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Introduction: Sound waves are refracted along the direction of their propagation

owing to spatial and temporal fluctuations in the speed of sound in seawater.

Errors are compounded when sound speed profiles (SSPs) with low precision are

used to detect and locate distant underwater targets because an accurate SSP is

critical for the identification of underwater objects based on acoustic data. Only

sparse historical spatiotemporal data on the SSP of the South China Sea are

available owing to political issues, its complex atmospheric system, and the

unique topography of its seabed, because of which frequent oceanicmovements

at the mesoscale affect the accuracy of inversion of its SSP.

Method: In this study, we propose a method for the inversion of the SSP of the

South China Sea based on a long short-term memory model. We use

continuous-time data on the SSP of the South China Sea as well as satellite

observations of the height and temperature of the sea surface to make use of the

long-term and short-term memory-related capacities of the proposed model.

Result: It can achieve highly accurate results while using a small number of

samples by virtue of the unique structure of its memory. Compared with the

single empirical orthogonal function regression method, the inversion accuracy

of this model is improved by 24.5%, and it performed exceptionally well in regions

with frequent mesoscale movements.

Discussion: This enables it to effectively address the challenges posed by the

sparse sample distribution and the frequent mesoscale movements of the South

China Sea.
KEYWORDS

sound speed profile, remote sensing observation data, long short-term memory, sound
speed disturbance, empirical orthogonal function
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1 Introduction

The sound speed profile (SSP) is an important oceanic

parameter that is used in a variety of marine acoustic

applications, such as underwater target identification, underwater

communication, and marine environmental monitoring

(Teymorian et al., 2009; Xu et al., 2013; Liu L. et al., 2021; Luo

et al., 2022; Su et al., 2022; Zhan et al., 2023). The speed of sound

varies significantly even in adjacent areas of the sea due to the

complexity and variability of the marine environment. Even though

it is the largest territorial marine area in China, research on the

characteristics of the South China Sea began relatively late owing to

political and territorial issues. According to the most recent map

of the global seabed published in 2023, only about one-third of

the seabed of the South China Sea has been surveyed thus far. The

speed of sound is among the most significant factors that currently

limit the accuracy of detection of underwater targets. Researchers

have spent a considerable amount of time and effort in reducing

errors in the speed of sound and ray tracing to improve the accuracy

of detection of underwater engineering (Xu et al., 2005). By

denoising the signal and optimizing the algorithm, the researchers

reduce the impact of low precision sound speed on underwater

engineering applications (Li et al., 2022b; Li et al., 2022a; Li

et al., 2022c).

Researchers have identified links between the parameters of

profiles of the sea surface and subsurface, and have proposed a

number of methods to satisfy the increasingly stringent demands on

the precision and speed of marine data in ocean engineering

(Carnes et al., 1990; Stammer, 1997; Wunsch, 1997; Liu Y. et al.,

2021; Yan et al., 2022). Remote sensing technology can be used to

capture near-real-time and large-scale data on the ocean surface,

where this enables the rapid acquisition of SSPs in the ocean. The

corresponding techniques have provided us with a better

understanding of the underlying processes of deep ocean motion

(Klemas and Yan, 2014). Initial research in the area used linear

approaches to infer the SSPs from the parameters of remote sensing

data obtained from satellites. The empirical orthogonal function

(EOF) was used as the basic function in this process. It plays a

critical role in limiting the dimensionality of the parameters,

reducing the computational load during inversion, and filtering

out minor errors during computations (LeBlanc and Middleton,

1980). Carnes discovered that the parameters of satellite remote

sensing, such as the height and temperature of the sea surface, are

essential for inferring the temperature profiles of water bodies

(Carnes et al., 1994). This insight led to the development of the

EOF-based method of inversion called the single empirical

orthogonal regression function (sEOFr). Chen et al. used this

approach to invert the global SSPs, and showed that the sEOFr

method can be used to directly infer the SSP without converting the

temperature (Chen et al., 2018). The United States Navy

successfully used this method in a modular ocean data

assimilation system (Rahaman et al., 2016). While these methods

are effective, the relationship between the parameters of the sea are

not linear, and errors are thus inevitably generated when using the

linear sEOFr method to describe the physical relationship between
Frontiers in Marine Science 02
the relevant parameters. Jain found that errors in data on the

inverted SSP primarily converged at depths ranging from 40 to

125 m owing to intense oceanic movements in the South China Sea

at the mesoscale. Linear methods struggle to resolve such

parametric relationships (Jain and Ali, 2006).

Su et al. used machine learning-based techniques instead of

linear methods to investigate the relationship between parameters

of the ocean. They used classical machine learning methods and

support vector regression to predict global ocean temperatures

beyond 1000 m by using satellite remote sensing data (Su et al.,

2015; Su et al., 2019). Machine learning methods not only have

advantages over conventional techniques in inferring the

temperature profiles, but also in inferring the SSP. Ou used a

tree-based algorithm along with parameters of remote sensing to

invert the SSP, and reported a 25% improvement in the accuracy of

the outcomes (Ou et al., 2022). Furthermore, Li et al. successfully

inverted the SSP of the South China Sea by using a non-linear

approach based on self-organizing maps (Li et al., 2021).

Inverting the SSP by using machine learning methods in

conjunction with the parameters of remote sensing remarkably

improves the accuracy of the results. However, the sEOFr method as

well as other currently used techniques require a large number of

training samples to deliver accurate results, and deliver subpar

performance in the presence of intense activity at the mesoscale.

The underwater terrain of the South China Sea is characterized by a

deep ocean basin surrounded by sloped land, where the southwest

slopes are higher than those in the northeast. The water bodies in

the central and northern basins of the sea exchange water with the

Pacific Ocean via certain straits, while the southern shelf near the

Equator exchanges water with the Java Sea via the Malay Peninsula

and the Borneo passage. Hence, the South China Sea contains water

masses with varied origins and, thus, different hydrological

characteristics. The tropical oceanic climate of the region is

notable for its alternating rotation of southwestern winds in the

summer and northeastern winds in the winter, and this leads to the

formation of a complex atmospheric system. Scant historical data

on the South China Sea have been accumulated for political reasons,

which makes it challenging to invert its SSP. This task is rendered

more onerous owing to the complex mechanism of disturbance in

the SSP caused by the atmospheric system and the unique terrain of

the area.

The authors of this study propose a long short-term memory

(LSTM) based algorithm to invert the SSP of the South China Sea

by using the parameters of remote sensing. The linear constraints

in the relation between the parameters of the surface and the

ocean can be eliminated by introducing an artificial neural

network. The unique memory structure of the LSTM network

can be used to overcome the problem of the small number of

samples as well as the complex mechanism of disturbance in the

SSP in the area. We used the root mean-squared error (RMSE) and

mean absolute error (MAE) to compare the proposed method

with the sEORr method, and the results showed that it is more

accurate, and requires a smaller number of data samples.

Moreover, it delivers better performance in regions featuring

greater disturbances.
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2 Data

We chose the South China Sea as the location for the inversion of

the SSP because it is particularly challenging in this regard owing to

frequent oceanic movements in the region. We used the LSTMmodel

in conjunction with remote sensing data to precisely invert the SSP.

We used a variety of datasets, including remote sensing data to create

a regression database, data from Argo to construct SSP fields under

water, and WOA18 data to compute the background profiles. The

data used here had been collected from 2009 to 2018.

The remote sensing dataset included information on the height

and temperature of the sea surface from the L4 satellite observation

product of the Copernicus project (https://resources.marine.

copernicus.eu). The data had a one-day temporal resolution and a

spatial resolution of 0.25°. The experiments involved computing the

mean values of all the data on the height and temperature of the sea

surface, and then deriving the sea surface height anomaly and the

sea surface temperature anomaly from them to establish a

regression database.

The Argo data were obtained from the Argo dataset on the

global ocean (2009–2018), and were preprocessed to remove

anomalous data while retaining data within the undistorted range

of depth of 5–1000 m. The Argo data had been obtained by using

Argo floats, which are capable of simultaneously measuring the

temperature and salinity profiles of seawater. The SSP is a function

of the temperature, salinity, and hydrostatic pressure, and can be

calculated by using the empirical formula proposed by Del Grosso

to determine the SSP (Del Grosso, 1974). Figure 1 shows the entire

set of 3,883 samples used for this study. A segment of continuously

measured data was selected to train and test the LSTM model, and

was called the TEST dataset. It is represented by the black dots in

Figure 1. The TEST dataset contained 269 samples that were

arranged chronologically from July 9, 2014 to April 2, 2015.

The background profiles represented the stable and unchanging

portion of the SSP, and are typically represented by the average

values of all profiles. WOA18 data were used to calculate the

background profiles in this study. These data were obtained from
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the National Oceanic and Atmospheric Administration’s National

Centers for Environmental Information (https://www.nodc.

noaa.gov/OC5/woa18/), and combined multiple datasets with

measurements of the temperature, salinity, density, and other

climate-averaged data from various global oceanic regions. The

experiments made use of annually averaged data that were obtained

at a spatial resolution of 0.25° ×0.25°from 2009 to 2018. In this

paper, WOA data at the center point of the inversion region (15.5°

N, 145.5°E) is selected as the background profile of this experiment,

and the specific profile values are shown in Figure 2.
3 Inversion of sound speed profiles

3.1 Construction of the basis function of
the sound speed profile

Basis functions serve as a method of dimension reduction in the

context of the problem of inverting the field of sound speed, and their

accuracy has a significant influence on the precision of calculation of

the field of sound speed. Figure 3 shows how to extract the basis

function EOF from the historical data and obtain the corresponding

disturbance coefficient. Finally, the reliability of SSP reconstructed by

perturbation coefficient is verified. The shift of the ssp sample relative

to the mean is called a disturbance. SSPdisturbanceArgo SSP represents the

difference between the SSP field and the background profile, and is

denoted by the perturbation in the field of the sound speed.

COV� EOF = EOF� l (1)

We calculated the covariance matrix, COV, of the disturbance

in the speed field and performed orthogonal decomposition by

Equation 1. In this equation, EOF represents the basis functions of

the SSP while l stands for the eigenvalue matrix.

The EOF can be used to identify the primary modes of changes

in water. The role of EOF is to reduce the dimensionality of the data,

reducing the amount of computation while avoiding the

introduction of additional noise. Figure 4 shows the amplitudes of
FIGURE 1

Distribution of the experimental samples (the black dots are test
samples and the rest are training samples).
FIGURE 2

Background profile.
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the first 5 orders of EOF for this experiment. It shows that most of

the disturbance in the water is concentrated in the depth of 100–

200m, and there is basically no disturbance below 500m.It is widely

assumed that a contribution of 95% can represent a majority of

disturbances in water. Based on l, the contribution rate of each

mode of EOF can be calculated. Figure 5 illustrates the distribution

of the contributions of the first five modes, accounting for 70.69%,

16%, 4.86%, 3.30%, and 1.58% of the total, for an overall

contribution of 96.43%. We thus used the first five orders of the

EOF as the basis functions for the experiments in this study.
Frontiers in Marine Science 04
The least square method is used to fit the EOF and the sound

speed field, and the disturbance coefficient is obtained. Then the

perturbation coefficient and EOF are used to calculate the sound

speed field to ensure the accuracy of the perturbation coefficient and

EOF. A comparison between the reconstructed values obtained

from this inversion and the actual values yielded an RMSE of 0.62

m/s. Such a small error indicates that the shape functions of the

EOF adequately represented a significant part of the variance in

disturbances within the region, thus ensuring a relatively

accurate reconstruction.
FIGURE 3

Flowchart of preprocessing of the sound speed profile.
FIGURE 4

Amplitude of the first 5 EOFs.
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3.2 Single empirical orthogonal
regression function

The parameters of remote sensing at the same time and at the

same location can be linearly related to those of the seabed. We

created a regression database by using a large amount of historical

data to establish a regression relationship among the temperature of

the sea surface, its height, and the coefficients of perturbation.

wi,j = a + b� A + g � B + d � A� B (2)

This procedure entailed fitting a linear equation by using the

database, expressed as Equation 2. where wi,j denotes the j-th order

coefficient of perturbation of the i-th sample, and A and B denote

anomalies in the height and the temperature of the sea surface,

respectively. Linear fitting was used to obtain the coefficients a,  b,
 g ,  and d. The corresponding coefficients of perturbation were

obtained by entering the parameters of remote sensing, and the

field of sound field of the South China Sea could then be inverted.

The sEOFr method is based on linear regression between the

parameters of remote sensing and the coefficients of projection.

This linear relationship is derived from statistical results

obtained from a large number of samples collected from the sea.

In general, the errors tended to be concentrated in cases involving
Frontiers in Marine Science 05
prominent differences between individual characteristics and

statistical features.
3.3 Inversion of sound speed profile by
using LSTM model

Given that the relationships between the parameters of the

ocean were not purely linear, error was concentrated in regions

featuring conspicuous perturbations. We propose a method of SSP

inversion based on the LSTM neural network to improve the

accuracy of inversion. Hochreiter created the LSTM model, which

is an iterative version of the RNN model (Hochreiter and

Schmidhuber, 1997). The LSTM model contains a memory cell

that enables it to incorporate historical data, assess the relevance of

information, improve its retention of valid information, filter out

irrelevant information, and generate an output (Jain et al., 2019;

Khataei Maragheh et al., 2022).

Figure 6 shows the structure of the LSTMmodel. It is composed

of a forget gate, an input gate, and an output gate. Based on the

previous output and the current input, the forget gate decides

whether to forget the previous information or add it to the

current memory cell.
FIGURE 5

Distributions of contributions of the basis function.
FIGURE 6

Diagram of the LSTM model.
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Ft = sigmoid(ϵf ½Ot−1, Xt� + q1)*Ct−1 (3)

Equation 3 is the calculation principle of the forgetting gate.

where Ot−1denotes the output data from the previous time step, Xt

denotes the input data in the current time step, Ct−1denotes the

memory cell of the previous time step, and sigmoid denotes the

activation function used to screen information within the range

(0,1). In this experiment, Xt refers to sea surface height data and sea

surface temperature data. q1is a bias term that serves as an

additional input for the corresponding neuron, and ϵf is the

weight that represents the strength of the connection between

units of the corresponding gate. The forget gate allows for the

reinforcement of useful information while discarding irrelevant

information, thus avoiding such problems as gradient explosion

and the vanishing gradient that are caused by multiple iterations

(Wang et al., 2020).

It =  sigmoid(ϵi½Ot−1, Xt� + q2)*tanh(ϵc½Ot−1, Xt� + q3) + Ft (4)

The input gate is used to validate information and update the

memory cell It, which is calculated by Equation 4. where ϵi and ϵc  
are weights, and q2 and q3are bias terms that are used with the

hyperbolic tangent (tanh) activation function in the interval (-1, 1).

The tanh function is used by the input gate to generate the memory

cell for the current time step. There are two steps involved, the first

is to control the value between (0, 1) by the s function, and the

second is to generate the cell state of the current input by a tanh

function. Following this, the information is filtered and added to the

memory cell from the previous time step to enable it to be updated.

Ot =  sigmoid(ϵo½Ot−1, Xt� + q4)*tanh(It)  (5)

The output gate determines the output data and passes them to

the next time step. The relevant calculation formula is shown in

Equation 5. where  Otrepresents the output from the hidden layer at

time t, ϵois its weight, and q4is a bias term. In this experiment, Ot is

the EOF coefficient.

Figure 7 shows the training and testing of the LSTM model. S1-

S269 in Figure 5 is the input data corresponding to sample No. 1–
Frontiers in Marine Science 06
269 in the test example, including sea surface height data and sea

surface temperature data. “C1-C269” refers to the output data

corresponding to samples 1–269 in the test sample, and the

output data is the EOF coefficient. We used the parameters of

remote sensing as the input to the model and obtained the

coefficients of perturbation as the output in the experiments. To

train the LSTM neural network model, the parameters of remote

sensing were fed to the input gate. The specific operational

procedure entails utilizing the actual values of samples 1–8 as

inputs for training the model, while the predicted value of sample

9 is generated as the output. Subsequently, the model undergoes

training with the true values of samples 2–9, leading to the

prediction of the value for sample 10. This iterative process

continues until the model output yields the predicted value for

sample 269, thereby culminating in the prediction of values for

samples 9 through 269.The model was continually adjusted by

being trained on temporally sequential data, and the RMSE was

used as the loss function. Following this, the parameters of remote

sensing for the next time step were entered to yield the

corresponding coefficients of perturbation for SSP inversion. The

EOF coefficient of the output is tested and then brought into

Equations 6, 7. The SSP based on LSTM model inversion is

calculated. The SSP can be expressed as the background profile

plus the disturbance value. The background profile was obtained

from WOA data. The sound speed disturbance value is obtained by

multiplying the EOF coefficient calculated by the model with the

EOF extracted previously. M is the order of EOF selected in the

experiment.

SSP = dSSP + SSPdisturbance (6)

SSPdisturbance =o
M

j=1
wjEOF(j),M ∈ (1, 2, 3, 4, 5) (7)

LSTM model is a nonlinear model, which has the advantage of

preventing gradient vanishing and gradient explosion when dealing

with long series data. Compared with linear sEOFr model, it is more
FIGURE 7

Flowchart of inversion of the field of sound speed by using the LSTM model.
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suitable for complex ocean dynamic model. The use of the LSTM

model allowed us to apply an incremental approach to invert the

sound field of the TEST dataset. SSP has a strong time correlation,

LSTM algorithm can learn the correct time pattern by memorizing

the structure, and predict the subsequent data. When we used a

continuous temporal duration of eight for training, the model was

able to maintain a relatively high accuracy of training with a small

number of training samples in the experiment. This method

reduced the reliance of the model on a large number of samples

while maintaining a high accuracy.
4 Results and analysis of inversion

4.1 Evaluation of results of inversion of
sEOFr and LSTM

Temperature, salinity, and pressure are the primary

determinants of the speed of sound. Its speed increases by

approximately 4.2 m/s for every 1°C increase in the temperature

of water, an increase of 0.1% in the salinity of water corresponds to

that of 0.13 m/s in the speed of sound, while a 1 atm increase in

water pressure corresponds to a 0.17 m/s increase in the

sound speed.

From the sea surface to the 100 m underwater, the seawater is

referred to as the mixed layer because it receives sunlight exposure,

allowing it to absorb solar heat, resulting in relatively higher

temperatures and minor temperature variations. The thermocline

is a layer located approximately 100 m beneath the mixed layer. The

temperature drops rapidly with depth at this thermocline. The

thermocline in the South China Sea, which is located in a medium-

to-low-latitude region, was assumed to be 100 m deep in our

experiments. The rapid change in the temperature of this layer

led to prominent fluctuations in the sound speed. Furthermore,

eddies at the mesoscale, internal waves, and other oceanic activities

occur frequently in this area (Hu et al., 2000; Sun et al., 2020). The

complex combination of these factors contributes to the difficulty of

inverting the SSP. Figure 8 shows the variation of the error in the

direction of depth. The factors mentioned earlier cause the error in

the model inversion results to be concentrated at a depth of about

100 m. The variance in the temperature gradually stabilized below

the thermocline, thus reducing the errors in modeling. In this study,

Figure 9 shows the average inversion errors of the two models in

different seasons. The results indicate that the errors of the LSTM

model increase in July, December, and April, corresponding to

seasons with substantial variations. This is attributed to the poor

performance of the LSTMmodel during seasonal changes, as it only

utilizes the preceding 8 time steps of predicted samples for training.

As the seasonal transitions stabilize, the errors of the LSTM model

decrease. In contrast, the sEOFr model, being based on a linear

model statistically derived from annual sound speed profile data,

exhibits larger errors during winter due to significant sound

speed disturbances.

Figure 10 shows the spatial distributions of errors in the fields of

sound obtained by the two models. The average error of the LSTM

model was 1.76 m/s while that of the sEOFr model was 2.33 m/s.
Frontiers in Marine Science 07
Errors incurred by the latter were mostly concentrated in the blue-

framed area in the figure (119° E–119.5° E, 18° N–18.5° N).

Mesoscale eddies were frequently active at this location, especially

with intense Ekman aspiration activity (Xiao et al., 2013) that led to

the mixing of deep and surface waters to thicken the mixed layer of

the ocean. However, the sound speed field in the sea area where the

thickness of the mixed layer is large will produce a large

disturbance. Figure 11 shows the spatial distribution of sound

speed disturbance values. The area in which error was

concentrated and that in which the disturbance was large

significantly overlapped, indicating that the disturbance-related

values were a key factor influencing the accuracy of inversion of

the model. The RMSE of the linear sEOFr model in the error

concentration area is 3.83 m/s, 1.50 m/s higher than the overall

RMSE, and the accuracy is reduced by 64% The RMSE of the LSTM

model is 2.16m/s, which is only 0.40m/s higher than the overall

RMSE, and the accuracy is only reduced by 23%.In this area, the
FIGURE 8

Distribution of error incurred by the model with depth below the
sea surface.
FIGURE 9

The distribution of errors in different seasons. (from July 9, 2014 to
April 3, 2015).
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inversion accuracy of LSTMmodel is improved by 43.6% compared

with sEOFr model. It also shows that the linear model was unable to

handle disturbances in this area, where this led to the concentration

of error, while the LSTM model continued to deliver better

performance and higher robustness in such scenarios.
4.2 Analysis of area of error concentration

We further investigated the relationship between the RMSE of

the reconstructed profile and the values of disturbance in the profile

obtained by the Argo data, as shown in Figure 12.

SSPrmse
sEOFr = 0:30� SSPdisturbance

Argo SSP + 1:161 (8)

SSPrmse
LSTM = 0:12� SSPdisturbance

Argo SSP + 1:323 (9)

The blue line in the figure represents the results of fitting of the

sEOFr model according to Equation 8. Equation 9 shows the results
Frontiers in Marine Science 08
of fitting of the LSTM model, which are represented by the red line

in Figure 12. For a deviation of 1 m/s between the profile of the Argo

data and the background profile, the error of the sEOFr model

increased by 0.30 m/s while that of the LSTM model increased by

only 0.12 m/s. The average speed of disturbance in the concentrated

area was 8.49 m/s. When Equation 8 is applied to this average

disturbance, the calculated RMSE was 3.71 m/s, which is smaller

than the actual value of 3.83 m/s. When this average disturbance is

substituted into Equation 9, the RMSE was 2.34 m/s, which is

greater than the actual error of 2.16 m/s.

The sEOFr model exhibited an advantage over the LSTMmodel

when the disturbance was minor. This is because it is based on a

statistical relationship derived from a large amount of historical

data. Conversely, the LSTM model delivered superior performance

when handling profiles featuring substantial disturbances, with an

accuracy that was 43.6% higher on average. Furthermore, the

greater the disturbance was (in areas where oceanic activity was
FIGURE 10

Spatial distribution of the error incurred in the inversion of the SSP.
FIGURE 11

Spatial distribution of the values of disturbance in the sound speed.
FIGURE 12

Relationship between Argo profile data reconstruction error and
disturbance value.
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frequent and disturbances were substantial) the better was the

performance of the LSTM model.
4.3 Validity of results of inversion of
acoustic field

The proposed LSTM method guarantees a high accuracy of

reconstruction of the SSP, but may not explicitly reveal certain

errors in the fine structure of its results. The primary goal of

reconstructing the SSP is to calculate the acoustic field, which

enables the observation of the fine structure of the SSP. It is

important to predict acoustic fields in sonar systems so that

targets can be accurately detected. In this section, we report the

use of Kraken software to calculate the loss of acoustic transmission

in the profile reconstructed by the LSTM model (Model Kraken

software is referenced from http://oalib.hlsresearch.com/

AcousticsToolbox/), with a significant improvement in the

accuracy of reconstruction. The structure of these profiles is

illustrated in Figure 13A. Given that the inversion results of the

models are only valid within 1000 meters, and the sound speed

disturbances below 1000 meters are relatively small, the difference

in inversion errors between the two models is not significant. We

utilized WOA18 data to fit the sound speed distribution in waters

deeper than 1000 meters using empirical formulas. The sound

source was 80 m deep, the receiver depth is 80 m with a

frequency of 100 Hz, a density of seafloor of 1.5 g/cm3, the

seabed sound speed is 1550 m/s, an attenuation coefficient of 0.15

dB/l, and a depth of water of 3500 m. Figure 13B displays the

transmission loss calculated by using the SSPs obtained under these

conditions. The sEOFr model recorded an RMSE of 3.83 dB in its

calculation of the non-coincident loss of transmission, with 90% of

the points yielding errors of 7.75 dB or smaller. The RMSE of the

LSTM model was 1.68 dB, with 90% of the points yielding errors of

3.65 dB or smaller. The loss of transmission of both models peaked

at 5.5 km, but the loss incurred by the sEOFr model was different by

14.58 dB from the Argo profile, while the LSTM model yielded a

difference of only 6.24 dB from it by comparison. After 15 km, the
Frontiers in Marine Science 09
transmission loss calculated by the sEOFr method exhibited a

prominent shift in the structure of interference, while the

interference structure of LSTM method is basically consistent

with Argo. This suggests that the results of inversion of the LSTM

model accurately described actual changes in the transmission loss.

In most cases, its error was consistently below 3.65 dB.

Table 1 summarizes the reconstruction results of the two

models. The sEOFr model used 3,620 samples to train the model.

LSTM trains the model using only 268 samples, of which 8 are the

number of samples trained at one time. LSTM model can

reconstruct SSP with fewer samples, and its reconstructed RMSE

is 1.76m/s, which is more accurate than sEOFr model. In the

disturbed area, the accuracy of sEOFr decreases significantly,

while the accuracy of LSTM model decreases only a little. The

error of sEOFr model is more than twice that of LSTM in predicting

propagation loss, and the absolute error range is also twice that of

LSTM. Compared with sEOFr model, LSTM model can better solve

the problem of sparse sample, large disturbance in sea area, and

forecast transmission loss.
5 Conclusions

In this paper, we proposed a method of SSP inversion based on

the LSTM network. By using the parameters of remote sensing as

inputs to the model, this method can be used to derive the

coefficients of disturbance for SSP inversion. We tested the
A B

FIGURE 13

(A, B) Analysis of transmission loss calculated by using the sound speed profile.
TABLE 1 Comparison of inversion results of the two models.

Model sEOFr LSTM

Number of training samples 3620 268(8)

The RMSE of reconstruct SSP (m/s) 2.33 1.76

The RMSE of the disturbed concentration area (m/s) 3.83 2.16

The RMSE of forecast transmission loss (dB) 3.83 1.68

The bounds absolute error of forecast transmission
losses (dB)

14.58 6.24
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proposed method on data from the South China Sea and compared

its performance with that of the sEOFr model. The results revealed

that it had a higher accuracy of inversion of the SSP. It recorded an

RMSE that was smaller than that of the sEOFr model by 0.57 m/s,

with a 24.46% improvement in accuracy. The concentration of

disturbances complicates inversion and reduces the accuracy of the

model. However, the memory structure of the proposed LSTM

model enabled it to perform well in areas with concentrated

disturbances in the sound speed. Furthermore, it delivered

excellent performance when the disturbances were large. It

reduced the RMSE by 1.67 m/s for such areas in comparison with

the sEOFr model, resulting in a 43.60% higher accuracy. This

demonstrated its superior performance and robustness in regions

with a high concentration of disturbances.

The acoustic field for the profile with the highest improvement

in accuracy in inversion based on the LSTM model was calculated

by using Kraken software. Its RMSE for the non-coincident loss of

transmission was 1.68 dB, with 90% of the error points falling below

3.65 dB. This constituted an improvement of greater than 50% over

the sEOFr model, and shows that the proposed LSTM method of

SSP inversion can accurately predict changes in the TL.

The proposed non-linear method of SSP inversion is better suited

to non-linear relationships between the parameters of the ocean, and

yields more accurate outcomes for areas in which traditional models

struggle to address concentrated disturbances. The transmission loss

in the SSP derived from its approach to inversion more closely

approximates the actual profile. This method is important for quickly

obtaining the underwater sound field, where this is important for

predicting the acoustic field for target detection in sonar systems and

underwater acoustic communication.
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