
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Lei Wang,
Anhui Normal University, China

REVIEWED BY

Rantao Zuo,
Dalian Ocean University, China
Chunxiao Zhang,
Jimei University, China

*CORRESPONDENCE

Peng Tan

tanpeng@zjou.edu.cn

Qingjun Shao

qjshao@zju.edu.cn

RECEIVED 14 January 2024
ACCEPTED 19 February 2024

PUBLISHED 12 March 2024

CITATION

Zhang L, Zhang P, Tan P, Xu D, Wang L,
Ding Z and Shao Q (2024) Yarrowia lipolytica
as a promising protein source for Pacific
white shrimp (Litopenaeus vannamei) diet:
impact on growth performance,
metabolism, antioxidant capacity, and
apparent digestibility.
Front. Mar. Sci. 11:1370371.
doi: 10.3389/fmars.2024.1370371

COPYRIGHT

© 2024 Zhang, Zhang, Tan, Xu, Wang, Ding
and Shao. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 12 March 2024

DOI 10.3389/fmars.2024.1370371
Yarrowia lipolytica as a promising
protein source for Pacific white
shrimp (Litopenaeus vannamei)
diet: impact on growth
performance, metabolism,
antioxidant capacity, and
apparent digestibility
Lei Zhang1,2, Pian Zhang1,2, Peng Tan1*, Dongdong Xu1,
Ligai Wang1, Zhili Ding3 and Qingjun Shao1,4*

1Key Laboratory of Mariculture and Enhancement, Zhejiang Marine Fishery Research Institute,
Zhoushan, China, 2Marine and Fisheries Research Institute, Zhejiang Ocean University,
Zhoushan, China, 3Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and
Development, College of Life Science, Huzhou University, Huzhou, China, 4Ocean Academy, Zhejiang
University, Zhoushan, China
Exploring alternatives to fishmeal (FM) in aquaculture nutrition remains a hot topic

in this area. Yarrowia lipolytica (YL), a promising single-cell protein source, has yet

to be evaluated for its use on the Pacific white shrimp (Litopenaeus vannamei) diet.

This investigation assessed the effects of YL on growth performance, metabolism,

antioxidant capacity, and nutrient digestibility in shrimp. Seven diets with equal

protein and lipid contents were prepared, incorporating gradient YL (dry matter

basis): 0% (control), 1.50%, 3.00%, 4.50%, 6.00%, 9.00%, and 12.00%. During a 56-

day feeding trial involving shrimp, with an initial average weight of 0.32 ± 0.02 g,

each kind of diet was randomly assigned to six tanks. It was observed that the

growth performance improved initially but then exhibited a declining trend as the

dietary inclusion of YL increased. Regression analysis indicated 2.68% as the

optimal YL percentage for a specific growth rate (SGR), accounting for 10.54% of

the dietary FM content. A higher YL (over 6.00%), which is equivalent to replacing

over 23.6% of the FM, led to increased feed intake and conversion ratios, possibly

correlating with decreased YL digestibility. However, YL inclusion across the

studied range had no detrimental impact on intestinal or hepatopancreatic

morphology. Notably, higher YL levels significantly enhanced hepatopancreatic

trypsin activity and reduced serum triglyceride and cholesterol levels. The inclusion

of YL notably augmented antioxidant defensemechanisms in shrimp, as evidenced

by increased total antioxidant capacity and catalase activities, as well as reduced

malondialdehyde levels in the hepatopancreas, possibly due to the presence of b-
glucan and mannan oligosaccharides in YL. These findings support YL being viable

as a protein source in shrimp feeds.
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1 Introduction

Fishmeal (FM) has been the primary protein source in the diet

of marine carnivorous species because of its high protein quality,

well-balanced amino acid profile, palatability, and absence of anti-

nutritional factors (NRC, 2011; Oliva-Teles et al., 2015; Tacon and

Metian, 2015). Despite this, the burgeoning demand of the

expanding aquaculture industry has challenged the static supply

of approximately 5 million tons of FM (Easton et al., 2002; Hua

et al., 2019; FAO, 2022). Thus, the exploration of sustainable FM

alternatives is imperative for ensuring the industry’s long-term

ecological viability (Naylor et al., 2021).

Numerous researches have been conducted to evaluate

alternative protein sources, including plant-derived proteins,

processed animal byproducts, and single-cell proteins (SCPs)

(Gupta et al., 2020; Mohan et al., 2022; Carvalho et al., 2023).

While plant-based proteins may offer a sustainable option, they

often lead to imbalances in amino acid profiles, reduced nutrient

utilization, and decreased palatability (Gatlin et al., 2007;

Glencross, 2020; Sánchez-Muros et al. , 2020). Animal

byproducts are lipid-rich but they are prone to oxidative

rancidity (Luthada-Raswiswi et al., 2021). SCPs derived from

microorganisms, including bacteria, fungi, algae, and yeast, have

emerged as promising alternatives, offering high protein content,

essential micronutrients, and bioactive compounds such as b-
glucan and mannan oligosaccharides (Meena et al., 2013;

Torrecillas et al., 2014; Douxfils et al., 2017; Glencross et al.,

2020; Agboola et al., 2021; Sharif et al., 2021). The dietary

inclusion of yeast, for instance, has demonstrated positive effects

on the growth and health of various aquatic species without

adverse impacts (Oliva-Teles et al., 2006; Øverland et al., 2013;

Bob-Manuel, 2014; Huyben et al., 2017) and has been shown to

enhance growth and immune responses in shrimp (Jin et al.,

2018). However, the economic feasibility of yeast production is

constrained by the high cost of raw materials, particularly carbon

sources (Sharif et al., 2021).

One-carbon gas proteins (C1GPs) are significant focus among

single-cell proteins (SCPs) in recent years. These proteins, produced

by fermenting microorganisms using C1-related industrial waste

gases, such as CH4, CO, and CO2 (Wang et al., 2023). This method

notably reduces greenhouse gas emissions and the dependency on

agricultural resources (Sharif et al., 2021). Produced via industrial

waste gas fermentation technology, Yarrowia lipolytica (YL) stands

out for its environmental resilience and efficient substrate

utilization and biosynthesis (Hu et al., 2016), making it an eco-

friendly alternative to FM (Turck et al., 2019; Mamaev and

Zvyagilskaya, 2021). Dietary supplementation with YL has shown

beneficial effects on growth, the immune response, the gut

microbiota, and disease resistance in various fish species (Hatlen

et al., 2012; Berge et al., 2013; Alamillo et al., 2017; Shurson, 2018;

Neuls et al., 2021). However, research on YL as an FM substitute in

crustaceans is limited.

This study focused on Pacific white shrimp, a predominant

species in global aquaculture that accounts for a significant

portion of the industry’s output (FAO, 2022). We aimed to

evaluate the potential of incorporating YL into shrimp diets by
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assessing growth performance, feed utilization, digestive enzyme

activities, and histological and biochemical parameters in both the

intestine and hepatopancreas. This investigation is expected to

provide valuable insights into the feasibility of using YL as a

sustainable dietary component in the cultivation of Pacific

white shrimp.
2 Materials and methods

The study received approval from the Zhejiang Ocean

University Committee on Ethics of Animal Experiments and

adhered to the ethical norms and guidelines for Frontiers in

Marine Science.
2.1 Chemical analysis

The proximate compositions of the feed ingredients,

experimental feeds, and shrimp samples were analyzed following

the methodology outlined by the Association of Official Analytical

Chemists (AOAC, 2005). The values are the means of two

replicates. The specific methods employed in this study were

based on our previous publication (Zhang et al., 2023). Moisture

content was determined by drying minced samples in a 105°C oven

until a consistent weight was achieved. After acid digestion with an

Auto-Digester (KjelFlex K-360, BUCHI, Switzerland), crude protein

content was calculated using the Kjeldahl technique and calculated

by multiplying nitrogen by 6.25. Crude lipids were extracted using a

Soxtec System HT (Soxtec 2055, FOSS Tecator) through ether

extraction. The samples were burned in a muffle furnace at 550°C

for 8 h to assess the amount of ash content. The analysis of amino

acid content in the samples was conducted according to our

previous publication (Zhang et al., 2023). The determination of

phosphorus content in the samples was carried out using the

molybdenum blue colorimetric method (Tan et al., 2022a).
2.2 Yarrowia lipolytica production and
experimental diet formulation

Yarrowia lipolytica GTLB P42 was obtained and cultured with

Jitilabo (Beijing) Biotechnology Development Co., Ltd., Beijing,

China. Yarrowia lipolytica was produced using the method

described by Hu et al. (2016), and the general process is

presented in Figure 1. In the first stage, Moorella thermoacetica

produced acetic acid by anaerobic fermentation using syngas (a

mixture of CO, H2, and CO2) as the sole carbon source, after which

the fermentation broth was purified and filtered. In the second

stage, Yarrowia lipolytica uses the above acetic acid product as a

substrate to produce yeast proteins by aerobic fermentation. The

Yarrowia lipolytica strains used in the trial were analyzed by the

methods described below and contained (dry matter) 57.66% crude

protein, 0.22% crude lipid, 7.49% ash, and 1.56% phosphorus. The

amino acid compositions of Yarrowia lipolytica are shown in

Supplementary Table S1.
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Seven equal protein content (40.00% crude protein), equal

lipid content (8.00% crude lipid), and equal energetic (16.33 MJ/

kg) diets were formulated by supplementing YL at levels of 0%,

1.50%, 3.00%, 4.50%, 6.00%, 9.00%, and 12.00% to a basal diet.

According to previous studies, DL-methionine, L-lysine, and L-

arginine were added to maintain amino acids balance to support

animal growth and health (Cheng et al., 2021; Ji et al., 2021). To

determine the apparent digestibility, yttrium oxide (Y2O3) was

supplemented at a concentration of 0.1%. The formulation and

approximate compositions of the experimental diets are shown in

Table 1. Feed pellets with a diameter of 1.20 mm were prepared

and steam-sterilized according to the specific production process

described in previous study (Xu et al., 2021).
2.3 Experimental animals and feeding trial

Litopenaeus vannamei used in the experiment were obtained

from the Xixuan Fishery Science and Technology Island Farm in

Zhoushan City, Zhejiang Province, China. Commercial diets were fed

to the shrimp for 2 weeks for acclimation. After domestication for 2

weeks, 2,100 shrimp (initial body weight of 0.32 ± 0.02 g) were

transferred to a flowing water system and randomly divided into 42

tanks (six replicates for each treatment) with 50 individuals per tank.

During the feeding period, the water was subjected to daily

exchanges, and continuous aeration was ensured through the use of

air stones. The water temperature was carefully regulated within the

range of 25.0 ± 3.0°C while maintaining a salinity level of 28.0 ± 1.0 g/

L. Additionally, the dissolved oxygen content was maintained above

6.0 mg/L, the ununionized ammonia nitrogen concentration was kept

below 0.05 mg/L, the nitrite concentration was kept below 0.1 mg/L,

and the pH was monitored within the range of 7.7 ± 0.1. Shrimp were

fed the respective experimental diets to apparent satiation three times

daily at 07:00, 12:00, and 18:00 for 56 days. After 3 h of feeding, the

remaining pellets were collected using a siphon, dried, and weighed.

Additionally, feces were thoroughly removed.
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2.4 Digestibility experiment

Starting from the 7th week of the formal trial, the feces were

drained every night after feeding for 3 h. The feces were collected and

dried by siphoning at 6:00 am on the following day. The yttrium

content was determined by inductively coupled plasma atomic

emission spectrometry (Thermo Electron, U.S.A.) after digestion.
2.5 Sample collection

Before the start of the experiment, 30 initial shrimp were

randomly selected and stored in a −20°C freezer for whole-body

proximate composition analysis. At the end of the 8-week feeding

trial, a fasting period of 12 h was imposed on the shrimp.

Subsequently, the shrimp were sedated using a concentration of

60 mg/L tricaine methanesulfonate (MS-222, Sigma−Aldrich, USA)

to minimize any potential problems. The shrimp were then

carefully captured using a net and promptly transferred to an ice

plate, where they were weighed tail by tail after they had remained

stationary. Ten shrimp were selected from each tank for whole

shrimp analysis, while the remaining shrimp were subjected to heart

blood sampling. After a 2 h standing period, the samples were

centrifuged at 8,000 ×g for 15 min. The serum samples were

carefully collected and stored at −80 °C until analysis. The shrimp

visceral mass was carefully extracted and dissected on ice to

sequentially isolate the hepatopancreas, stomach, and intestines.

The hepatopancreas was weighed and collected to measure

digestive, antioxidant, and immune parameters. Muscle samples

were analyzed for muscle composition. All the samples were stored

at −80 °C until analysis. The hepatopancreas and midgut of six

shrimp were randomly taken from each tank and divided into two

small portions, which were stored in 4% paraformaldehyde (PFA)

solution and 2.5% glutaraldehyde solution (4 °C). These samples

were subjected to histological staining with hematoxylin and eosin

(H & E) and electron microscopy.
FIGURE 1

Yarrowia lipolytica production and schematic of the present study. In the first stage, Moorella thermoacetica in an anaerobic bioreactor converted
CO, H2, and CO2 to acetic acid. In the second stage, Yarrowia lipolytica converts acetic acid to yeast protein. Finally, graded concentrations of
Yarrowia lipolytica were added to the diet. Feeding trials were also conducted to evaluate the potential use of Yarrowia lipolytica in shrimp diets.
Right panel: arrows indicate the morphology of YL under light microscopy.
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TABLE 1 Experimental diet formula and its basic nutrient composition (%, dry weight).

Ingredients
Experimental diets

Y0 1 Y1.5 2 Y3.0 3 Y4.5 4 Y6.0 5 Y9.0 6 Y12.0 7 YADC 8

Fish meal 9 22.00 20.70 19.40 18.10 16.82 14.24 11.65 15.40

Soybean meal 10 18.00 18.00 18.00 18.00 18.00 18.00 18.00 12.60

Soy protein concentrate 11 13.00 13.00 13.00 13.00 13.00 13.00 13.00 9.10

Yarrowia lipolytica 12 0.00 1.50 3.00 4.50 6.00 9.00 12.00 30.00

Squid paste 13 5.00 5.00 5.00 5.00 5.00 5.00 5.00 3.50

Wheat flour 14 22.00 22.00 22.00 22.00 22.00 22.00 22.00 15.40

Shrimp head and shell meal 15 5.00 5.00 5.00 5.00 5.00 5.00 5.00 3.50

Fish oil 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.40

Soybean lecithin 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.40

Corn oil 0.50 0.64 0.76 0.86 1.00 1.24 1.48 0.35

L-Lysine 0.00 0.02 0.03 0.04 0.05 0.08 0.10 0.00

DL-Methionine 0.00 0.02 0.04 0.06 0.08 0.11 0.15 0.00

L-Arginine 0.00 0.00 0.01 0.01 0.01 0.02 0.03 0.00

Sodium carboxymethyl cellulose 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.35

Carrageenan 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.14

Ca(H2PO4)2 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.40

Ascorbic phosphate ester 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.07

Mineral and Vitamin premix 16 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.05

Antioxidant 17 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.07

Mold inhibitor 18 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.07

Y2O3 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

Microcrystalline cellulose 5.90 5.52 5.16 4.83 4.44 3.71 2.99 4.10

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Proximate composition (Mean values, %, dry matter)

Crude protein 39.42 39.22 39.47 39.34 39.58 39.50 39.84 44.47

Crude lipid 8.24 8.37 8.24 8.49 8.53 8.19 8.13 5.74

Ash 10.57 10.34 10.65 10.58 10.54 10.38 10.34 10.24

Phosphorus 1.58 1.57 1.48 1.52 1.56 1.64 1.50 1.46

Gross energy (MJ/g) 17.64 17.93 17.64 18.02 17.89 18.04 17.59 16.95

Methionine 0.78 0.79 0.79 0.80 0.80 0.79 0.80 0.78

Lysine 2.62 2.61 2.60 2.60 2.57 2.59 2.58 2.99

Arginine 2.68 2.64 2.60 2.57 2.55 2.48 2.62 2.71
F
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1-7Yarrowia lipolytica (0%, 1.5%, 3.0%, 4.5%, 6.0%, 9.0% and 12%) incorporated into the diet.
8YADC: Y2O3 was adopted as an indicator at a concentration of 0.01% in the diet. The test diet was subsequently produced by mixing 70% of the basal mixture and 30% of the test ingredient
Yarrowia lipolytica.
9-15Fish meal: crude protein, 66.64%; crude lipid, 9.59%; soybean meal: crude protein, 47.80%; crude lipid, 0.54%; soy protein concentrate: crude protein, 64.80%; crude lipid, 0.03%; YL: Yarrowia
lipolytica; crude protein, 57.66%; crude lipid, 0.22%; squid paste: crude protein, 44.04%; crude lipid, 30.52%; wheat flour: crude protein, 14.13%; crude lipid, 1.07%; and shrimp head and shell
meal: crude protein, 36.49%; and crude lipid, 2.44%.
16Vitamin and mineral premix (mg/kg diet): the specific ratios can be found in the study by Xu et al. (2021).
17Antioxidant: tertiary butylhydroquinone (TBHQ).
18Mold inhibitor: the weight ratio of fumaric acid to calcium propionate is 1:1.
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2.6 Biochemical assays

The stomach, hepatopancreas, andmidgut tissues were accurately

weighed, and 9 volumes of homogenization medium (cold PBS, 0.1

M, pH 7.0, 4°C) were added at a weight (g): volume (mL) ratio = 1:9.

The tissues weremechanically homogenized in an ice-water bath. The

homogenate was centrifuged at 2,500 ×g for 10 min at 4°C. The

supernatant was carefully collected and stored at −80 °C, after which

the digestive enzyme (trypsin, lipase, and amylase) activity was

determined. The serum samples were used to analyze the total

protein (TP), albumin (ALB), glucose (GLU), blood urea nitrogen

(BUN), triglyceride (TG), total cholesterol (TC), total bilirubin

(TBIL), and creatinine (Cr) contents as well as alanine

transaminase (ALT), aspartate aminotransferase (AST), and

polyphenol oxidase (PPO) activities. Furthermore, the serum and

hepatopancreatic malondialdehyde (MDA), catalase (CAT), total

superoxide dismutase (T-SOD), total antioxidant capacity (T-

AOC), lysozyme (LZM), glutathione peroxidase (GSH-Px), alkaline

phosphatase (AKP), and acid phosphatase (ACP) activities were also

determined. The biochemical parameters of the serum and tissues

were determined using assay kits provided by Nanjing Jiancheng

Bioengineering Institute (China), and the measurements were

conducted according to the manufacturer’s instructions.
2.7 Hepatopancreas and midgut structure
and ultrastructure analysis

In accordance with the methods of Xu et al. (2021), tissue

samples were subjected to H & E staining and analyzed via

histological sectioning. Transmission electron microscopy (TEM)

and scanning electron microscopy (SEM) analyses of tissue samples

were performed as described previously by Tan et al. (2022b).

Eighteen images were selected for each group, and Imagine-Pro

Plus 6.0 (Media Cybernetics, USA) software was used for further

analysis of the microvillus height in the transmission electron

microscopy sections (Penn et al., 2011).
2.8 Calculations and statistical analysis

The following variables were calculated:

Survival rate (SR, %) = Nt × 100/N0;

Weight gain rate (WGR, %) = 100 × (Wt − W0)/W0;

Specific growth rate (SGR, %/day) = 100 × (Ln Wt – Ln W0)/t;

Hepatosomatic index (HSI, %) = 100 × (liver weight/Wt);

Feed intake (FI, %/day) = 100 × dry feed intake/[(initial body

weight + final body weight)/2]/t;

Feed conversion ratio (FCR) = dry feed fed/wet weight gained;

Protein efficiency ratio (PER) = 100 × (Wt −W0)/(feed intake ×

feed protein content);

Protein productive value (PPV, %) = 100 × protein gain/total

protein intake;

Apparent digestibility coefficient (ADC, %) of dry matter = (1 −

dietary Y2O3/fecal Y2O3) × 100;
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Apparent digestibility coefficients of a certain nutrient in feed

(%) = [1 − (dietary Y2O3/fecal Y2O3) × (certain nutrient content in

feces/certain nutrient content in feed)] × 100;

Apparent digestibility coefficients of a certain nutrient in the

test ingredient (%) = [(ADC test diet × nutrient test diet) – (0.7 × ADC

REF diet × nutrient REF diet)]/(0.3 × nutrient ingredient).

where Wt and W0 represent the final and initial shrimp weights,

respectively; Nt and N0 are the final and initial shrimp quantities,

respectively, in each tank; t is the trial period in days; and REF diet is

the reference diet.

All the data were analyzed using IBM SPSS Statistics 26.0 (SPSS,

Inc., USA) and are presented as the mean ± standard error of the

mean (S. E. M.). Levene’s test was used to confirm the normality and

homogeneity of the variance. The Kruskal-Wallis test was

performed when the data were not homogeneous. Otherwise,

one-way ANOVA with Duncan’s multiple range test for multiple

data groups was used to assess significant differences among groups.

Differences were considered significant at P < 0.05. If statistical

significance was detected, the data were further subjected to

orthogonal polynomial comparisons, which were used to assess

the significance of linear, quadratic, and cubic regression models to

fit the best model. If the cubic regression was found to be significant,

the quadratic and linear regressions were disregarded; otherwise,

the significance of the quadratic regression was examined; if the

quadratic regression was significant, the linear regression was not

considered; otherwise, the significance of the linear regression was

tested (Yossa and Verdegem, 2015). Origin 2021 (OriginLab, Inc.,

USA) was used to fit the regression model; correlation analyses

were performed using the R package (4.1.2) ggplot2, linkET,

dplyr, and FactoMineR. BioRender.com was used to create YL

production workflows.
3 Results

3.1 Growth performance and
feed utilization

Table 2 shows that the relationships between dietary YL levels

and shrimp growth performance (SR, WGR, and SGR), as well as

feed utilization (FR, FCR, PER, and PPV), were best explained using

a cubic model. Compared to that in the control group (Y0), the SR

of the shrimp in the Y1.5, Y4.5, Y6.0, and Y12.0 groups significantly

increased (P < 0.05). As the YL level in the feed increased, the WGR

and SGR initially increased and then decreased. A cubic regression

model based on the SGR indicated that the optimal YL level in

shrimp diets was 2.68% (R2 = 0.90658, Figure 2A), which accounted

for 10.54% of the dietary FM content. When the FCR increased, the

PER and PPV decreased when dietary YL inclusion exceeded 3.0%

(P < 0.05). Moreover, increases in dietary YL inclusion resulted in

increased FI and FCR (P < 0.05, Figures 2B, C), while PER showed a

decreasing trend (Figure 2D). The responses of all three variables to

the increase in dietary YL inclusion followed a cubic model

(R2 = 0.95365, 0.95067, and 0.94102, respectively). A growth-

promoting effect of YL inclusion in the range of 0-3.0% was
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observed. Furthermore, growth performance did not significantly

decrease when YL inclusion exceeded 6.0%, which is equivalent to

replacing over 23.6% of the FM, but increases in FI and FCR

were noted.
3.2 Whole-body and muscle proximate
composition analysis

Tables 3, 4 present the whole-body and muscle proximate

compositions at different YL levels. Cubic responses of whole-body

moisture, crude protein, and crude lipid, as well as muscle moisture and

phosphorus contents, were observed. Dietary YL inclusion at 6.0%,

9.0%, and 12.0% significantly increased whole-bodymoisture content (P

< 0.05), while no significant differences in whole-body ash and

phosphorus content were found among the groups (P > 0.05). The

Y12.0 group had significantly lower crude protein and crude lipid

contents in the whole body and greater muscle moisture content

compared to the Y0 group (P < 0.05). The shrimp muscle crude

protein content was significantly lower in the Y9.0 and Y12.0 groups

than in the Y0 and Y3.0 groups (P < 0.05). Muscle phosphorus content

was significantly lower in the Y3.0, Y6.0, and Y9.0 groups compared to

the Y0 and Y1.5 groups (P < 0.05). The inclusion of 0-12.0% YL had no

significant effect on the muscle crude lipid and ash contents (P > 0.05).
3.3 Muscle amino acid
composition analysis

Table 5 shows the muscle amino acid composition at different

dietary YL levels. Glycine and proline contents were cubically
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affected by the YL levels. Compared to the Y3.0 group, the muscle

glycine content significantly reduced in the Y9.0 group, while the

proline content significantly increased in the Y6.0, Y9.0, and Y12.0

groups (P < 0.05). The glycine content in the Y12.0 group was

significantly higher than in the Y1.5, Y4.5, and Y9.0 groups, and the

proline content in the Y9.0 group was significantly higher than in

the Y0, Y1.5, Y3.0, and Y4.5 groups (P < 0.05). Dietary inclusion of

0-12.0% YL had no significant effect on the other 14 amino acids

(P > 0.05).
3.4 Serum biochemical, immune, and
antioxidant parameter analysis

As depicted in Table 6, the serum TG and TC contents showed a

decreasing trend and were cubically affected by dietary YL levels.

The serum TG content was significantly lower in the Y4.5, Y9.0, and

Y12.0 groups compared to the Y0, Y1.5, and Y3.0 groups (P < 0.05).

There was a significant decrease in the serum TC content when

dietary YL level exceeded 3.0% compared to the Y0 group

(P < 0.05). However, no significant differences were noted among

the treatments for serum TP, ALB, GLU, BUN, TBIL, Cr contents,

or ALT and AST activities (P > 0.05).

Table 7 reveals that the serum T-AOC content exhibited a cubic

increasing trend with increasing levels of YL replacement. The

serum T-AOC content was significantly higher in the Y6.0, Y9.0,

and Y12.0 groups than in the Y0 group (P < 0.05). However, no

significant differences were observed among the groups for other

serum antioxidant and immune parameters, including the MDA

content and CAT, T-SOD, LZM, GSH-Px, AKP, ACP, and PPO

activities (P > 0.05).
TABLE 2 Effect of dietary Yarrowia lipolytica on growth performance and feed utilization.

Groups SR (%) WGR (%) SGR (%/d) HSI (%) FI (%/d) FCR PER PPV (%)

Y0 94.67 ± 0.84b 1955.21 ± 53.35ab 5.48 ± 0.04ab 5.11 ± 0.05 4.39 ± 0.09c 1.33 ± 0.05d 1.87 ± 0.04a 34.45 ± 0.87a

Y1.5 98.33 ± 0.80a 2004.69 ± 79.65ab 5.52 ± 0.06ab 5.05 ± 0.05 4.62 ± 0.33c 1.38 ± 0.04d 1.84 ± 0.05a 33.72 ± 1.00a

Y3.0 97.00 ± 1.00ab 2098.44 ± 19.28a 5.60 ± 0.02a 5.12 ± 0.07 4.44 ± 0.28c 1.35 ± 0.02d 1.88 ± 0.03a 34.50 ± 0.49a

Y4.5 97.67 ± 0.95a 1995.31 ± 56.24ab 5.51 ± 0.05ab 5.07 ± 0.04 5.02 ± 0.26bc 1.51 ± 0.04c 1.68 ± 0.05b 30.55 ± 0.93b

Y6.0 98.00 ± 0.73a 1937.50 ± 76.53ab 5.46 ± 0.06ab 5.05 ± 0.05 5.53 ± 0.26b 1.69 ± 0.06b 1.50 ± 0.06c 27.30 ± 0.98c

Y9.0 96.00 ± 0.89ab 1857.29 ± 22.92ab 5.40 ± 0.02ab 5.08 ± 0.05 5.76 ± 0.36b 1.75 ± 0.02b 1.44 ± 0.02c 25.94 ± 0.36c

Y12.0 98.00 ± 0.73a 1812.50 ± 16.87b 5.36 ± 0.01b 5.03 ± 0.06 6.67 ± 0.23a 1.91 ± 0.03a 1.33 ± 0.02d 23.59 ± 0.35d

P value 1 0.047 0.011 0.011 0.902 0.000 0.000 0.000 0.000

Regression 2

Model Cubic Cubic Cubic Cubic Cubic Cubic Cubic

P value 0.02949 0.00154 0.00118 < 0.001 < 0.001 < 0.001 < 0.001

Adj. R2 0.14572 0.27603 0.28651 0.55983 0.80179 0.77633 0.79293
f

SR, survival rate; WGR, weight gain rate; SGR, specific growth rate; HSI, hepatosomatic index; FI, feed intake; FCR, feed conversion ratio; PER, protein efficiency ratio; PPV, protein
productive value.
1The Kruskal-Wallis test was performed when the data were not homogeneous. Otherwise, one-way ANOVA was used to assess significant effects between groups. The values (mean ± S.E.M.,
n = 6) within a row sharing the same superscript letter or without a superscript letter are not significantly different from those of the other experimental treatments (P > 0.05); the specific P value
is presented in the table (same below).
2Orthogonal polynomial contrasts were used to assess the significance of linear, quadratic, and cubic regression models. Only the best-fit model is presented in the table; Adj. R2: adjusted R square
(same below).
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3.5 Hepatopancreatic antioxidant and
immune parameter analysis

Orthogonal polynomial contrast analysis, as presented in

Table 8, indicated that the hepatopancreatic MDA content
Frontiers in Marine Science 07
decreased, while the CAT and T-AOC activities increased, all

of which responded cubically to dietary YL levels. The MDA

content was significantly lower in the Y3.0, Y6.0, Y9.0, and

Y12.0 groups, while the T-AOC activity was significantly higher

in the Y4.5, Y9.0, and Y12.0 groups than in the Y0 group (P <
TABLE 3 Effect of dietary Yarrowia lipolytica on whole-body proximate composition (%).

Groups Moisture
Crude
protein

Crude lipid Ash Phosphorus

Y0 74.89 ± 0.15d 18.17 ± 0.18a 1.12 ± 0.02a 3.33 ± 0.04 0.28 ± 0.01

Y1.5 75.14 ± 0.16cd 18.09 ± 0.08a 1.12 ± 0.02a 3.28 ± 0.03 0.29 ± 0.00

Y3.0 75.20 ± 0.15bcd 18.12 ± 0.10a 1.08 ± 0.01a 3.28 ± 0.04 0.25 ± 0.01

Y4.5 75.35 ± 0.23bcd 17.95 ± 0.08ab 1.07 ± 0.02a 3.32 ± 0.04 0.28 ± 0.01

Y6.0 75.59 ± 0.12bc 17.92 ± 0.08ab 1.07 ± 0.01a 3.31 ± 0.06 0.25 ± 0.00

Y9.0 75.72 ± 0.20ab 17.73 ± 0.06ab 1.08 ± 0.01a 3.27 ± 0.02 0.25 ± 0.01

Y12.0 76.15 ± 0.14a 17.58 ± 0.03b 1.02 ± 0.01b 3.28 ± 0.03 0.26 ± 0.01

P value 0 0.002 0.005 0.867 0.067

Regression

Model Cubic Cubic Cubic

P value < 0.001 < 0.001 < 0.001

Adj. R2 0.47375 0.41529 0.31299
The Kruskal‒Wallis test was performed when the data were not homogeneous. Otherwise, one-way ANOVA was used to assess significant effects between groups. The values (mean ± S.E.M., n =
6) within a row sharing the same superscript letter or without a superscript letter are not significantly different from those of the other experimental treatments (P > 0.05); the specific P value is
presented in the table (same below).
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FIGURE 2

Regression analysis of SGR (A), FI (B), FCR (C), and PER (D) of shrimp-fed gradient levels of Yarrowia lipolytica for 56 days. SGR, specific growth rate;
FI, feed intake; FCR, feed conversion ratio; PER, protein efficiency ratio; YL, Yarrowia lipolytica.
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0.05). CAT activity was significantly elevated in the Y12.0 group

relative to the Y0, Y3.0, Y4.5, and Y6.0 groups (P < 0.05).

However, including dietary YL at levels ranging from 0% to

12.0% showed no significant effect on hepatopancreatic T-SOD,

LZM, GSH-Px, AKP, and ACP activities (P > 0.05).
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3.6 Digestive enzyme activity analysis

Digestive enzyme activities in the stomach, hepatopancreas, and

midgut, detailed in Table 9, showed that hepatopancreatic trypsin

activity exhibited a cubic increase with increasing dietary YL
TABLE 4 Effect of dietary Yarrowia lipolytica on muscle proximate composition (%).

Groups Moisture
Crude
protein

Crude lipid Ash Phosphorus

Y0 74.72 ± 0.10b 22.12 ± 0.23a 0.39 ± 0.02 1.88 ± 0.05 0.28 ± 0.02a

Y1.5 74.88 ± 0.15b 21.71 ± 0.22ab 0.42 ± 0.01 1.83 ± 0.05 0.29 ± 0.00a

Y3.0 75.03 ± 0.17b 22.22 ± 0.29a 0.39 ± 0.01 1.89 ± 0.02 0.25 ± 0.01c

Y4.5 74.99 ± 0.11b 21.65 ± 0.17ab 0.38 ± 0.02 1.89 ± 0.03 0.28 ± 0.01ab

Y6.0 75.12 ± 0.07b 21.60 ± 0.20ab 0.38 ± 0.01 1.94 ± 0.05 0.25 ± 0.01c

Y9.0 75.15 ± 0.18b 21.22 ± 0.16bc 0.38 ± 0.01 1.85 ± 0.04 0.25 ± 0.01bc

Y12.0 75.79 ± 0.15a 20.93 ± 0.24c 0.38 ± 0.01 1.88 ± 0.03 0.26 ± 0.01abc

P value 0 0.002 0.087 0.637 0.005

Regression

Model Cubic Cubic

P value < 0.001 0.02845

Adj. R2 0.46252 0.14746
The Kruskal‒Wallis test was performed when the data were not homogeneous. Otherwise, one-way ANOVA was used to assess significant effects between groups. The values (mean ± S.E.M., n =
6) within a row sharing the same superscript letter or without a superscript letter are not significantly different from those of the other experimental treatments (P > 0.05); the specific P value is
presented in the table (same below).
TABLE 5 Effect of dietary Yarrowia lipolytica on muscle amino acid content (g/100 g).

Groups Lysine Arginine Methionine Threonine Valine
Iso-
leucine

Leucine Phenylalanine Histidine EAA

Y0
6.31
± 0.09

6.90
± 0.13

1.75 ± 0.08 2.81 ± 0.04 3.15 ± 0.05 2.99 ± 0.04 5.55
± 0.08

3.18 ± 0.05 1.57 ± 0.04 34.19
± 0.52

Y1.5
6.29
± 0.04

6.71
± 0.15

1.80 ± 0.06 2.77 ± 0.03 3.11 ± 0.04 2.94 ± 0.04 5.53
± 0.05

3.07 ± 0.02 1.55 ± 0.02 33.78
± 0.33

Y3.0
6.35
± 0.06

6.87
± 0.13

1.60 ± 0.09 2.79 ± 0.02 3.16 ± 0.04 3.01 ± 0.04 5.60
± 0.04

3.12 ± 0.05 1.51 ± 0.01 34.01
± 0.20

Y4.5
6.26
± 0.09

6.56
± 0.19

1.68 ± 0.10 2.76 ± 0.02 3.11 ± 0.04 2.97 ± 0.03 5.58
± 0.06

3.13 ± 0.04 1.53 ± 0.02 33.59
± 0.45

Y6.0
6.26
± 0.09

6.75
± 0.09

1.69 ± 0.03 2.83 ± 0.04 3.18 ± 0.05 3.00 ± 0.04 5.58
± 0.06

3.04 ± 0.02 1.54 ± 0.02 33.86
± 0.36

Y9.0
6.35
± 0.07

6.78
± 0.07

1.80 ± 0.05 2.79 ± 0.03 3.18 ± 0.02 3.04 ± 0.01 5.58
± 0.04

3.11 ± 0.03 1.53 ± 0.03 34.18
± 0.26

Y12.0
6.38
± 0.03

6.88
± 0.30

1.78 ± 0.05 2.83 ± 0.03 3.20 ± 0.05 3.06 ± 0.04 5.67
± 0.03

3.12 ± 0.04 1.54 ± 0.03 34.47
± 0.21

P value 0.841 0.476 0.401 0.576 0.645 0.261 0.737 0.312 0.735 0.646

Regression

Model

P value

Adj. R2

(Continued)
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inclusion. Specifically, trypsin activity was significantly higher in the

Y3.0, Y9.0, and Y12.0 groups than in the Y0 group (P < 0.05).

However, no significant differences were observed in stomach and

midgut trypsin, lipase, and amylase activities or hepatopancreatic

lipase and amylase activities among the different groups (P > 0.05).
3.7 Intestine and hepatopancreas
histological analysis

The histological structures of midgut tissue from the Y0, Y3.0,

and Y12.0 groups, displayed in Figure 3, showed no significant

differences or damage to the intestinal mucosa. SEM and TEM

revealed no significant differences or damage in the surface

morphology of intestinal microvilli among the groups, with the

intestinal microvilli neatly arranged and closely packed. A statistical

analysis of intestinal TEMmicrovillus height revealed no significant

difference between the Y0 (46.38 ± 2.55 mm), Y3.0 (45.66 ± 3.37

mm), and Y12.0 (42.61 ± 2.69 mm) groups, demonstrating that

dietary YL inclusion at levels of 0-12.0% did not significantly affect

shrimp intestinal microvillus height (P > 0.05).

The histological structure of the shrimp hepatopancreas, shown

in Figure 4, indicated that all groups had visible and neatly

organized structures, suggesting that dietary YL inclusion at levels

of 0-12.0% did not led to significant damage to the histological

structure of the shrimp hepatopancreas.
Frontiers in Marine Science 09
3.8 Apparent digestibility
coefficient analysis

The ADC for the test ingredient Yarrowia lipolytica, as

displayed in Supplementary Tables S2–S4, showed that, compared

to those in the Y0 group, there were no significant differences in the

ADC of dry matter, crude protein, crude lipid, phosphorus, and

amino acids in the YADC group (P > 0.05), although a decreasing

trend was observed.
3.9 Principal component analysis and
multidimensional correlation analysis

The PCA biplot (Figure 5) clearly differentiated the Y12.0

group from the Y0, Y1.5, Y3.0, and Y4.5 groups. The first

principal component (PCA1) accounted for 39.67% of the

dataset’s variance and was influenced predominantly by FCR,

FI, PER, and PPV. The second principal component (PCA2),

which explained 11.02% of the variance, primarily reflected

variations in the whole-body ash content of the shrimp. The

PCA results revealed a positive correlation between FI and FCR,

and between PER and PPV, with these two sets of variables

showing negative correlations with each other. This pattern

al igned with the findings from the mult idimensional

correlation analysis.
TABLE 5 Continued

Groups Aspartic acid Serine
Glutamic
acid

Glycine Alanine Tyrosine Proline NEAA TAA

Regression

Y0
7.98 ± 0.10 2.80 ± 0.04 13.15 ± 0.20 7.27

± 0.13abc
4.89 ± 0.14 2.57

± 0.04
5.62 ± 0.11bc 44.28

± 0.59
78.47
± 1.10

Y1.5
7.90 ± 0.05 2.77 ± 0.01 13.23 ± 0.08 7.04 ± 0.18bc 4.71 ± 0.10 2.55

± 0.02
5.55 ± 0.09bc 43.75

± 0.27
77.52
± 0.60

Y3.0
8.03 ± 0.05 2.80 ± 0.02 13.21 ± 0.10 7.56 ± 0.19ab 4.97 ± 0.09 2.55

± 0.02
5.28 ± 0.18c 44.39

± 0.22
78.4 ± 0.41

Y4.5
7.91 ± 0.13 2.77 ± 0.05 13.30 ± 0.13 7.15 ± 0.18bc 5.07 ± 0.08 2.55

± 0.03
5.60 ± 0.07bc 44.37

± 0.37
77.96
± 0.78

Y6.0
7.89 ± 0.08 2.80 ± 0.04 13.26 ± 0.15 7.20

± 0.17abc
4.85 ± 0.08 2.54

± 0.02
5.78 ± 0.10ab 44.33

± 0.35
78.19
± 0.64

Y9.0
7.99 ± 0.07 2.74 ± 0.07 13.27 ± 0.23

6.80 ± 0.14c
4.83 ± 0.12 2.58

± 0.01
6.04 ± 0.09a 44.23

± 0.49
78.41
± 0.72

Y12.0
8.09 ± 0.07 2.78 ± 0.06 13.30 ± 0.11 7.71 ± 0.19a 4.95 ± 0.07 2.58

± 0.03
5.87 ± 0.18ab 45.28

± 0.30
79.75
± 0.47

P value 0.553 0.962 0.993 0.011 0.239 0.932 0.004 0.257 0.48

Regression

Model Cubic Cubic

P value 0.0172 < 0.001

Adj. R2 0.17156 0.30494
fr
EAA, essential amino acids; NEAA, nonessential amino acids; TAA, total amino acids.
The Kruskal‒Wallis test was performed when the data were not homogeneous. Otherwise, one-way ANOVA was used to assess significant effects between groups. The values (mean ± S.E.M., n =
6) within a row sharing the same superscript letter or without a superscript letter are not significantly different from those of the other experimental treatments (P > 0.05); the specific P value is
presented in the table (same below).
ontiersin.org

https://doi.org/10.3389/fmars.2024.1370371
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhang et al. 10.3389/fmars.2024.1370371
TABLE 7 Effects of dietary Yarrowia lipolytica on serum antioxidant and immune parameters.

Groups
MDA
(nmol/
mL)

CAT
(U/mL)

T-SOD
(mmol/
L)

T-AOC
(mmol/
L)

LZM
(U/mL)

GSH-Px
(U/mL)

AKP
(U/L)

ACP
(U/L)

PPO
(U/mL)

Y0
13.18
± 1.10

12.44
± 0.54

12.60
± 0.58

1.11
± 0.06c

76.38
± 6.32

139.30
± 9.51

4.35 ± 0.27
68.82
± 3.75

6.35 ± 0.23

Y1.5
14.33
± 1.22

13.85
± 1.01

14.53
± 0.80

1.15
± 0.03bc

67.47
± 2.81

148.37
± 7.47

3.58 ± 0.25
62.97
± 3.72

6.10 ± 0.06

Y3.0
14.03
± 0.86

15.32
± 0.75

13.71
± 0.94

1.22
± 0.07abc

64.13
± 4.52

142.87
± 7.57

3.60 ± 0.33
75.03
± 2.79

6.03 ± 0.07

Y4.5
13.31
± 0.97

14.34
± 0.52

14.70
± 0.34

1.24
± 0.04abc

68.22
± 2.45

138.73
± 1.86

3.85 ± 0.17
81.77
± 5.96

6.40 ± 0.22

Y6.0
12.51
± 0.70

14.66
± 0.96

14.15
± 0.44

1.34
± 0.10ab

62.60
± 2.89

153.43
± 6.45

3.87 ± 0.37
65.23
± 2.12

6.40 ± 0.16

Y9.0
11.92
± 0.40

14.87
± 0.87

14.78
± 0.63

1.43
± 0.06a

65.67
± 3.05

137.68
± 6.07

4.52 ± 0.33
70.05
± 2.87

6.52 ± 0.23

Y12.0
11.95
± 0.43

13.62
± 0.72

15.04
± 0.45

1.41
± 0.08a

62.78
± 1.29

148.10
± 6.51

4.08 ± 0.22
69.62
± 6.06

6.37 ± 0.19

P value 0.445 0.215 0.134 0.009 0.35 0.587 0.181 0.058 0.472

(Continued)
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TABLE 6 Effects of dietary Yarrowia lipolytica on serum biochemical parameters.

Groups
TP
(g/L)

ALB
(g/L)

GLU
(mmol/
L)

BUN
(mmol/
L)

TG
(mmol/
L)

TC
(mmol/
L)

TBIL
(mmol/
L)

Cr
(mmol/
L)

ALT
(U/L)

AST
(U/L)

Y0
53.93
± 2.66

30.46
± 1.38

2.23 ± 0.28 1.34 ± 0.09
2.87
± 0.11a

3.82
± 0.19a

5.59 ± 0.38
249.25
± 15.29

3.54 ± 0.17 3.55 ± 0.16

Y1.5
52.96
± 1.72

30.48
± 0.59

2.19 ± 0.22 1.34 ± 0.11
2.85
± 0.10a

3.76
± 0.07a

5.47 ± 0.05
266.22
± 22.59

3.52 ± 0.19 3.44 ± 0.13

Y3.0
55.24
± 2.53

33.51
± 1.81

2.77 ± 0.26 1.33 ± 0.11
2.85
± 0.12a

3.76
± 0.07a

5.18 ± 0.13
232.68
± 5.82

3.30 ± 0.11 3.51 ± 0.08

Y4.5
50.31
± 0.64

33.10
± 1.83

2.35 ± 0.11 1.27 ± 0.09
2.54
± 0.04b

3.33
± 0.07b

5.45 ± 0.10
250.72
± 22.79

3.50 ± 0.28 3.47 ± 0.24

Y6.0
52.16
± 2.16

32.00
± 1.68

2.23 ± 0.13 1.22 ± 0.04
2.67
± 0.08ab

3.04
± 0.16b

4.99 ± 0.12
223.35
± 7.65

3.63 ± 0.16 3.61 ± 0.11

Y9.0
51.94
± 2.61

31.78
± 2.33

2.10 ± 0.21 1.32 ± 0.12
2.54
± 0.08b

3.11
± 0.12b

5.23 ± 0.07
248.50
± 8.69

3.58 ± 0.06 3.27 ± 0.08

Y12.0
53.85
± 2.18

32.21
± 0.66

2.10 ± 0.15 1.32 ± 0.07
2.45
± 0.08b

3.11
± 0.16b

5.14 ± 0.23
247.08
± 16.40

3.53 ± 0.12 3.48 ± 0.15

P value 0.766 0.781 0.399 0.962 0.004 0.000 0.068 0.742 0.760 0.703

Regression

Model Cubic Cubic

P value 0.00149 < 0.001

Adj. R2 0.27741 0.4522
TP, total protein; ALB, albumin; GLU, glucose; BUN, blood urea nitrogen; TG, triglyceride; TC, total cholesterol; TBIL, total bilirubin; Cr, creatinine; ALT, alanine transaminase; AST, aspartate
aminotransferase.
The Kruskal‒Wallis test was performed when the data were not homogeneous. Otherwise, one-way ANOVA was used to assess significant effects between groups. The values (mean ± S.E.M., n =
6) within a row sharing the same superscript letter or without a superscript letter are not significantly different from those of the other experimental treatments (P > 0.05); the specific P value is
presented in the table (same below).
g

https://doi.org/10.3389/fmars.2024.1370371
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhang et al. 10.3389/fmars.2024.1370371
As illustrated in Figure 6, the multidimensional correlation

analysis revealed that the SGR was significantly negatively

correlated with FI, FCR, whole-body moisture, and muscle

moisture content (P < 0.05). Conversely, the SGR was significantly

positively correlated with the PER, PPV, whole-body crude lipid, and

both whole-body and muscle crude protein contents (P < 0.05).

Additionally, the FI and FCR were negatively correlated with whole-

body crude protein, crude lipid, and muscle crude protein contents,

while the PER and PPV exhibited significant positive correlations

with these parameters (P < 0.05). FI and FCR were also positively

correlated with whole-body and muscle moisture contents, whereas
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PER and PPV were negatively correlated with these moisture

contents (P < 0.05). Significant negative correlations were observed

between whole-body and muscle moisture contents, whole-body

crude protein and crude lipid contents, while muscle phosphorus

content was positively correlated with whole-body ash and

phosphorus contents (P < 0.05). Moreover, physiological and

biochemical parameters were significantly correlated with whole-

body crude lipid content (Mantel’s r ≥ 0.2, P < 0.01), and digestive

enzyme activities were significantly related to FCR, PER, and PPV

(Mantel’s r < 0.2, P < 0.01), as well as with whole-body moisture and

crude protein contents (Mantel’s r < 0.2, P < 0.05).
TABLE 7 Continued

Groups
MDA
(nmol/
mL)

CAT
(U/mL)

T-SOD
(mmol/
L)

T-AOC
(mmol/
L)

LZM
(U/mL)

GSH-Px
(U/mL)

AKP
(U/L)

ACP
(U/L)

PPO
(U/mL)

Regression

Model Cubic

P value < 0.001

Adj. R2 0.31665
frontiersin.or
MDA, malondialdehyde; CAT, catalase; T-SOD, total superoxide dismutase; T-AOC, total antioxidant capacity; LZM, lysozyme; GSH-Px, glutathione peroxidase; AKP, alkaline phosphatase;
ACP, acid phosphatase; PPO, polyphenol oxidase.
The Kruskal‒Wallis test was performed when the data were not homogeneous. Otherwise, one-way ANOVA was used to assess significant effects between groups. The values (mean ± S.E.M., n =
6) within a row sharing the same superscript letter or without a superscript letter are not significantly different from those of the other experimental treatments (P > 0.05); the specific P value is
presented in the table (same below).
TABLE 8 Effects of dietary Yarrowia lipolytica on hepatopancreatic antioxidant and immune parameters.

Groups
MDA
(nmol/
mgprot)

CAT
(U/
mgprot)

T-SOD
(U/
mgprot)

T-AOC
(mmol/
mgprot)

LZM
(U/
mgprot)

GSH-Px
(U/
mgprot)

AKP
(U/
gprot)

ACP
(U/gprot)

Y0
6.28 ± 0.33a 0.25 ± 0.03b 0.41 ± 0.04 0.15 ± 0.01b 13.08 ± 0.60 24.74 ± 1.59

1240.50
± 51.83

1393.50
± 117.52

Y1.5
6.08
± 0.42ab

0.28
± 0.02ab

0.43 ± 0.04
0.23
± 0.01ab

13.93 ± 0.62 24.40 ± 0.90
1204.83
± 58.40

1317.00
± 127.27

Y3.0
5.32
± 0.27bcd

0.25 ± 0.02b 0.44 ± 0.02
0.22
± 0.01ab

14.12 ± 0.32 26.82 ± 1.24
1325.33
± 90.76

1389.67
± 117.25

Y4.5
5.82
± 0.21abc

0.25 ± 0.01b 0.41 ± 0.01 0.27 ± 0.01a 14.07 ± 0.47 24.96 ± 0.56
1240.67
± 54.53

1551.17
± 130.54

Y6.0
5.02
± 0.22cd

0.26 ± 0.02b 0.46 ± 0.02
0.25
± 0.02ab

12.65 ± 0.50 24.54 ± 1.49
1207.67
± 41.85

1566.50
± 103.64

Y9.0
5.00
± 0.18cd

0.31
± 0.02ab

0.45 ± 0.01 0.27 ± 0.01a 13.93 ± 0.66 26.95 ± 1.44
1304.00
± 62.73

1455.00 ± 77.45

Y12.0
4.95 ± 0.16d 0.34 ± 0.02a 0.48 ± 0.03 0.30 ± 0.02a 13.62 ± 0.94 26.69 ± 2.15

1272.67
± 56.19

1665.17 ± 82.35

P value 0.002 0.016 0.524 0 0.554 0.732 0.75 0.629

Regression

Model Cubic Cubic Cubic

P value < 0.001 0.00459 < 0.001

Adj. R2 0.29775 0.23076 0.60881
MDA, malondialdehyde; CAT, catalase; T-SOD, total superoxide dismutase; T-AOC, total antioxidant capacity; LZM, lysozyme; GSH-Px, glutathione peroxidase; AKP, alkaline phosphatase;
ACP, acid phosphatase.
The Kruskal‒Wallis test was performed when the data were not homogeneous. Otherwise, one-way ANOVA was used to assess significant effects between groups. The values (mean ± S.E.M., n =
6) within a row sharing the same superscript letter or without a superscript letter are not significantly different from those of the other experimental treatments (P > 0.05); the specific P value is
presented in the table (same below).
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4 Discussion

To evaluate the potential of Yarrowia lipolytica (YL) as a

protein source in shrimp diets, this study tested various YL levels

(0-12.0%) as alternatives to fishmeal (FM) protein. The results

indicated that optimal YL inclusion improved shrimp growth

performance, lipid metabolism, and antioxidant capacity. This

section discusses the effects of dietary YL on growth, metabolism,

and immune function.
4.1 Effect of dietary YL on growth
performance, feed efficiency, and the ADC

Optimal YL levels promoted growth performance, echoing

findings in turkeys (Meleagris gallopavo) (Czech et al., 2020),

piglets (Sus scrofa) (Czech et al., 2016, 2018), Atlantic salmon

(Berge et al., 2013), Nile tilapia (Neuls et al., 2021), and

Largemouth Bass (Micropterus salmoides) (Fei et al., 2022). The

nutrient-rich composition of yeast, which contains b-glucan,
mannan oligosaccharides (MOS), amino acids, and nucleotides,

likely contributed to this enhancement in growth (Gamboa-

Delgado and Márquez-Reyes, 2018; Jin et al., 2018; Patsios et al.,

2020). However, higher YL inclusions above 6.0% resulted in

decreased feed utilization due to the indigestible nature of some
Frontiers in Marine Science 12
yeast nutrients, leading to a decrease in the protein efficiency ratio

(PER) (Patsios et al., 2020). A cubic regression model pinpointed

2.68% as the optimal YL substitution level, which is equivalent to

replacing 10.54% of the FM, aligning with Hertrampf and Piedad-

Pascual’s (Hertrampf and Piedad-Pascual, 2003) suggested range

for yeast inclusion in shrimp diets.

In addition, bacterial proteins produced using C1 gases (e.g.

FeedKind® and RichMore) have been evaluated in aquatic animals.

These studies illustrate their potential in replacing certain levels of

FM in various species’ diets without negatively impacting growth

performance (Biswas et al., 2020; Xu et al., 2021; Zhang et al., 2022).

It is worth noting that dietary high RichMore levels can have

adverse effects on their growth and immune function in Pacific

white shrimp (Yao et al., 2022). This may be attributed to the

insufficient supply of essential amino acids, fatty acids, and other

functional substances, as well as the negative impact of elevated

RichMore levels on protein synthesis and nutrient utilization (Jiang

et al., 2021). Similar results were found in this study, elevated YL

levels were found to reduce protein and lipid deposition in shrimp,

especially at a 12.0% substitution level. Principal component

analysis (PCA) revealed that the Y12.0 group was distinct from

the other groups in terms of growth performance, feed utilization,

and nutritional composition.

Moreover, YL did not adversely impact the activity of

digestive enzymes or digestive tissue morphology. Increased
TABLE 9 Effects of dietary Yarrowia lipolytica on digestive enzyme activities in the stomach, hepatopancreas, and midgut.

Groups

Stomach Hepatopancreas Midgut

Trypsin
(U/
mgprot)

Lipase
(U/
gprot)

Amylase
(U/
mgprot)

Trypsin
(U/
mgprot)

Lipase
(U/
gprot)

Amylase
(U/
mgprot)

Trypsin
(U/
mgprot)

Lipase
(U/
gprot)

Amylase
(U/
mgprot)

Y0
0.82 ± 0.03 4.87 ± 0.33 36.37 ± 2.67

226.33
± 5.58c

1.23 ± 0.14 43.08 ± 3.93 12.08 ± 0.54 2.82 ± 0.17 6.25 ± 0.61

Y1.5
0.84 ± 0.03 5.37 ± 0.36 36.97 ± 2.09

255.50
± 9.09abc

1.41 ± 0.11 38.05 ± 4.14 12.87 ± 0.72 2.55 ± 0.14 6.90 ± 0.79

Y3.0
0.73 ± 0.03 4.52 ± 0.44 35.30 ± 2.91

262.17
± 10.45ab

1.31 ± 0.12 38.33 ± 2.09 12.52 ± 0.70 2.86 ± 0.14 6.54 ± 0.48

Y4.5
0.82 ± 0.02 5.20 ± 0.33 32.47 ± 2.81

254.67
± 8.36abc

1.28 ± 0.14 39.72 ± 4.63 13.20 ± 0.75 2.80 ± 0.09 7.46 ± 0.71

Y6.0
0.93 ± 0.02 4.90 ± 0.41 34.67 ± 2.63

247.50
± 11.82bc

1.19 ± 0.09 45.55 ± 4.02 14.10 ± 0.72 2.55 ± 0.14 7.65 ± 0.57

Y9.0
0.83 ± 003 4.68 ± 0.34 35.22 ± 2.35

280.17
± 5.76ab

1.36 ± 0.09 38.67 ± 3.80 14.37 ± 0.46 2.92 ± 0.15 7.37 ± 0.46

Y12.0
0.86 ± 0.03 5.00 ± 0.48 34.30 ± 2.19

285.17
± 20.01a

1.20 ± 0.11 48.05 ± 4.82 14.38 ± 0.50 3.04 ± 0.16 7.58 ± 0.73

P value 0.999 0.764 0.915 0.013 0.795 0.45 0.073 0.165 0.611

Regression

Model Cubic

P value 0.00681

Adj. R2 0.21369
The Kruskal‒Wallis test was performed when the data were not homogeneous. Otherwise, one-way ANOVA was used to assess significant effects between groups. The values (mean ± S.E.M., n =
6) within a row sharing the same superscript letter or without a superscript letter are not significantly different from those of the other experimental treatments (P > 0.05); the specific P value is
presented in the table (same below).
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hepatopancreatic trypsin activity was noted, potentially leading

to enhanced intestinal trypsin activity, possibly due to yeast

organic acids reducing digestive tract pH and thus boosting

proteolytic enzyme activity (Lückstädt, 2008; Zhao et al., 2017).

Additionally, YL maintains the integrity of the intestinal

mucosa and hepat ic s tructure , l ike ly at tr ibutable to

nucleotides and oligosaccharides in yeast facilitating the

growth of intestinal cells and the synthesis of cell membranes

(Uauy, 1994; Torrecillas et al., 2011a; Torrecillas et al., 2011b,

2013, 2014; Hossain et al., 2020). However, the limited

digestibility of YL poses a challenge. The yeast cell wall

restricts enzyme access to cellular contents, thereby limiting

nutrient utilization (Yamada and Sgarbieri, 2005; Overland and

Skrede, 2017). Disrupting the yeast cell wall, as shown to

increase protein digestibility in rainbow trout (Rumsey et al.,

1991), improving the ADC in shrimp diets (Zhao et al., 2017),
Frontiers in Marine Science 13
and other processing methods (Hansen et al., 2021), are

essential for enhancing the bioavailability of YL.
4.2 Effect of dietary YL on
metabolism-related parameters

The inclusion of high dietary levels of YL improved lipid

metabolism in shrimp, as evidenced by the significant reductions

in serum triglyceride (TG) and total cholesterol (TC) contents.

The serum biochemical parameters, known indicators of

nutritional status and physiological conditions (Parrino et al.,

2018; Burgos-Aceves et al., 2019), markedly decreased with

increasing YL. Comparable effects on lipid profiles in turkeys

and piglets were observed with 3.0% to 6.0% YL inclusion,

decreasing TG, TC, and LDL-C levels. The production of bile
FIGURE 3

Intestinal histomorphology of shrimp fed Y0, Y3.0, and Y12.0 diets for 56 days. Upper panel: representative histomorphology of transverse sections
of the midgut stained with hematoxylin and eosin (H & E). Middle panel: representative midgut ultrastructure determined using a scanning electron
microscope (SEM). Lower panel: representative midgut ultrastructure determined using a transmission electron microscope (TEM).
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salt hydrolase (BSH), which catalyzes bile salt hydrolysis, increases the

excretion of endogenous cholesterol, thus regulating serum and

hepatic cholesterol levels (Reis et al., 2017). Multivariate correlation

analysis revealed a significant association between serum physiological

and biochemical indices and whole-body crude lipid content,

indicating enhanced blood lipid metabolism due to dietary YL.
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4.3 Effect of dietary YL on
nonspecific immunity

Dietary YL inclusion positively impacted nonspecific

immunity by enhancing antioxidant capacity. Antioxidant

enzymes such as catalase (CAT) and superoxide dismutase

(SOD) play crucial roles in balancing oxidative and antioxidant

status by eliminating excess reactive oxygen species (ROS) (Gao

et al., 2014; Xu et al., 2018). Malondialdehyde (MDA), an

indicator of lipid peroxidation, was used to assess oxidative

damage (Del Rio et al., 2005). Dietary YL inclusion increased

the total antioxidant capacity (T-AOC) in the serum, liver, and

pancreas while reducing the MDA content. Dietary YL inclusion

has been shown to promote antioxidant capacity and increase

immune-related gene expression in Largemouth bass (Fei et al.,

2022), Pacific red snapper (Lutjanus peru) (Alamillo et al., 2017;

Reyes-Becerril et al., 2021), and shrimp (Licona-Jain et al., 2020;

Liu et al., 2022). b-glucan in YL enhances the organism’s

antioxidant capacity by scavenging free radicals (Kofuji et al., 2012;

Nakashima et al., 2018), and MOS in YL binds pathogens in the

gastrointestinal tract, restricting colonization, enhancing intestinal

mucosa integrity, stimulating the body’s immune response, and

contributing to the antioxidant process (Torrecillas et al., 2014;

Spring et al., 2015). In addition, yeast is rich in components such

as peptides, organic acids, and vitamins, all of which have been shown

to enhance the antioxidative capacity (Suchner et al., 2000; Ringø

et al., 2012). Therefore, dietary YL inclusion effectively improves

antioxidant performance in shrimp by increasing their

antioxidant capacity.
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arrows on the coordinate axes shows the contribution of the original data to the principal component. The direction represents the correlation
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FIGURE 4

Hepatopancreas histomorphology of shrimp fed the Y0, Y3.0, and
Y12.0 diets. Upper and middle panels: representative
histomorphology of transverse sections of the hepatopancreas
stained with hematoxylin and eosin (H & E). A: stellate lumen;
B: basement membrane; C: hepatic microsomes; B cells: secretory
cells; R cells: resorptive cells; F cells: fibroblasts. Lower panel:
representative hepatopancreas ultrastructure determined using a
transmission electron microscope (TEM).
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5 Conclusions

This study focused on assessing the efficacy of Yarrowia

lipolytica (YL) as a protein source in shrimp feed through

feeding trials and biochemical analyses. The following

conclusions were drawn:
Fron
1. In this experiment, 22% FM content was incorporated in

the control diet. The optimal inclusion level of YL for

Pacific white shrimp was determined to be 2.68% based

on growth performance, which accounted for 10.54% of

the dietary FM content. A high YL content resulted in

reduced feed utilization, as indicated by the increased

feed conversion ratio and feed intake with a YL level

above 6.0%, accounting for 23.6% of the dietary

FM content.

2. This study highlighted the beneficial role of dietary YL in

lipid metabolism. Specifically, the inclusion of YL in shrimp

diets led to a significant reduction in serum triglyceride and

total cholesterol levels.

3. The inclusion of YL in shrimp diets was associated with

improved antioxidant capacity. This was evidenced by

the increased total antioxidant capacity and reduced

malondialdehyde content.
tiers in Marine Science 15
In conclusion, Yarrowia lipolytica has emerged as a promising

alternative protein source for shrimp feed, offering benefits in terms

of growth performance, digestive health, lipid metabolism, and

antioxidant capacity.
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