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Aquatic biodiversity monitoring relies on species recognition from images. While

deep learning (DL) streamlines the recognition process, the performance of

these method is closely linked to the large-scale labeled datasets, necessitating

manual processing with expert knowledge and consume substantial time, labor,

and financial resources. Semi-supervised learning (SSL) offers a promising avenue

to improve the performance of DL models by utilizing the extensive unlabeled

samples. However, the complex collection environments and the long-tailed

class imbalance of aquatic species make SSL difficult to implement effectively. To

address these challenges in aquatic species recognition within the SSL scheme,

we propose a Wavelet Fusion Network and the Consistency Equilibrium Loss

function. The former mitigates the influence of data collection environment by

fusing image information at different frequencies decomposed through wavelet

transform. The latter improves the SSL scheme by refining the consistency loss

function and adaptively adjusting the margin for each class. Extensive

experiments are conducted on the large-scale FishNet dataset. As expected,

our method improves the existing SSL scheme by up to 9.34% in overall

classification accuracy. With the accumulation of image data, the improved SSL

method with limited labeled data, shows the potential to advance species

recognition for aquatic biodiversity monitoring and conservation.
KEYWORDS

deep learning, semi-supervised learning, aquatic species recognition, wavelet
transform, consistency loss
1 Introduction

Aquatic biodiversity plays a crucial role in maintaining the structural integrity, stability,

and overall health of ecosystems (Sala et al., 2021). However, anthropogenic pressures from

human activities have progressively intensified in recent decades, posing gradual challenges

to the preservation of aquatic biodiversity (Visbeck, 2018; Irfan and Alatawi, 2019).
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A critical step in conserving aquatic biodiversity is monitoring the

information regarding the abundance and distribution of aquatic

animals, which relies heavily on extensive collections of underwater

images and videos. Deep learning (DL) techniques have recently

demonstrated significant progress in several computer vision tasks

(LeCun et al., 2015), and offer a promising solution to automatic

and effective species recognition from images (Rubbens et al., 2023).

Due to the profound influence of dataset size and diversity on the

accuracy of DL methods, many previous efforts have focused on

building extensive and publicly available labeled image datasets

specifically for aquatic species recognition (Zhuang et al., 2020;

Katija et al., 2022; Khan et al., 2023). Unfortunately, the intricate

taxonomy of species typically demands a high level of expertise in

the aquatic domain, meanwhile the annotation process proves to be

tedious and time-consuming (Li et al., 2023).

It is estimated that more than 300,000 hours of underwater video

footage have been collected worldwide so far, with only less than 15%

of the data annotated by biological and ecological experts (Bell et al.,

2023). As the pace of data collection accelerates annually, the

substantial backlog exacerbates. Several strategies, including transfer

learning (Qiu et al., 2018), data augmentation (Saleh et al., 2020),

weakly supervised learning (Laradji et al., 2021), and active learning

(Moller et al., 2017), have been made to tackle this problem. For

example, transfer learning necessitates fine-tuning newly labeled

aquatic species datasets to maximize accuracy. Weakly-supervised

learning, on the other hand, relies on a limited form of supervision,

where the labels may be noisy, incomplete, or imprecise. Nonetheless,

these studies still require access to large-scale labeled training sets.

The significance of diversity and comprehensiveness in the training

dataset undoubtedly plays a pivotal role in achieving high recognition

accuracy during real-world model deployment. Given the existence of

unlabeled data, the marine community has emphasized the need for a

powerful approach to training DL methods on vast amounts of data

without annotated labels. In contrast, semi-supervised learning (SSL)

can handle scenarios with both labeled and unlabeled data, providing

more flexibility and potentially better performance when limited
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labeled data is available (Yang et al., 2022). To date, although

numerous studies explore SSL to address the high cost of annotated

labels in aquatic domain (Choi et al., 2021; Cai et al., 2023;

Jahanbakht et al., 2023), its application in aquatic environments for

species recognition remains scarce.

Two major challenges conspire to hinder the use of SSL scheme

for aquatic species recognition. The first challenge stems from the

unique characteristics of collected environments, including diverse

lighting, variable water turbidity, and complex visual backgrounds

that can obscure visual information (Ditria et al., 2020; Saleh et al.,

2022). Furthermore, the movement of objects in an uncontrolled

environment can introduce distortion, deformation, occlusion, and

overlapping (Li et al., 2023; Ma et al., 2023). These factors increase

complexities and hinder the ability of DL models to employ

effectively from labeled to unlabeled data. The need for robust

feature extraction methods tailored to the above challenges becomes

paramount to ensure the practical applicability of the SSL scheme.

The second challenge arises from the long-tailed class imbalance of

aquatic species in collected images (Rubbens et al., 2023). As shown

in Figure 1A, a limited subset of species are characterized by a

substantial number of samples (referred to as head classes), while

others are linked to only a few samples (referred to as tail classes).

The limited sample information of tail classes poses a significant

hurdle for SSL scheme, as there is a risk that the model being biased

toward head classes due to the abundance of samples (Zhang

et al., 2023).

In this work, we propose a novel SSL scheme for aquatic species

recognition, which is based on the existing SSL algorithm, FixMatch

(Sohn et al., 2020). Specifically, to mitigate the complexities

inherent in heterogeneous collected environments, we propose a

robust wavelet fusion network (WFN) equipped with wavelet

transform. The proposed network comprises two frequency-aware

streams, one is dedicated to capturing subtle image details by

focusing on high-frequency (HF) information, while the other

aims to extract high-level semantics from low-frequency (LF)

information. These streams are subsequently integrated through a
BA

FIGURE 1

(A) The label distribution of a long-tailed aquatic species dataset (e.g., the FishNet dataset (Khan et al., 2023) with more than 450 classes).
(B) Statistics of mean classification score for each class on the FishNet dataset. The x-axis depicts the index corresponding to the
corresponding class.
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FusionBlock, which facilitates attentive interactions between the LF

and HF streams. Furthermore, for the problem of long-tailed nature

when using unlabeled data, we design a new Consistency

Equilibrium Loss (CEL) that refines the pseudo-labels and

adaptively adjusts the margin for each aquatic species class. We

find that replacing the unsupervised loss with CEL could ensure that

the SSL algorithm achieves relative classification equilibrium, even

if the collected data distribution is biased toward the head classes.

Extensive experiments demonstrate the proposed method attains

superior results on a large-scale aquatic species recognition dataset.

In addition, the WFN and CEL are assessed to highlight their

advantages over current common practices.
2 Related work

2.1 Aquatic species recognition with
deep learning

In recent years, DL-based aquatic species recognition has

emerged as a promising tool for assisting marine scientists and

ecologists in better understanding and managing marine

environments. Accurate species recognition serves as the

cornerstone of aquatic biodiversity research, playing a crucial role

in estimating species size and quantity. A seminal contribution in

this field is the development of the filtering deep convolutional

network (FDCNet) (Lu et al., 2018), which effectively classifies

deep-sea objects such as sea urchins, crabs, sharks, and shrimps.

Due to the complexity and dynamics of the marine environment,

DL methods encounter challenges in recognizing interesting objects

based on visual characteristics. To overcome this issue, the literature

(Kaur and Vijay, 2023) proposes an invariant feature-based species

classification method for distinguishing octopus and crabs.

Similarly, the study (Liu et al., 2023) introduces an improved fish

recognition network along with a novel loss function, FishFace,

designs to focus more attention on fish details. More recently,

automated plankton recognizing method based on DL has been

developed for continuous monitoring of living plankton abundance

in aquatic environments (Chen et al., 2023). A comprehensive

review (Li et al., 2023) is recommended for researchers to seek an

in-depth understanding of DL-based aquatic species recognition

methods. However, most existing methods are constrained by their

reliance on a relatively small portion of labeled data, posing a

challenge to their practical application in real-world scenarios

(Khan et al., 2023). Therefore, there is an urgent need to develop

a new paradigm capable of effectively utilizing extensive unlabeled

data with a small amount of labeled data to accurately identify a

broader range of aquatic species, thereby supporting aquatic

biodiversity conservation efforts.
2.2 Semi-supervised learning

SSL methods have garnered significant attention from both

industry and academia for use unlabeled data during the training

process, particularly when the amount of labeled data is scarce.
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Recent SSL research has generally been categorized into two main

groups. The first category of consistency regularization methods

imposes a classification invariance loss on unlabeled data following

perturbation (Miyato et al., 2018; Xie et al., 2020a). In the second

category, pseudo-labeling extends model training data beyond

labeled samples to contain additional unlabeled data, augmented

with credible pseudo-labels (Berthelot et al., 2019b; Xie et al.,

2020b). Techniques like FixMatch (Sohn et al., 2020) and

RemixMatch (Berthelot et al., 2019a) combine pseudo-labeling

with consistency regularization, yielding superior performance

compared to many other SSL algorithms in image recognition

tasks. Furthermore, several studies have been conducted

experiments on long-tailed SSL. For example, DARP (Kim et al.,

2020) proposes eliminating biased pseudo-labels through

distribution alignment, which refines the pseudo-labels based on

the labeled data distribution. Additionally, an auxiliary balanced

classifier learned by down-sampling the head class is used to

enhance generalization capabilities (Lee et al., 2021). The above

designs largely promote the overall performance of long-tailed

semi-supervised methods, but the performance of natural long-

tailed SSL problems in aquatic species recognition is still

unsatisfactory, and no research has been found that effectively

addresses this issue.
2.3 Wavelet-based deep learning

The integration of wavelet transform with deep neural networks

(DNNs) has gained traction due to its robust frequency and spatial

representation capabilities. Common strategies involve utilizing

wavelet transform as either a pre-processing or post-processing

step (Huang et al., 2017; Yin and Xu, 2021), as well as substituting

specific layers in DNNs (Li et al., 2021). Previous research has also

explored the application of the dual-tree complex wavelet transform

to extract robust features from Synthetic Aperture Radar images

(Duan et al., 2017). More recently, Wave-ViT (Yao et al., 2022) uses

the wavelet transform to down-sample keys/values in a

Transformer (Vaswani et al., 2017). The Multi-level Wavelet

CNN (Liu et al., 2018) integrates wavelet package transform into

the DNN to concatenate the LF and HF components and process

them in a unified manner, despite the notable disparity between

these components. In contrast, we employ wavelet transform as an

effective approach to tackle image complexity. Further, none of

these studies has attempted to design a fusion block specially

tailored for the wavelet transform paradigm to obtain attentive

feature representation.
2.4 Loss function for long-tailed learning

Re-weighting and Re-margining loss functions serve as key

components in tackling long-tailed class imbalanced challenges

(Zhang et al., 2023). These methods are primarily implemented

by adjusting margins or loss weights based on the distribution of

training data. For instance, seminal works (Cui et al., 2019; Ren

et al., 2020) reweight the loss functions according to the sampling
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frequency of each class. Recent literature (Lai et al., 2022) enhances

the robustness of SSL to long-tailed class imbalanced problems by

designing weights in the unsupervised loss based on estimating the

learning difficulty of each class. In contrast, several studies (Cao

et al., 2019; Menon et al., 2020; Tan et al., 2020) have attempted to

adjust the loss margins of each class. The Label-Distribution-

Aware-Margin (Cao et al., 2019) approach motivates tail classes

to have larger margins based on label frequencies. Additionally, the

study (Feng et al., 2021) replaces the margin term with mean

classification score for long-tailed object detection. While our

CEL function is inspired by the above pioneer studies, it differs

significantly in two aspects. Firstly, to the best of our knowledge, the

CEL function is the first to utilize the mean classification score to

extend the existing consistency loss in SSL. Secondly, our key idea

involves refining pseudo-labels via the mean classification score to

match the true data distribution. With the proposed CEL function,

our approach demonstrates superior performance in aquatic species

recognition based on the SSL scheme.
3 Method

In this section, we first revisit the formulation of the SSL scheme

in Section 3.1. After that, we illustrate the process of generating LF

and HF entities using wavelet transform in Section 3.2, and provide

detailed insights into our FusionBlock in Section 3.3. Lastly, along

with the SSL scheme, we introduce the CEL function for unlabeled

samples in Section 3.4. An overview of the framework is shown

in Figure 2.
3.1 Semi-supervised learning setup

The basic technique utilized in FixMatch (Sohn et al., 2020)

revolves around pseudo-labeling and consistency-regularization,

where unlabeled samples with high confidence are selected as

training samples. Suppose we have a labeled dataset XL =

(xi, yi)f gL(i=1), where xi is the ith training sample yi ⊆ 0, 1f gC is the

corresponding label with C classes, and L is the number of labeled

samples. XU = (xi)f gL+Ui=L+1 represents a dataset comprising unlabeled
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samples, where U is the number of unlabeled samples. Both XL and

XU share identical semantic labels. The loss function is composed of

two terms: L = Ls + lu � Lu, where Ls denotes the supervised loss

applied to labeled data, Lu is the consistency loss for unlabeled data,

and lu is a scalar hyperparameter.

The supervised loss Ls is defined as: Ls =
1
BoB

i=1H(yi, p(h(xi))),
where h denotes the weak augmentation, B is the batch size,H is the

cross-entropy loss, and p(·) is the output of logits in DNN. Pseudo-

labels ŷ i = argmax(softmax(p(h(xi)))) are generated from weakly

augmented unlabeled samples, guiding the prediction of model on

strongly augmented samples. The consistency loss Lu can be

formally expressed as: Lu =
1
mBomB

i=1II½max(softmax(p(h(xi)))) ≥ t �
H(ŷ i, p(f(xi))), where f represents strong augmentation, m governs

the proportion of labeled to unlabeled samples in a minibatch, and

II is the indicator function; 0 if the highest probability of unlabeled

samples is below the confidence threshold t and 1 otherwise.
3.2 Wavelet transform

The wavelet transform serves as an effective frequency analysis tool,

establishing extensive applications in signal processing (Mallat, 1989).

A wavelet is linked with wavelet and scaling functions, which establish

a relationship with the low-pass and high-pass filters to facilitate data

decomposition. In practice, the images represent discrete non-

stationary signals, involving various frequency intervals and spatial

location information. Single-level 2D discrete wavelet transform

(Equation 1) with four filters (fLF , fHF
horizontal

, fHFvertical ,and fHF
diagonal

) are

often used to decompose an image x to obtain its LF component LF

and three HF components HFhorizontal ,HFvertical ,HFdiagonal ,

i = Convfi (x) ↓2,   i ∈ LF,HFhorizontal ,HFvertical ,HFdiagonal
� �

, (1)

where Convfi , ↓2 denote the convolution operation with the typical

filter fi and downsampling operation, receptively. The components

acquired through wavelet transform contain distinct information

about the raw images of aquatic species (see Figures 3A, B). Our

method strives to leverage wavelet transform to generate robust

information as the input of DNN to extract LF and HF features. As

such, a LF entity is represented solely by a LF component (Equation

2), while a HF entity is represented as a set of HF components in
FIGURE 2

Illustration of the overall framework for aquatic species recognition. The proposed WFN (Wavelet Fusion Network) and CEL (Consistency Equilibrium
Loss) are added into the exiting SSL scheme FixMatch (Khan et al., 2023).
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various directions (Equation 3) similar to those used in (Zhou et al.,

2023):

LF = LF, (2)

HF = average(HFhorizontal +HFvertical +HFdiagonal) : (3)

Note that our average HF components aim to reduce

computational costs by decreasing the number of subsequent

encoders. Ideally, each HF component would be feature-extracted by

a specific encoder, but this is computationally expensive. In contrast,

our average strategy is orthogonal and complements previous practical

approaches for handling HF components, such as element-wise

addition (Zhou et al., 2023), concatenation (Liu et al., 2018; de Souza

Brito et al., 2021; Liu et al., 2021), and maximum (Ramamonjisoa et al.,

2021). We refer to Section 4.5 for further details on these.

Figures 3C, D visually illustrate the LF and HF entities as

defined above. By using the LF entity as input, DNN can focus

more on LF semantics due to its less noise. In contrast, the HF

entity, while exhibiting more noise, offers clearer object boundaries

and shapes, enabling DNN to concentrate on HF details. A similar

perspective has been adopted by Zhou et al. (2023) who argues that

HF information typically represents image details, while LF

information often embodies abstract semantics.
3.3 FusionBlock

Given the entities processed by wavelet transform, we employ

parallel encoders equipped with ResNet-50 (He et al., 2016) to

respectively generate high-level LF and HF features. These features

are then passed through the FusionBlock to generate attentive

features from one stream to another. We argue that applying a
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cross-stream attention strategy to high-level features can capture

the connection between conceptual entities in the LF and HF

streams, helping subsequent modules in recognizing aquatic

objects in images.

Taking fLF ∈ Rw�h�c�b and fHF ∈ Rw�h�c�b as example to

illustrate the details of FusionBlock (where w, h, c and b denote

width, height, channel number, and batch size), we use a cross-

stream attention strategy to explore correlations between the two

streams. Specifically, as shown in Figure 4, the two features are

passed through four 1 × 1 convolutional layers to generate query

and key matrices. We reshape the query and key matrices into 3D

spatial feature maps (w × h × cb), and then concatenate them to

obtain the fused key and query as (Equations 4, 5):

ffused−key = concate(R(conv1�1 fLFð Þ),R(conv1�1 fHFð Þ)), (4)

ffused−query = concate(R(conv1�1 fLFð Þ),R(conv1�1 fHFð Þ)), (5)
B C DA

FIGURE 3

Taking FishNet (Khan et al., 2023) as an example, visualize LF and HF results. (A) Raw image. (B) Wavelet transform results. (C) the HF entity. (D) the
LF entity.
FIGURE 4

Diagram of the proposed FusionBlock. Here, “C” signifies feature
concatenation, while “+” represents element-wise addition, “×”
denotes dot-product, and “M” signifies element-wise multiplication.
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where R denotes the reshape operation, ffused−key ∈ Rw�2h�cb, and

ffused−query ∈ Rw�2h�cb. After that, the attention map A ∈ Rw�h�c�b

is computed by performing a dot-product and applying the softmax

activation function (Equation 6).

A = R(s (ffused−query � f Tfused−key), (6)

where s is the softmax activation function. In this way, the feature

from one stream could serve to augment another stream.

Additionally, to preserve the original information of each stream,

a residual connection is employed to fuse the enhanced features

with their original counterparts. As such, we obtain the cross-

stream attentive features for the two streams as (Equation 7):

f 0LF = fLF + Bconv1�1(fLFⓂA)

f 0HF = fHF + Bconv1�1(fHFⓂA)
,

(
(7)

where Ⓜ denotes element-wise multiplication, Bconv1×1(·)

represents a sequential operation combining a 1 × 1

convolutional layer and batch normalization. Once obtaining the

cross-stream feature representation, we concatenate these features

and apply the dropout operator to the fused feature fS. Finally, two

fully connected layers are utilized to output the final logits.
3.4 Consistency equilibrium loss

In a recent study (Feng et al., 2021), it was demonstrates that the

learning status of a class can be inferred through the mean

classification scores. When we take a deeper look into Figure 1B,

it is evident that the head classes exhibit higher mean classification

scores, whereas tail classes illustrate lower mean classification

scores. Based on this observation, we follow the finding of

utilizing the mean classification score to adjust the learning

effectiveness of each class throughout the training process. The

update process of the mean classification score during training can

be illustrated as (Equation 8):

s = m� s +  (1  −m) � py , (8)

where s ∈ RC denotes the mean classification score, initialized for

each class using 1
C · py is the mean predicted probability of the

sample in a mini-batch, and m is a hyper-parameter.

Previous research (Kim et al., 2020) has revealed that the

performance of SSL scheme is highly sensitive to the quality of

pseudo-label, and a long-tailed data distribution leads to biased

predictions favoring head classes. Utilizing these pseudo-labels in

the SSL scheme can be harmful for tail classes. Instead of solely

adjusting the class-dependent margin by deriving the mean

classification score, the confirmation bias in pseudo-labels should

be alleviated at the same time. To this end, we first refine the

original pseudo-labels via mean classification score so that match

the true data distribution (Equation 9):

by i = argmax(softmax(p(h(xi))  − qlog(s))), (9)

where q is a hyper-parameter. Simultaneously, we adaptively adjust

the margin by encouraging the tail classes to have larger margins.
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According to the mean classification score, we add a tunable term to

balance the classification, similar to the previous study (Feng et al.,

2021). As such, the CEL can be written as (Equation 10):

CEL =
1
mBo

mB

i=1
II½max(softmax(p(h(xi)) − qlog(s)))

≥ t�H(ŷ i, p(f(xi)) + qlog(s)) : (10)

We can control the training process through hyper-parameter q to

ensure the model remains unbiased towards the head classes and

does not neglect tail classes. In particular, we increase the larger

margin with lower mean classification scores for tail classes,

mitigating the suppression of head classes over tail classes to

balance the consistency loss.
4 Results

4.1 Dataset and evaluation metrics

Extensive experiments are conducted using the large-scale

FishNet dataset (Khan et al., 2023), comprising 94,532 images

encompassing 17,357 distinct species. Each species is represented

by at least one associated image, which span 8 taxonomic classes, 83

orders, 463 families, and 3,826 genera. To validate the effectiveness

and universality of our proposed method, we focus on the family

classification task. The FishNet dataset categorizes family classes

into three groups based on the class frequencies: common, medium,

and rare. There are a total of 6 categories in the common group, 52

categories in the medium group, and 405 categories in the rare

group. In our experiments, we report the class average accuracy for

each group, as well as the overall accuracy over all categories

followed as official metrics. The FishNet contains 75,631 images

in the training set and 18,901 images in the test set. Unless

otherwise stated, we conduct the experiments with a ratio of 20%

labeled samples in the training set as labeled data, and the

remaining 80% data in the training set as unlabeled data,

adhering to the common semi-supervised experimental partition.
4.2 Implementation details

We implement our model using PyTorch (Paszke et al., 2019),

with both training and inference procedures conducted on the

NVIDIA GeForce RTX 3090 GPU. We use 200 epochs in the

training process. In each training step, our batch contains 12 labeled

examples and 48 unlabeled examples, maintaining a ratio µ = 4 to

support the SSL scheme. To ensure a smooth start, we incorporate

linear learning rate warm-up for the first 50 steps, progressively

increasing the initial value to 0.004. Subsequently, we decay the

learning rate at epochs 30, 60, 100, and 150 by multiplying it by 0.1.

For all experiments, the two-stream encoders are initialized with

weights pre-trained on the ImageNet dataset (Deng et al., 2009). We

adapt a relatively larger coefficient m = 0.99 for the mean

classification score update. For the unsupervised loss function
frontiersin.org
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CEL, the weight parameter (l) increases linearly per epoch

according to l = lu � epoch
epochmax

, and the confidence threshold t is

set to 0.95. As in previous works (Sohn et al., 2020; Lai et al., 2022),

we employ an exponential moving average of model parameters to

generate the final performance. We keep other hyper-parameters

the same as the ImageNet experiments in FixMatch, except for

those mentioned above.
4.3 Comparison of aquatic species
recognition performance

Several experiments are conducted to elaborate the findings: (a)

the baseline utilizing only labeled images for aquatic species

recognition based on ResNet-50 (He et al., 2016); (b) an

improved version of (a) incorporating our proposed WFN to

enhance image features with wavelet transform; (c) the baseline

utilizing both labeled images and unlabeled images based on the

representative SSL scheme FixMatch (Sohn et al., 2020); (d) the

proposed WFN integrated into the FixMatch scheme; (e-i)

evaluation of state-of-the-art methods designed for long-tailed

SSL on the FishNet dataset; (j) utilization of CEL combined with

FixMatch; (k) is the final version of our proposed methods

incorporating both CEL and WFN into the FixMatch scheme.

Table 1 presents the performance of different methods on the

FishNet dataset. Based on these results, several observations

emerge regarding the overall progress of the proposed method

and variations among different supervised types.

From a → b, it is evident that the WFN significantly improves

overall performance. WFN achieves competitive performance, with

average classification accuracy of 72.73%, 58.60%, 25.47%, and

29.80%, surpassing the ResNet-50 by 2.1%, 0.95%, 4.06%, and

3.68% over four metrics. The experiment demonstrates that WFN

equipped with wavelet transform and FusionBlock, has better

generalization than previous ResNet-50 architecture, which allows

the model to tackle the challenges posed by the heterogeneous

aquatic environment. From a → c, we can observe that the use of
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SSL yields a notable enhancement compared to the model trained

solely using labeled data. The gain from unlabeled data becomes

evident in the aquatic species recognition. SSL enables the

DL model to leverage the abundance of unlabeled images,

further refining its understanding of various species and

environmental conditions.

From b → d, we can infer a similar conclusion to a → c.

Furthermore, the combination of WFN and SSL yields a synergistic

effect, tackling the challenges posed by the heterogeneity of aquatic

environments while leveraging the benefits afforded by unlabeled

data. Incorporating WFN into the SSL scheme enables the DL

model to acquire robust features across diverse aquatic conditions.

In other words, it is crucial to acknowledge that enhanced

performance of the robust feature extraction method within SSL

extends beyond the initial finding observed in a to c.

Table 1 also compares the proposed CEL function with several

other methods: CReST (Wei et al., 2021), which oversample tail

classes generated by pseudo-labels, ABC (Lee et al., 2021), utilizing an

auxiliary balanced classifier of a single layer, DARP (Kim et al., 2020),

refining pseudo-labels to match the true distribution of unlabeled

data, SAW Lai et al. (2022), adjusting weights based on the estimated

learning difficulty of each class in unsupervised loss, and DASO (Oh

et al., 2022), employing a blending pseudo-labels strategy to mitigate

the overall bias. Since these methods were originally experiment with

in the long-tailed SSL domain, we evaluate their performance on the

FishNet dataset. We utilize publicly available code to train each

method and report the best results obtained frommultiple runs, fine-

tuning their hyper-parameters to ensure optimal performance. From

(e, f, g, h, i) → j, we observe that our CEL achieves competitiveness

with other methods on the FishNet dataset. From c→ (e, f, g, h, i, j),

the long-tailed extensions yield performance gains of varying degrees

for all methods, such as a notable 4.36% increase in average

classification accuracy for DASO, demonstrating the importance of

long-tailed distribution as a general issue for the task of aquatic

species recognition.

Lastly, group (k) demonstrates that integrating WFN and CEL

within SSL enhances overall performance for the aquatic species
TABLE 1 Comparison with supervised, semi-supervised, and long-tailed semi-supervised methods on the FishNet dataset.

Method SSL LT Common Medium Rare All

a) ResNet-50 (He et al., 2016) – – 70.63 57.65 21.41 26.12

b) WFN – – 72.73 58.60 25.47 29.80

c) FixMatch (Sohn et al., 2020) ✓ – 79.07 64.94 22.24 27.77

d) FixMatch + WFN ✓ – 81.65 67.61 27.99 33.13

e) Fixmatch+CReST (Wei et al., 2021) ✓ ✓ 68.19 67.26 24.93 30.24

f) Fixmatch+ABC (Lee et al., 2021) ✓ ✓ 69.14 66.71 24.98 30.24

g) Fixmatch+DARP (Kim et al., 2020) ✓ ✓ 69.74 67.42 26.19 31.38

h) FixMatch+SAW (Lai et al., 2022) ✓ ✓ 64.54 67.18 27.31 32.27

i) FixMatch+DASO (Oh et al., 2022) ✓ ✓ 65.74 67.70 27.07 32.13

j) FixMatch+CEL ✓ ✓ 67.75 68.83 28.30 33.36

k) FixMatch+CEL+WFN ✓ ✓ 69.58 68.36 32.61 37.11
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recognition task. The collaborative integration of WFN and CEL

could leverage the strengths of each component. WFN enhances the

feature extraction capabilities of the model, enabling better

handling of the complexities of the aquatic environment.

Meanwhile, CEL guides the training process, ensuring that the

model benefits from unlabeled data and mitigating long-tailed class

imbalanced problems. Through rigorous evaluation, we

demonstrate that the combined strength of WFN and CEL

contributes to a more robust and accurate aquatic species

recognition system, paving the way for advancements in the field

of aquatic biodiversity research and conservation.
4.4 Ablation study

4.4.1 Impact of different wavelet bases in WFN
Table 2 presents an analysis of various wavelet bases trained on

labeled data, including Dmey, Haar, Daubechies 2, Coiflets,

Biorthogonal 1.5, and Biorthogonal 2.4. The results we obtained

show that the Daubechies 2 wavelet has better classification

accuracy, and the Haar wavelet presents better border accuracy.

As such, we select the Daubechies 2 wavelet basis as the default for

our experiments.

4.4.2 Ablation study of different coefficient q
in CEL

We perform an ablation study on the CEL function with various

values of q to evaluate the impact of model performance. As shown

in Figure 5, an improper proportion of the term, either too large or

too small, impedes the attainment of optimal performance.

Observing the CEL function reveals a significant variation in the

impact of q. When the value of q is set to 0, the CEL is equivalent to

the consistency loss of FixMatch. However, excessively large values

of q may hinder the ability of model to focus attention on the data,

whereas too small values inadequately addresses the bias in long-

tailed SSL problem. The trade-off between model performance and

CEL when q = 0.4 achieves the relatively best performance.

4.4.3 Comparison of fusion strategies for WFN
We further examine the effectiveness of the proposed

FusionBlock in Table 3. We utilize different feature fusion

strategies to train the DNNs on the labeled images combined

with wavelet transform. The proposed FusionBlock achieves

better performance on the FishNet test set compared with
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element-wise add operation and concatenate features along with

channel dimension. We believe that the cross-stream attention

fusion strategy is more effective for learning interactive features,

making it well-suited for the diverse and challenging environment

in aquatic species recognition.
4.5 Analysis of different
frequency components

Since the main semantic information is conveyed in the LF

component, previous studies have often used the LF component

alone in certain tasks (Li et al., 2020; Zhao et al., 2023). However,

researchers have attempted to aggregate HF components with

methods such as concatenation (Liu et al., 2018; de Souza Brito

et al., 2021; Liu et al., 2021), maximum (Ramamonjisoa et al., 2021),

or element-wise addition (Zhou et al., 2023), and incorporate them

into DNNs to improve model performance. To verify the

effectiveness of our WFN, we compare the performance of

experiments conducted by using different components alone and

the ways to connect the HF components. We report the results on

FishNet’s labeled data in Table 4.

The results show that both HF and LF entities are important for

aquatic species recognition, as both HF and LF only attain relatively

good performance. From Table 4, we find that LF alone achieves better

performance than that of only using raw images. One reason for this

phenomenon may be the LF entity has less data noise, which enhances

the noise-robustness of the DNN by neglecting HF components (Li

et al., 2020). The results also demonstrate despite the noise-robustness

in LF leads to quite high performance, the details information conveyed

in the HF entity is critical for aquatic species recognition. Furthermore,

we compare the strategy of averaging HF components with strategies

such as maximum, addition, and concatenation. As illustrated, the

model with an averaging connection for HF components used inWFN

achieves better performance.
4.6 Sensitivity analysis of dataset partition

As shown in Table 5, we examine the impact of varying number of

labeled and unlabeled data. We set the ratios of labeled data in the

training set to 10%, 20%, 30%, and 100%, thereby determining the

corresponding ratios of arbitrary unlabeled data. With the entire

training dataset labeled (100% labeled data) in supervised learning,
TABLE 2 Ablation study for the wavelet bases in WFN.

Wavelet bases Common Medium Rare All

Dmey 58.86 44.36 18.48 21.91

Haar 70.84 55.90 25.08 29.13

Coiflets 60.57 46.59 21.44 24.77

Biorthogonal 1.5 58.35 45.43 18.98 22.46

Biorthogonal 2.4 60.18 44.65 19.38 22.74

Daubechies 2 72.73 58.60 25.47 29.80
frontiersin.org

https://doi.org/10.3389/fmars.2024.1373755
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Ma et al. 10.3389/fmars.2024.1373755
the WFN achieves an average classification accuracy of 49.41% across

all aquatic species. Furthermore, the overall average classification

accuracy of SSL increases by 8.52%, 7.31%, and 10.06% compared

to supervised methods when using 10%, 20%, and 30% labeled data

and the remaining unlabeled data. Moreover, our method exhibits

improved performance with increasing amounts of unlabeled data.

Training with 20% labeled data and 40%, 60%, and 80% unlabeled

data result in overall average classification accuracy improvements of

5.97%, 6.82%, and 7.31% over the baseline. The empirical results

confirm the proficiency of our method in generating pseudo-labels

using arbitrary quantities of labeled data. Additionally, the robustness

of the proposed method under diverse conditions has been

comprehensively validated.
4.7 Replacing HF entity with
edge information

Wavelet transform and edge detectors such as Canny and Sobel

serve similar purposes in extracting detailed information within

images. To further demonstrate the effectiveness of the HF entity,

we replace the HF entity with the information generated by the edge
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detector. As shown in Table 6, we can see using HF entity

outperforms the previous edge detection algorithm by a large

margin. To be specific, WFN improves the optimal classification

accuracy by over 2.46% in the Canny edge detector, and 1.96% in

the Sobel edge detector, respectively. The performance degradation

of both experiments illustrates the HF entity extracted by wavelet

transform contains rich information about fine details and textures

in the image. Besides, Canny and Sobel detectors can be sensitive to

noise, especially in low-quality underwater images or those with

uneven illumination and complex visual backgrounds, which might

lead to false edge detection or noisy information. Through the

experiments, we also conclude that WFN has a stronger ability for

feature extraction than using raw images with edge information,

which can be beneficial for heterogeneous image-collected

environments in aquatic species recognition.
4.8 Comparison of model size and
computation cost

We showcase the performance of models trained on the labeled

images along with model size and computational cost. Given that
TABLE 3 Ablation study for feature fusion strategies in WFN.

Fusion strategy Common Medium Rare All

concatenate 75.14 58.78 22.88 27.59

Element-wise add 72.68 58.93 23.42 28.05

FusionBlock 72.73 58.60 25.47 29.80
FIGURE 5

Ablation study for the hyper-parameter q in CEL.
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the proposed CEL function is designed for pseudo-labels, its

computational complexity is negligible compared to that of fully-

supervised training methods. As shown in Table 7, WFN requires

two encoders for various frequency awareness, which significantly

increased the computation cost as the acquired information

increased. Furthermore, to illustrate that the performance

enhancement stems from well-designed components, we expand

ResNet-50 to match the number of parameters and computational

costs of WFN. Our results indicate that while increased

computational complexity yields positive effects, it still falls shorts

of matching the performance of WFN.
5 Discussion

A previous study (Torney et al., 2019) demonstrates that

recognition task typically requiring four ecologists approximately

3 to 6 weeks for manual analysis can be completed in just 24 hours

using DL methods. Their research also concludes that this

accelerated approach does not compromise accuracy, as

abundance estimates obtained through DL were within 1% of

those derived from manual analysis by experts. Computer
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analysis has the potential to substantially streamline the

investigative analysis process. Our study concurs with this point

but also underscores the significant challenges in data labeling, as

evidenced by previous representative studies (Li et al., 2023;

Rubbens et al., 2023). This paper introduces a novel technique

based on a SSL scheme, where DNN are learned using a limited

number of labeled data and extensive unlabeled data, thereby

alleviating the burden of manually labeling large dataset for

researchers. This is enabled by two simple-to-implement but

crucial modifications (1) using a robust feature extraction

method, (2) replacing original consistency loss with CEL function.

These modifications enable the DL method, trained on a limited

amount of labeled data, to effectively address a diverse

aquatic environment, as well as the long-tailed distribution of

aquatic species.

Aquatic species recognition based on DL serves as a foundation

for specific application, particularly biomass estimation and species

habitat monitoring (Li et al., 2023). This information is crucial for

informed decision-making in conservation management, including

the establishment of protected areas, restoration effort, and

mitigation of anthropogenic impacts. Furthermore, our research

presents promising applications for long-tailed distribution of
TABLE 4 Analysis of different frequency components.

Raw LF HFSum HFMax HF Concate HFAverage Common Medium Rare All

✓ 70.63 57.65 21.41 26.12

✓ 69.18 56.12 22.52 26.90

✓ 56.25 40.65 14.28 17.78

✓ 45.22 30.88 11.17 13.83

✓ 48.95 29.72 12.85 15.22

✓ 57.19 41.09 14.14 17.72

✓ ✓ 69.10 55.48 23.60 27.77

✓ ✓ 71.71 56.25 23.16 27.50

✓ ✓ 68.90 56.30 24.41 28.57

✓ ✓ 72.73 58.60 25.47 29.80
TABLE 5 Sensitivity analysis results of dataset partition strategies.

Labeled Unlabeled Common Medium Rare All

10%
0%
90%

66.41
59.78

47.35
59.72

14.97
23.23

19.28
27.80

20%

0%
40%
60%
80%

72.73
69.27
67.10
69.58

58.60
67.48
68.23
68.36

25.47
31.30
32.11
32.61

29.80
35.77
36.62
37.11

30%
0%
70%

75.93
73.05

62.35
71.42

28.05
38.43

32.53
42.59

100% 0% 83.31 74.49 45.68 49.41
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aquatic species in the natural world, which can significantly

contribute to marine biodiversity conservation efforts. Species

distribution and abundance follow a highly skewed rule, with a

small number of species exhibiting high abundant, while numerous

species are present in relatively low numbers (Villon et al., 2022;

Saleh et al., 2023). The complex image collection environment poses

challenges for commonly used methods such as data augmentation

or data generation to be effective, particularly when labeled data is

limited. As recommendations for improvement concerning existing

conservation measures, we propose integrating our method into

established monitoring frameworks. We have conducted both

quantitative and qualitative experiments demonstrating the utility

of the our method across a variety of diverse aquatic environments

using large-scale species recognition datasets. The results of the

above experiments instill confidence in our ability to collaborate

with existing conservation monitoring programs.

While this work represents progress in developing a robust and

effective SSL scheme for real-world aquatic species recognition

applications, it has also revealed some limitations that future

research should address. Firstly, the CEL enhances the performance

of tail-class at the expense of lower performance for head-class. Given

the importance of all aquatic species in real environments, it is

worthwhile to explore strategies for significantly improving the

performance of tail species while maintaining or even enhancing

the performance of head species. Secondly, while our study has

confirmed the effectiveness of WFN combined with single-level 2D

discrete wavelet transform for aquatic species recognition, it is worth

developing a DNN equipped with multilevel wavelet packet

transform in future research because it could benefit from the

hierarchical representation. Lastly, it would be interesting to apply

our algorithm to more practical task, such as aquatic species

detection, behavior analysis, and trait prediction. By deploying

these application in real-world aquatic environments, we can
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develop increasingly intelligent solutions to address some of the

most pressing issues of our time.
6 Conclusion

In this work, we have introduced a robust feature extractor,

WFN, and a novel loss function, CEL, based on the SSL scheme

FixMatch, for aquatic species recognition. Our proposed methods

have demonstrated effectiveness in addressing the challenges of high-

quality recognition in complex image-collected environments and the

long-tailed class imbalanced nature of aquatic species, even with a

limited number of labeled data. This is achieved through dedicated

components, using the output of wavelet transform of one to train the

DNN, and applying the CEL function at the stage where pseudo-

labels come into play. The proposed method has consistently shown

performance gains in both quantitative and qualitative experiments.

We thus believe that our study can serve as a valuable resource for

future research efforts in aquatic species recognition.
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