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Analysis of influencing factors
of carbon emissions from
China’s marine fishery energy
consumption under different
development scenarios
Shanhong Ye*

School of Art and Design, Jiangsu Ocean University, Lianyungang, China
China’s rapid economic development has consumed a large amount of energy,

causing serious environmental pollution problems and contributing to global

warming. This paper calculates the carbon emissions of the fishery sector and

uses Random Forest (RF) for the first time to analyze the influencing factors of

future carbon emissions. The results of the study show that increasing carbon

sinks dominate the reduction of carbon emissions in the fisheries sector. Carbon

sinks will continue to dominate emission reductions in the fisheries sector if

positive mitigation measures are taken. Continuing the current pattern of

fisheries development, the fishery population has a significant impact on future

carbon emissions. Per capita incomes under a crude economic model will inhibit

carbon emission reductions. The research results can provide guidance for the

development of fishery low carbon economy and the formulation of emission

reduction policies.
KEYWORDS

marine fishery, low carbon economy, energy consumption, carbon footprint,
random forest
1 Introduction

Global warming is one of the major issues of global sustainable development and a

serious challenge that humanity must face together. Global warming has led to rising sea

levels, an increase in extreme weather events and the destruction of natural ecosystems, all

of which pose serious threats to the survival and development of humankind (Banfi and De

Michele, 2022; Smiley et al., 2022). China has pledged to achieve carbon peaking and to

reduce carbon emissions per unit of gross domestic product by 65 per cent from 2005 levels

by 2030 (Zhang et al., 2022). Controlling greenhouse gas emissions and curbing the

greenhouse effect are both a prerequisite for the sustainable development of human society
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and a guarantee for the continued enhancement of human

productivity (Hu et al., 2022; Zheng et al., 2022).

China is making efforts to regulate carbon emissions from

industry, agriculture and transportation, with marine fisheries

being an important part of the agricultural sector. Carbon

emissions from the fisheries sector account for a large share of

carbon emissions from the agricultural sector. Marine fisheries have

the dual characteristics of carbon source and sink (Li et al., 2023).

The annual carbon sequestration by China’s marine fisheries and

aquaculture accounts for about 10 per cent of China’s total carbon

emission reductions (Qisheng and Hui, 2016). Marine carbon sink

fisheries play an active role in accounting for marine carbon sinks

and in addressing climate change (Vondolia et al., 2020). The rapid

development of China’s fisheries industry has brought considerable

economic benefits to the coastal areas while at the same time

generating large amounts of carbon emissions. For example, the

large amount of energy consumed in the fishing process.

The current research on carbon emissions from China’s marine

fisheries mainly focuses on accounting, spatial and temporal changes,

and analysis of influencing factors. Gao et al (Li et al., 2023). analyzed

the spatial-temporal variation characteristics of marine fishery carbon

emission efficiency based on a violin plot and standard deviation

ellipse. The results showed that the spatial distribution center of

carbon emission efficiency mainly moved northward before 2014 and

southward after 2014, and the spatial distribution range showed a

concentrated trend. Li et al. (2022) accounted for China’s fishery

carbon emissions, carbon sinks and net carbon emissions, and used

logarithmic mean decomposition index (LMDI) to analyze the

impact of net carbon emissions, and it was found that carbon

intensity and industrial structure were the main influencing factors.

Some studies have suggested that the development of the marine

fishery economy and trade have a positive driving effect on carbon

emissions, the expansion of the tertiary industry does not decrease

carbon emissions (Zhang et al., 2023). Guan et al. (2022) also used

LMDI to analyze the factors affecting carbon emissions from China’s

marine fisheries, and the results showed that population (the number

of people engaged in the fishery) is an important inhibitory factor for

the net carbon emissions of the offshore fishing industry in most

coastal provinces.

Predicting carbon emissions based on influencing factors is also a

hot research topic in the field of carbon emissions, but there is less

existing literature on predicting carbon emissions from China’s

fisheries industry (Hou et al., 2022; Pu et al., 2022; Liu et al., 2023).

Chen et al. (2022) used a system dynamics model and set up five

scenarios to predict carbon emissions from China’s marine fisheries.

The five scenarios are basic scenario, rapid economic growth

scenario, ocean carbon sinks increased scenario, energy reduction

scenario and integrated regulation scenario. The results show that

rapid economic development has a significant effect on the increase of

marine fisheries carbon emissions, while the adjustment of energy

and industrial structure helps to control marine fisheries carbon

emissions. Wang et al (Wang and Feng, 2023). also illustrated that

rapid economic growth significantly affects the increase of carbon

emissions, while technological progress can effectively reduce carbon

emissions. Existing predictions of carbon emissions from the Chinese

fishery industry mostly use traditional regression methods, which
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have limitations. The parameters of the prediction model are based

on the fitting of historical data, and different historical data and socio-

economic parameter settings will have a greater impact on the future

prediction results, so the use of econometric methods for carbon

emission prediction has a certain degree of uncertainty. Carbon

emissions data are nonlinear, and traditional linear regression

methods are difficult to achieve high accuracy (Jiang et al., 2022;

Han et al., 2023; Zhao et al., 2023). Machine learning outperforms

traditional regression methods for many problems with

high predictive accuracy and robustness (Dang et al., 2022;

Zhao et al., 2022b; Zhao et al., 2022a; Zhao et al., 2023). Chen et al

(Chen et al., 2023). used the support vector regression model to

establish an electricity demand forecasting model. The results show

that the support vector regression model has high accuracy in

forecasting demand.

In general, Existing studies of carbon emissions from marine

fisheries mostly use traditional regression models, which have

limited accuracy. The application of machine learning algorithms

in predicting carbon emissions in marine fisheries is worth

exploring. Moreover, there has been a lack of exploration in past

research regarding the factors influencing carbon emissions in

marine fisheries from a future perspective. The main

contributions and innovations of this study include the following.

This paper evaluates the carbon emissions from China’s marine

fisheries based on the data related to China’s marine fisheries

economy from 2006 to 2020. Then, a prediction model of China’s

marine fishery carbon emissions was established using the novel

machine learning models, and China’s future marine fishery carbon

emissions were predicted by setting up different development

scenarios. Finally, the factors influencing China’s marine fishery

carbon emissions were analyzed.
2 Methodology

2.1 Carbon emissions accounting

Marine fisheries carbon emissions CE are equal to marine

fisheries carbon sources Csource minus marine fisheries carbon

sinks Csin k:

CE = Cscore − Csin k (1)

Marine fisheries production activities involve energy

consumption that generates carbon emissions. The formula for

Csource is as follows:

Csource = C1 + C2 + C3 (2)

C1 is the carbon emissions from energy consumption in the

operation of fishing vessels. C2 and C3 are carbon emissions from

seafood processing and mariculture.

The formula for calculating carbon sinks is as follows:

Csin k = Csh + Cal (3)

Csh is the amount of carbon sequestered by shellfish, which

consists mainly of oysters, mussels, scallops, clams, and razor clams.
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Cal is the amount of carbon sequestered by algae, mainly containing

kelp, wakame, nori, edelweiss, and lambda.
2.2 Bidirectional gated recurrent unit

The bidirectional gated recurrent unit (BiGRU) adds a reverse

layer to the forward layer of gated recurrent unit (GRU), and

Figure 1 illustrates the structure of the BiGRU (Gong and Li, 2023).

Unlike ordinary GRU, BiGRU use bi-directional information

when processing sequence data, for both forward and reverse of the

sequence. Each cell in BiGRU contains two GRU, a forward GRU

and a reverse GRU, which process forward and reverse information,

respectively (Wang et al., 2021). Each GRU unit has a hidden state,

and the information of the hidden state can be passed from the front

unit to the back unit or from the back unit to the front unit. Finally,

at the output layer of BiGRU, the hidden states of forward and

reverse GRU are merged to obtain a complete sequence

representation. Overall, BiGRU is a model that can capture both

forward and backward direction information of sequence data,

which is more efficient and flexible than ordinary recurrent

neural network (RNN) and GRU (Ahmed et al., 2024).

By splicing forward hidden layer vector h
!

t and backward

hidden layer vector h
←

t , the contextual information can be fully

considered to improve the effectiveness of time series prediction

(Liu et al., 2023). The formula is as follows:

h
!

t = GRU(xt , h
!

t−1) (4)

h
←

t = GRU(xt , h
←

t−1) (5)

yt = wt · h
!

t + v · h
←

t + by (6)

where wt is the forward-propagating GRU hidden layer weight

parameter at moment t, v is the back-propagating GRU hidden

layer weight parameter at moment t, and by is the bias term.
Frontiers in Marine Science 03
2.3 Particle swarm optimization

Particle swarm algorithm (PSO) is an algorithm that simulates

the feeding behavior of birds (Marini and Walczak, 2015). Particle

swarm algorithms have a wide range of applications in optimization

problems in areas such as neural network training, combinatorial

optimization, image processing and signal processing (Yuan et al.,

2019; Huo et al., 2023; Na et al., 2023). The algorithm proposes the

concept of particles to simulate the birds in a flock, and the particles

learn and exchange information among themselves to achieve the

global optimal search (Zhang et al., 2019). All the particles in the

PSO algorithm have fitness values and velocities, and all the

particles know their optimal position pbestj and current position.

In addition, all particles also currently know the optimal position

gbestj of the entire population. During the optimization process, all

particles follow the best particle in the space for searching. x(i)j is the

position of the particle j and v(i+1)j is the velocity. In the next

iteration, the velocity and position of the solution can be obtained

by the following equation.

vj
(i+1) = wvj

(i) + c1r1(pbestj − xj
(i)) + c2r2(gbestj − xj

(i)) (7)

vmin ≤ vj
(i+1) ≤ vmax (8)

xj
(i+1) = xj

(i) + vj
(i+1) j = 1, 2,…, n (9)

where w is the inertia factor. c1 and c2 denote the acceleration

factor, also known as the learning factor or cognitive factor. r1 and

r2 are random numbers in the interval 0 to 1. i is the number of

iterations. vmin and vmax are the minimum and maximum particle

velocities, which are used to control the magnitude of the particle’s

velocity in the search space.
2.4 PSO-BiGRU

To improve the prediction accuracy of the BiGRU model, the

PSO algorithm is used to find the optimal number of neurons,

iterations and learning rate of BiGRU model. Figure 2 shows the

process framework of the PSO-BiGRU carbon emission

prediction model.

The specific steps are as follows:
Step 1: Determine the structure of GRU and BiGRU.

Step 2: Set the initial value of the algorithm of PSO algorithm,

and take the number of neurons of GRU and BiGRU, the

number of iterations and the learning rate as the three

dimensions of the particle swarm algorithm. Set the upper

and lower limits of each parameter, use the MSE in the

training process as the fitness function, find the fitness value

of each initial particle, and determine the initial local

optimal value and global optimal value.

Step 3: Update the velocity and position of the particles

according to the velocity and position update formula of

the PSO algorithm, and the optimal position of the particle
FIGURE 1

The structure of the BiGRU.
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Fron
is the optimal value of the number of GRU and BiGRU

neurons, iteration number and learning rate that we need to

find. Update the global and local optimal values of the

particle swarm, determine whether the iteration conditions

are met, and if so, output the optimal position of

the particle.

Step 4: The optimal hyperparameters are output and

substituted into the model for prediction.
2.5 Random forest

Random forest (RF) is a commonly used ensemble learning

method that consists of multiple decision trees. RF is a widely used

machine learning algorithm for classification and regression problems

(Chen et al., 2023; Fathololoumi et al., 2023; Zhao et al., 2023).

Random forests can also calculate the importance values of features,

so they can be used to analyze the importance of influencing factors

(Chang et al., 2023). Its basic idea is to randomly disrupt the value of a

feature after model training, and then evaluate the importance of the

feature by comparing the change in model performance before and

after the addition of noise. When using the RF algorithm to assess

importance, the out-of-bag data is used to calculate the model’s out-

of-bag error e1, then the order of an influence in the out-of-bag data is

randomly altered, and the transformed out-of-bag data is used to

calculate the out-of-bag error e2. The importance value I of any

influence can then be calculated according to the following formula:

I =
1
No

N

i=1
(e1 − e2) (10)

where N is the number of decision trees.
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2.6 Data sources

All data used in this study come from the China Fisheries

Statistical Yearbook, the China Marine Statistical Yearbook, and

provincial and municipal statistical yearbooks. There are some

missing data in the Statistical Yearbook, which is filled in by

smoothing method. In consideration of the missing statistics for

Taiwan, Hong Kong and Macao, they were not included in the

study. The economic data in the analysis of influencing factors are

from the National Bureau of Statistics of China.
3 Results and discussion

3.1 Characterization of carbon emission
changes in marine fisheries

Carbon emissions from China’s marine fisheries were calculated

according to the formula. The results are shown in Figure 3.

The overall carbon emissions from China’s marine fisheries

show a downward trend during the study period. Carbon emissions

from China’s marine fisheries decreased from 472 ten thousand

tons in 2006 to 390 ten thousand tons in 2020, a decrease of 17 per

cent. During the period from 2006 to 2015, carbon emissions from

China’s marine fisheries showed a fluctuating trend, with carbon

emissions varying within the range of 455 ten thousand to 472 ten

thousand. Carbon emissions from China’s marine fisheries declined

rapidly after 2015, and carbon emissions in 2020 have fallen by 14%

compared to 2015. The rapid drop in carbon emissions is

inextricably linked to China’s proposed fisheries development

plan. In 2016, China proposed policies on the transformation and

upgrading of the aquaculture industry, control of the fishing
FIGURE 2

The flowchart of PSO-BiGRU.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1377215
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Ye 10.3389/fmars.2024.1377215
industry, vigorous conservation of aquatic biological resources and

the standardized and orderly development of offshore fisheries.

These policies reduce energy consumption in the process of fishing

activities while increasing the carbon sink of marine fisheries, which

are of great significance to the carbon emission reduction of marine

fisheries in 2016-2020.
3.2 PSO-BiGRU prediction results

Existing literature demonstrates that carbon sinks, per capita

income of fishers and fishing population all have an impact on

carbon emissions from marine fisheries (Gao et al., 2022).

Therefore, we chose carbon sinks, per capita income of fishers

and fishery population as the input variables of the PSO-BiGRU

model, and marine fishery carbon emissions as the output results of

the PSO- BiGRUmodel. Due to the small amount of data on carbon

emissions from marine fisheries, we choose the samples from 2006-

2017 as the training set and the samples from 2018-2020 as the test

set. Learning rate is a very important hyperparameter in machine

learning, which determines the step size of the model to update the

parameters. If the learning rate is too large, the model tends to

oscillate and fails to give correct results. The number of neurons

determines the capacity of the model. If the number of neurons is

too small, it will lead to underfitting. On the contrary, if too many

neurons are set up, they will be overfitted, leading to poorer

predictions on new data. The number of iterations determines

how often the model can see the data. If the number of iterations

is too low, the model cannot fully learn the data. Conversely, if there

are too many iterations, overfitting may result. PSO is used to find

the optimal parameters of the BiGRU model, and the parameter

optimization search range is shown in Table 1.

Substitute the sample data into the PSO-BiGRU model, the

results obtained are shown in Figure 4.

In order to verify the prediction accuracy of PSO-BiGRU

model, PSO optimized GRU model (PSO-GRU), BiGRU model,
Frontiers in Marine Science 05
GRU model and extreme learning machine (ELM) model are also

added as comparison models in the study (Marjanovic et al., 2016;

Li et al., 2018; Liu et al., 2023). As shown in the Figure 4, PSO-

BiGRU is able to accurately simulate the complex relationship

between carbon emissions from China’s marine fisheries and

various influencing factors, and the deviation of the predicted

value from the actual value is small, and the predicted value is

very close to the actual value. The PSO-GRU model prediction

value is very close to the actual values in 2019, but the prediction

values in 2018 and 2020 are significantly worse than PSO-BiGRU.

The BiGRU and GRU models can also simulate the carbon

emissions of China’s marine fisheries, but the prediction results

are slightly worse than those of the PSO-BiGRU and PSO-GRU

models. ELM’s predicted value deviates the most from the actual

value. The prediction accuracy of the ELM model is the worst

among the five models.

In order to intuitively analyze the prediction effect of different

machine learning models, from a quantitative perspective, we

choose Mean Absolute Error (MAE), Mean Absolute Percentage

Error (MAPE), and Root Mean Square Error (RMSE) as the

evaluation indexes of the models. Evaluation indexes are

calculated based on the prediction results of different machine

learning prediction models, and the evaluation indexes are

compared to measure the prediction model strengths and

weaknesses. The formula for calculating the evaluation indexes

are as follows:
TABLE 1 Parameter optimization range of BiGRU.

Parameter Range

Learning rate (1e-3, 1e-2)

Number of iterations (50, 200)

Number of neurons (1, 200)
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FIGURE 4

Comparison of model prediction result.
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FIGURE 3

Carbon emissions from marine fisheries.
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MAE =
1
No

N

i=1
Ep − Ea
�� �� (11)

MAPE =
1
No

N

i=1

Ep − Ea
�� ��

Eaj j � 100% (12)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N

i=1
(Ep − Ea)

2

s
(13)

In the formulas for MAE, MAPE and RMSE, Ea and Ep
represent actual and prediction values of carbon emissions. The

calculation results are shown in Table 2. The smaller the values of

MAE, MAPE and RMSE, the smaller the gap between the predicted

and actual values, and the better the prediction accuracy of

the model.

According to the MAE, and the prediction accuracy ranked

from highest to lowest is: PSO-BiGRU > PSO-GRU > BiGRU >

GRU > ELM. The PSO-BiGRU model has the smallest MAE of

1.251.The model prediction error of PSO-BiGRU is reduced by

26.71%, 44.62%, 51.29%, and 60.57% compared to PSO-GRU,

BiGRU, GRU, and ELM models, respectively.

According to the MAPE, and the prediction accuracy is ranked

from highest to lowest as PSO-BiGRU > PSO-GRU > BiGRU >

GRU > ELM. the PSO-BiGRU model has the smallest MAPE of

0.003. The ELM model has the largest MAPE of 0.008, which

indicates that the prediction of the ELM model is the worst.

According to the RMSE, and the prediction accuracy ranked

from highest to lowest is PSO-BiGRU > PSO-GRU > BiGRU > GRU

> ELM. The PSO-BiGRU model has the smallest RMSE, which is

1.255.The model prediction error of PSO-BiGRU is compared to

the PSO-GRU, BiGRU, GRU, and ELM models by 39.37%, 51.53%,

56.09%, and 63.68%, respectively. From the three evaluation

indexes, the ELM model has the worst prediction and the best

model is the PSO-BiGRU model.
3.3 Scenario prediction results

The use of scenario analysis requires the consideration of a wide

range of factors and the design of a reasonable scenario (Li et al.,

2017; Feng et al., 2023). Since different analyses of objective reality

may lead to different development scenarios, this may result in

different scenario prediction results (Sun et al., 2021). Therefore,

objective realities should be fully and adequately considered in the

study to ensure that the scenarios designed are scientific and

reasonable. We selected carbon sinks, per capita income of fishers
Frontiers in Marine Science 06
and fishery population as indicators for constructing scenarios.

Based on these three indicators, we can construct possible

development scenarios for China’s marine fisheries during the

period 2021-2030. Taking into account the current status of

China’s fisheries development, we designed three possible

scenario models for the future: scenario 1, scenario 2, and

scenario 3. The design of the scenario 2 is based on the Chinese

government planning and the current status of fisheries

development in China. The scenario 3 assumes that marine

fisheries can reach a state of harmonious economic and

environmental development in the future, in which the

influencing factors that promote the growth of carbon emissions

develop at a slower rate, while the influencing factors that inhibit

the growth of carbon emissions develop at a faster rate. The scenario

1 is based on the scenario 2, assuming that China’s marine fisheries

have not taken more mandatory measures for energy conservation

and emission reduction, and setting the parameters of the

influencing factors that promote carbon emissions from marine

fisheries to be enhanced, and the parameters of the influencing

factors that inhibit carbon emissions from marine fisheries to be

weakened under scenario 1. The growth rates of the influencing

factors under different scenarios are set as follows:

(1) Growth rate settings for carbon sinks

From 2006 to 2020, China’s marine fisheries carbon sinks show

an increasing trend, from 135 ten thousand in 2006 to 212 ten

thousand in 2020, with an annual growth rate of 3.3%. Based on the

growth rate of China’s carbon sinks from 2006 to 2020, the growth

rate of carbon sinks from 2020 to 2030 is set to be 3.3% in the

scenario 2, 6% in the scenario 3 and 1.5% in the scenario 1.

(2) Setting the growth rate of per capita income of fishers

China’s National Fisheries Development Plan for the 14th Five-

Year Plan envisions a per capita income target for fishers, aiming to

achieve 241.1 million yuan by 2025, with an annual growth rate set

at 2.4%. Based on the above planning, a per capita income growth

rate of 2.4% is set for 2021-2030 in the scenario 2, 1.5% in the

scenario 3 and 5% in the scenario 1.

(3) Setting the growth rate of the fishery population

The fishery population shows a decreasing trend from 2006 to

2020. Decreasing fishery population will lead to a decrease in waste

and pollutants generated from fishery activities, such as fishing nets,

plastic waste, etc., which is significant for increasing the

sustainability of fishery activities. China is also actively

introducing more advanced and sustainable fishing technologies

and improving catch efficiency, all of which have led to a reduction

in personnel while allowing for significant reductions in carbon

emissions. Based on the above analysis, the fishery population

growth rate is set at -2.4% for the scenario 2, -3% for the scenario

3 and -1% for the scenario 1 for the 2021-2030 period. The scenario

2 growth rate of the fisheries population is calculated based on the

observed rate of change in the fisheries population from 2006 to

2020. After setting the growth rates of influencing factors under

different scenarios, the results of carbon emission prediction of

China’s marine fisheries from 2021 to 2030 using the PSO-BiGRU

model are shown in Figure 5.

From Figure 5, it can be seen that carbon emissions from

marine fisheries under different scenarios show a decreasing trend,
TABLE 2 Calculation results of model evaluation indexes.

PSO-
BiGRU

PSO-
GRU

BiGRU GRU ELM

MAE 1.251 1.707 2.259 2.568 3.173

MAPE 0.003 0.004 0.006 0.006 0.008

RMSE 1.255 2.070 2.581 2.849 3.444
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from 382 ten thousand tons to 265 ten thousand tons under the

scenario 2, from 378 ten thousand tons to 211 ten thousand tons

under the scenario 3, and from 384 ten thousand tons to 278 ten

thousand tons under the scenario 1. Comparative analysis shows

that the growth rate of carbon emissions under the scenario 3 is

much smaller than that under the scenario 1. The cumulative

carbon emissions under the scenario 2, scenario 3 and scenario 1

are 3245 ten thousand tons, 2973 ten thousand tons and 3338 ten

thousand tons, respectively. In order to achieve the goal of carbon

neutrality, it is necessary to increase the energy conservation and

emission reduction policy and technical support for the marine

fisheries industry, to strengthen the application of clean energy, to

improve the efficiency of energy use, and to promote the low carbon

production methods. At the same time, the government and

enterprises also need to further strengthen their sense of autonomy

in carbon emission reduction and explore a low carbonization path

that suits the actual situation of marine fisheries. This requires

innovation and exploration at multiple levels, including policy,

technology and market, so as to provide more comprehensive

support for achieving carbon neutrality in marine fisheries.
3.4 Analysis of factors affecting
carbon emissions

By calculating the RF importance values of different influencing

factors, the impact of different factors on marine fisheries carbon

emissions can be analyzed according to their importance values. By

substituting the data of marine fishery carbon emission and

influencing factors from 2006 to 2020 into the RF algorithm, the

obtained importance values are shown in Figure 6.

Based on the prediction results of China’s marine fisheries

carbon emissions from 2021-2030, we also used the RF algorithm

to calculate the importance values of the factors influencing carbon

emissions from 2021-2030 under different scenarios, and the results

are shown in Figure 7.
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As shown in Figures 6, 7, the main factor affecting carbon

emissions in 2006-2020 is carbon sinks. It shows that the main

reason for the decrease in carbon emissions in 2006-2020 is the

increasing amount of carbon sinks. In 2021-2030, different

scenarios have different influences that dominate changes in

carbon emissions. The dominant factor in carbon emissions in

the scenario 2 is the fishery population. This may be due to the fact

that the number of fishing personnel is not strictly controlled in the

scenario 2, which leads to overfishing. A large amount of fuel is used

in fishing activities, especially on fishing vessels that are far away

from ports. These vessels usually use only fuel oil or diesel and less

clean energy, resulting in significant carbon emissions. The

dominant factor of carbon emissions in the scenario 3 is carbon

sinks. Increasing carbon sinks does not slow the growth of carbon

emissions, but can also help to improve various ecosystems. This is

because an increase in the ocean carbon sink means a greater
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Results of carbon emission prediction for China’s marine fisheries
from 2021 to 2030.
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Importance values of factors influencing carbon emissions in
2021-2030.
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number or variety of marine organisms. The Chinese Government

should take timely measures to increase carbon sinks. The

dominant factor in carbon emissions under the scenario 1 is per

capita income. Carbon emissions are greatest under the scenario 1,

indicating that the crude model of focusing only on economic

growth under the scenario 1 is not beneficial to mitigating

carbon emissions.
4 Conclusions and
policy recommendations

4.1 Conclusions

In this paper, the carbon emissions from marine fisheries in

China from 2006 to 2020 were accounted for. A marine fishery

carbon emission prediction model was developed using PSO

optimized BiGRU, and the prediction accuracy of other machine

learning prediction models was compared. Then three scenarios

were set up to predict the future carbon emissions of China’s marine

fisheries. Finally, RF was used to analyze the past and present

carbon emission impact factors of China’s marine fisheries, which is

a novel attempt to analyze the carbon emission impact from the

future perspective. The main conclusions are as follows:

Carbon emissions from China’s marine fisheries have shown a

decreasing trend from 472 ten thousand tons in 2006 to 390 ten

thousand tons in 2020, with carbon emissions entering a period of

rapid reduction after 2015.

PSO-BiGRU model had the least error in predicting carbon

emissions from marine fisheries. The MAE of the model was

reduced by 26.71%, 44.62%, 51.29% and 60.57% compared to

PSO-GRU, BiGRU, GRU and ELM.

Carbon emissions from marine fisheries showed a downward

trend under different scenarios, and the rate of reduction of carbon

emissions under the scenario 3 was significantly greater than that

under the scenario 2 and scenario 1. It decreases from 382 ten

thousand tons to 265 ten thousand tons under the scenario 2, from

378 ten thousand tons to 211 ten thousand tons under the scenario

3, and from 384 ten thousand tons to 278 ten thousand tons under

the scenario 1.

The dominant factor in carbon emission reductions in 2006-

2020 was carbon sinks. In 2021-2030, the dominant factor in carbon

emissions is fishery population in the scenario 2, carbon sinks in the

scenario 3, and per capita income in the scenario 1.
4.2 Policy implications

Considering the impact of population on carbon emissions

from marine fisheries under the scenario 2, the Government of

China should deepen its efforts to combat activities such as illegal

fishing, and actively mitigate the impact of population on

carbon emissions.
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In order to address the impact of rapid economic development

on carbon emissions frommarine fisheries, the Chinese Government

should also actively increase its investment in science and

technology, actively develop ecological and energy-saving fishing

vessels, strictly control the intensity of marine fishing, optimize

fishing work, implement the upgrading of marine fishing vessels, and

promote mechanized fishing. In addition, activities for the ecological

protection of fishery resources and waters should be actively carried

out and monitoring efforts should be strengthened. It should further

improve the compensation mechanism for the ecological protection

of fishery resources, actively respond to accidents of ecological

damage in waters, and promote the increase of carbon sinks

through strong measures.
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