (Kleppel et al., 1996). Subeucalanus

crassus displayed the ability to consume prey of diverse sizes,
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encompassing living and dead phytoplankton (diatoms and

dinoflagellates), sediment, fecal pellets, and crustaceans (Turner,

1984b). Notably, this species exhibited a preference for nanosized

plankton over other phytoplankton (Kleppel et al., 1996). Unlike

most species that capture live prey, Eucalanidae species, including S.

crassus, can also detect and consume dead prey (Turner, 1984b;

Paffenhöfer and Van Sant, 1985), which is a feeding behavior that is

considered a survival strategy to minimize the potential competition

between species within the water column. Canthocalanus pauper

and C. furcatus were allocated to groups I and II, respectively.

Although the constituent species of groups I and II were

intermingled, areas A and B appeared to be distinct. As

mentioned previously, C. pauper and C. furcatus, which belong to

group I in area B (with high salinity), primarily consumed nano-

and microsized plankton, exhibiting high d15N values. These species

were presumed to have consumed plankton with lowered d15N
values, possibly because of the adverse effects of river discharge in

group II located in area A (with a lower salinity).

Our SIMMR mixing-model calculation supports that neustonic

copepod community rejects to feeding surface POM and reflecting

vertical migration to subsurface and bottom layers caused by the

possible influences of factors such as river discharge or the presence

of visual and nonvisual predators. The SCM layer within the range

of vertical migration contains phytoplankton that can be consumed

by the neustonic copepods, but also contains toxic diatoms,

dinoflagellates, or other harmful algae (Miralto et al., 1999;

Pierson et al., 2005). So they can migrate to deep layer to find

nutrient-replete and non-toxic preys (Im and Suh, 2019). Therefore,

we suggest that further research is needed on feeding in the

subsurface and bottom layers of the neustonic copepods. In the

future, it is necessary to approach the prey and feeding ecology of

neustonic copepod species through research such as culture

experiments using video cameras to determine the sinking prey

feeding behavior of copepods, DNA sequence analysis of gut-

contents, and fatty acid analysis (Cleary et al., 2017; Van der Jagt

et al., 2020; Cui et al., 2021).
5 Conclusion

We observed variations in the food-source composition of

neustonic copepods according to the trophic group, rather than the

salinity levels of the water masses. Although a distinct trophic-niche

shift was observed between high- and low-salinity environments in

August, the contribution of riverine POM to the diets of neustonic

copepods was minimal, even in the low-salinity area. The neustonic

copepod community exhibited no association with surface POM. This

suggests the presence of intricate feeding relationships among trophic

groups, reflecting vertical migration caused by the possible influences

offactors suchas riverdischargeor thepresenceof visual andnonvisual

predators. Furthermore, our examination of trophic groups within the

neustonic copepod community revealed differences in individual

preferred prey sizes and types. These copepods, which were

primarily characterized as opportunistic particle feeders, exhibited a

capacity for navigating both inter- and intraspecific competition

within water masses through selective feeding. Our SIMMR
Frontiers in Marine Science 14
estimation, aimed at identifying the source water mass that affected

the food consumed byneustonic copepods, highlighted a predominant

relianceondietary itemsof derived from theTWC.This alignswith the

existing literature, supporting the notion of a minimal influence from

river-derived material on ocean phytoplankton productivity (Mutia

et al., 2021). Consequently, it can be inferred that themarine neustonic

copepod community is not significantly dependent on freshwater-

originated food. In future studies, a comprehensive examination

incorporating other zooplankton taxonomic groups, together with

neustonic copepods, would provide a more detailed understanding of

the entire planktonic food web.
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SUPPLEMENTARY FIGURE 1

The dominant radiolarians in the area B in June. The radiolarians were
observed in gut of Labidocera rotunda.

SUPPLEMENTARY FIGURE 2

Hierarchical clustering of the average d13C and d15N values of neustonic

copepods in June, August, and September for study areas A and B using the
Bray–Curtis similarity (average grouping method).

SUPPLEMENTARY FIGURE 3

(A)Ocean prediction data based onmarine numerical models provided by the

ocean and fisheries research institute in the Jeju special self-governed
province showing salinity distribution. (B) Water temperature–salinity

diagram to determine the point of introduction of the Yangtze River Diluted
Water into the areas A and B in northeastern East China Sea. The dotted line

indicates the criteria for water with abnormally low salinity (>22 °C, 25–30)
(Hyun and Pang, 1998). During the study period, approximately 60,000 tons

of the YRDW were discharged continuously from the Yangtze River a month

before the survey (end of May) was conducted (see ‘site description’).
Furthermore, the southeast monsoon winds blow to form a tongue-shaped

‘streamer’. The ‘streamer’ phenomenon was observed in area A in June
(Figure 1). Accordingly, water temperature–salinity diagram was drawn to

identified how much YRDW had flowed into the study area in June, and
abnormally low-salinity water inflow was observed according to water

temperature (>22 °C) and salinity (25–30). Because of the continuous

inflow of YRDW and active surface mixing caused by the persistent
southeast monsoon winds, it was judged that there was little difference

between the d13C values of POM in areas A and B in June.
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