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Nitrate fate in coastal
unconfined aquifers influenced
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1Key Laboratory of Coastal Disaster and Protection (Hohai University), Ministry of Education,
Nanjing, China, 2State Key Laboratory of Hydrology, Water Resources and Hydraulic Engineering,
Hohai University, Nanjing, China
This study examined the influence of preferential flow on pore water flows and

marine nitrogen transport reaction in variable saturation and variable density

coastal aquifers. The 2-D unconfined aquifer model established was based on

the software COMSOL by coupling the dynamic and chemical processes

together. The results showed that preferential flow affects groundwater flow

and salinity distribution, leading to a more complicated mixing process. The

preferential flow resulted in an increase in mixing zone area and the upper saline

plume area of 10.33 and 2.62m2, respectively, a decrease in saltwater wedge area

of 7.22 m2, and an increase in nitrate (NO3
-) removal efficiency from 7.9% to

8.97%. The NO3
- removal efficiency increases progressively with the depth (h)

and quantity (n) of preferential flows; however, it decreases after a certain

quantity. Further quantitative analysis revealed an increase in the intensity of

nitrification and dissolved oxygen inflow flux with preferential flow depth and

quantity increase. This phenomenon usually occurs on coasts where biological

caves are abundant. The results also offer significant implications for designing

engineering measures to mitigate saltwater intrusion and are significant to

prevent groundwater quality deterioration in coastal zones.
KEYWORDS

preferential flow, marine nitrogen, nitrification, denitrification, removal efficiency
1 Introduction

Groundwater is an important freshwater resource for industrial and agricultural

purposes in coastal areas (Lu and Werner, 2013; Zhang et al., 2019). Nitrate pollution

has deteriorated the quality of groundwater around the world due to an increase in human

population and urban development (Anwar et al., 2014; Sun et al., 2021; Gao et al., 2024).

Saltwater intrusion (SWI), as a global problem, seriously threatens freshwater resources and

coastal productivity (Chang et al., 2019, 2020; Zheng et al., 2020, 2021, 2022; Chang et al.,

2023, 2024). The NO3
- concentration in drinking water derived from groundwater exceeds

the standard permissible limit of 50 mg L-1 set by the World Health Organization (WHO)

in most parts of the world (Kringel et al., 2016; Radfard et al., 2018). In China,
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approximately 34.1% of groundwater resources are contaminated

with NO3
- (Zhang et al., 1996; Lu et al., 2019).

Groundwater flow and solute transport in aquifers under the

tidal influence are very complex (Figure 1) (Robinson et al., 2007a;

Fang et al., 2022a, b, 2023). Periodic tidal fluctuations can lead to

the formation of two coexisting saltwater plumes in aquifers: (i) a

saltwater wedge (SW) due to density-driven saltwater recirculation

and (ii) an upper saline plume (USP) due to tide-driven saltwater

recirculation (Robinson et al., 2007b; Kuan et al., 2019). Land-

derived groundwater is generally transported between the SW and

USP and discharged into the ocean near the low tide mark, which is

an area where saltwater and freshwater mix between two different

saltwater plumes. Several surveys have also reported a large number

of macro-pores (such as crab burrows and invertebrate nests) in

aquifers (Xin et al., 2009; Guimond et al., 2020; Xu et al., 2021; Pan

et al., 2022; Xiao et al., 2022) and found that macro-pores are

mainly concentrated in the upper supratidal zone and intertidal

zone (Fanjul et al., 2008). The presence of crab holes and macro-

pores increases the overall surface infiltration rate to a range of 0.1

to 1 m d-1, which is one to two orders of magnitude higher than the

matrix hydraulic conductivity (Hughes, 1998). They are well

recognized to act as preferential flow paths and enhance the

infiltration rate of surface water (Xiao et al., 2019), impact the

distribution of salinity (Williams et al., 2014; Edith et al., 2015;

Enrique et al., 2018), and change solute transport by increasing the

connectivity of otherwise impermeable muddy soils (Xiao et al.,

2019; Guimond et al., 2020), thus affecting biogeochemical

processes in salt marshes (Xu et al., 2021; Pan et al., 2022; Xiao

et al., 2022). Xin et al. (2009) studied a 3-D model simulated in the

marsh with a two-layer soil configuration at the Chongming

Dongtan wetland. Their results suggested that preferential flow

can act as drains for the surrounding soil during the falling tide,
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which increases water exchange between marsh soils and tidal

creeks. Xiao et al. (2019) constructed a model, and the results of

their analysis suggested that preferential flow can promote soil

permeability and facilitate solute transport in salt marshes.

Additionally, preferential flow increases the connectivity between

the soil surface and groundwater (Xu et al., 2021). It also intensifies

the heterogeneity of the aquifer, leading to greater hydraulic

conductivity (Kreyns et al., 2020). Although Gao et al. (2023)

demonstrated that large pores increase USP and reduce SW, the

mechanism is unclear. All combined, these studies confirmed that

preferential flow or tidal-induced complex pore water flow and

preferential flow have significant influences on solute transport.

However, the effects of preferential flow distributed in the tidal zone

on groundwater flow and solute transport in coastal unconfined

aquifers under tidal conditions are not clear.

Saltwater transports a large quantity of dissolved oxygen (DO),

NO3
-, ammonium ion (NH4

+), and dissolved organic carbon (DOC)

into the aquifer. Several chemical reactions such as DOC degradation,

aerobic respiration, nitrification (NH4
+ transformation to NO3

-), and

denitrification (NO3
- transformation to N2) can take place (Meile

et al., 2009; Sun et al., 2019). These processes are affected by tidal

force, which can change the recycling rate and chemical composition

of saltwater (Rocha, 2013; Zheng et al., 2020; Gao et al., 2022). Shuai

et al. (2017) established a 2-D estuarine subsurface flow model based

on the numerical model, assuming that DO, NO3
-, NH4

+, and DOC

primarily originate from rivers. Nitrification occurs in the shallow

layers, while denitrification occurs in the deeper anaerobic layers.

These reactions, which are both controlled by redox conditions and

DOC concentrations, play an important role in determining NO3
- in

the aquifer. Preferential flow can affect nitrification and

denitrification reactions by directly or indirectly changing soil

properties (Pan et al., 2022). These reactions are also influenced by
A

B

FIGURE 1

(A) Conceptual diagram of the seawater level, groundwater flow, and salinity distribution in a near-shore aquifer under tide action. Still water level (SWL),
high tide level (HTL), low tide level (LTL), the black area is the preferential flow, the blue arrows indicate the direction of preferential flow. The upper
saline plume (USP) formed by tide-driven recirculation (TDR), the saltwater wedge formed by density-driven recirculation (DDR), and the saltwater
wedge toe (TOE) are shown. The freshwater–saltwater mixing zone associated with the saline plums are also depicted. (B) Numerical model domain,
parameters, and boundary condition, the dashed box in (B) illustrates the area depicted in (A).
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the redox conditions, aeration, and particle composition of the

solution (Xin et al., 2009). Xiao et al. (2019) conducted field

observations and flow modeling to assess how crab burrows drive

carbon exchange in an intertidal marsh in South Carolina. They

found that the concentrations of dissolved inorganic and organic

carbon in crab burrow pore water differ from that in the surrounding

soil matrix, and the gas-phase concentrations of CO2 in crab burrows

were approximately six times greater than that in ambient air. These

results suggested that crab burrows increase the reaction of carbon.

Heiss (2020) evaluated the effect of deep whale burial on NO3
-

removal efficiencies in aquifers and found that organic carbon

sources affected NO3
- removal since DOC not only provided the

reactant for denitrification but also provided an anaerobic

environment (DOC oxidation). Cheng et al. (2020) investigated the

effect of preferential flows on nitrification and denitrification in

aquifers, and the results showed that preferential flows promoted

sediment nitrification, and the degree of promotion was significant

with the increase of density. Li et al. (2021) conducted laboratory

experiments and found that crab burrows significantly affected the

concentrations of NH4
+ and NO3

- and significantly promoted the

nitrogen exchange flux at the sediment–water interface. It can be seen

that the preferential flow not only effectively changes the pore water

flow and solute transport rate but also increases the oxygen content of

the aquifer and the contact area between the sediment and O2, thus

interfering with the reaction of NO3
-.

So far, the effects of preferential flow distributed in the tidal

zone under tidal conditions on pore water flow and nitrogen–sea

source transport reaction in coastal unconfined aquifers remain

unclear. In this study, numerical simulations were conducted to

address the effects of preferential flow number and depth on the

pore water flow, nitrification, and denitrification in sea sources

under tidal action. The results might provide a theoretical reference

for designing engineering measures to mitigate saltwater intrusion,

groundwater quality management, and the ecological restoration of

coastal zones.
2 Methods

The groundwater flow and solute transport reaction models are

used to study the influence of preferential flow on salinity change,

pore water flow, and nitrogen transport reaction in aquifers.
2.1 Groundwater flow and solute
transport model

A 2-D coastal wetland model was developed to study the salinity

change and solute transport of aquifers with variable saturation and

density using the COMSOL finite element software. The simulation

of flow with variable saturation and density was based on Richard’s

equation (Equation 1). Solute transport was based on the

advection–dispersion–reaction equation (Equation 2) in porous

media (Shuai et al., 2017):
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where r is fluid density (kg m-3),Ci is the concentration of species

i (mM), P is the pressure (Pa), and Z is the elevation head (m). The

value of ks is the saturated hydraulic permeability (Equation 3), while

kr stands for the relative permeability (m s-1) (Equation 4), u is the

Darcy velocity (m s-1), q is the water content (-) (Equation 6), g is the

acceleration of gravity (9.81m s-2), Qm in this equation represents a

stress source term (kg m-3 s-1), wm is the specific moisture capacity

(m-1) (Equation 5), D is the hydrodynamic dispersion coefficient (m2

s-1), Ri is the reaction rate for species i (mM s-1), Se is the effective

saturation (-) (Equations 7, 8), and S is water storage (Pa
-1). The

constitutive relationship between relative permeability and pore

pressure obeys the van Genuchten model (van Genuchten, 1980):

ks =
mK
rg

(3)

kr = S0:5e (1�½1� S1=me �m)2 (4)

wm =
am
1�m

(qs � qr)S
1=m
e ½1� S1=me �m (5)

q = qr + Se(qs � qr) (6)

Se =
1

(1 + aPj jni )m (7)

m = 1� 1
ni

(8)

where qs and qr is the saturated water content and relative water
content (-), respectively. K is the hydraulic conductivity (m s-1),

where ni, which is related to m in Equation 8, and a is the fitting

parameter which describes the shape of both the moisture (m-1) and

relative permeability functions (-) obtained by van Genuchten (van

Genuchten, 1980).

The model is a 2-D beach aquifer cross-section (Figure 1),

where the left and bottom boundary (BAE) and the upper boundary

(CD) are both set as no flow and zero solute flux boundaries (Xin

et al., 2010; Shen et al., 2018). The right boundary (DE) is set as the

inland boundary, while the ocean boundary (BC) is the permeable

layer that is used to represent the interface between the beach

surface and seawater or atmosphere and assigned a semi-pervious

layer or seepage face boundary. The process is realized by the

following formula (Equations 9–11):

� n · r
−ks
m

kr(m P + rg m Z) = rRb(H −Hb) (9)

Rb =
ks
L

(10)
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C = Csea      n · u < 0

� n · Dm C = 0     n · u ≥ 0
(11)

where Rb is the conductance term (s-1), defined as the ratio of

the saturated hydraulic conductivity (ks) with a coupling length

scale (L, m). It was set at a high value allowing water to readily move

in and out of the interface. Hb is the external head representing sea

level (m), H is the total head (m), and Csea is seawater salinity (ppt).

In order to deal with the boundary conditions reasonably, two

conditions have been considered. When the aquifer is saturated and

the external head (Hb) of the sea level is higher than the elevation

head, the head difference is determined by the difference between

the overlying seawater and the beach interface. However, if the total

head (H) is higher than the sea level (Hb), and the pressure head is

equal to or higher than the atmospheric pressure. The boundary is a

seepage surface. If the value of Rb is 0 when the aquifer is

unsaturated, the boundary is a no-flow boundary. The salinity is

determined by the groundwater velocity at the node. If the velocity

is inward (to the aquifer), the salinity is estimated by seawater

salinity (Csea = 35 ppt). If the groundwater flows from an aquifer,

the zero concentration gradient was specified at the nodes. Previous

studies have demonstrated that this modeling approach is useful in

describing the water level movement and residence times within the

transition zone (Xin et al., 2010; Shen et al., 2019).

A time-varying head (H(t)) Equation 12 was implemented at

selected cells in this zone by:

H(t) = Hmsl + A sin (wt) (12)

where H(t) is tidal head (m), determined by time; Hmsl is the

mean sea level (10 m); A is tidal amplitude (0.5 m); w = 2p=T is the

angular frequency; and T is the tidal cycle (semi-diurnal tide, 12 h).

These parameters were used in many studies (Anwar et al., 2014;

Shuai et al., 2017).

The model domain represented a homogeneous and isotropic

coastal aquifer with a thickness of 12 m and a sloping beach

boundary (slope of 0.1; Figure 1), which was comparable to a

typical sandy coastal aquifer system (Carsel and Parrish, 1988) with

a hydraulic conductivity of 15 m d-1, longitudinal dispersion

coefficient (aL) of 0.2 m, transverse dispersion coefficient (aT) of

0.02 m (Anwar et al., 2014), and porosity of 0.45. Moreover,

seawater salt concentration and density were set to 35 ppt (mass

fraction) and 1,025 kg m-3, respectively. The freshwater salt

concentration of 0 ppt and a density of 1,000 kg m-3 (see Table 1)

were both adopted from Robinson et al. (2014) and Shen

et al. (2019).

The preferential flow had a width of 0.16 m and was assumed to

be a homogeneous medium with high permeability and porosity

(the permeability was 100 times higher than that of the matrix and

the porosity was set as 1). This technology enabled simulations of

the preferential flow rapid responses to tidal-water-level

fluctuations without affecting the simulation results (Xin et al.,

2009). Similar techniques and parameters have been used in

groundwater models to simulate pore water flow and solute

transport induced by macro-porosity (Xin et al., 2009; Xiao et al.,

2019). The preferential flow was set upstream of the intertidal zone,

and this was adopted from other studies where it was reported that
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preferential flow is mainly concentrated in the upper supratidal

zone and intertidal zone (Fanjul et al., 2008; Ying, 2021).

For all simulations, the mesh density increased in the preferential

flow zones and at the beach. The values for the Courant number and

numerical Péclet number did not exceed 1 and 4, respectively, which

satisfied the stability criterion and avoided numerical oscillation.

During the simulation, a constant temperature was maintained,

resulting in constant dynamic viscosity.

The simulation first conducted a no-preferential flow model

under the tidal action. Subsequently, to investigate the influence of

depth and quantity of preferential flow, we set different depths (2.3,

3.3, and 4.3 m) and quantities (from 1 to 3) of preferential flow

conditions under the tide action (five groups of experiments were

conducted). The specific parameters are listed in Table 2.
2.2 Solute reaction model

To study the transformation of marine nutrients, a reaction

network of four reactive species was applied to the reaction model.
TABLE 1 Model parameters, boundary condition, and kinetic parameter.

Model parameters

Parameter Description Value Units

K Hydraulic conductivity 15a m d-1

q Porosity 0.45 –

Se Residual saturation 0.1a –

aL Transverse diffusion coefficient 0.2a M

aT Longitudinal diffusion coefficient 0.02a M

C0 Seawater concentration 35b,c kg m-3

Cf Freshwater concentration 0b,c kg m-3

rs Seawater density 1025b,c kg m-3

rf Freshwater density 1000b,c kg m-3

RN NO3
- removal efficiency – %

Boundary condition

NO3
- NO3

- boundary concentration 0.25a mM

NH4
+ NH4

+ boundary concentration 0.2a mM

DO DO boundary concentration 0.2a mM

DOC DOC boundary concentration 0.75a mM

Kinetic parameter

Kfox Rate constant for oxidation of DOC 3.0 × 10-9d s-1

Knitri Rate constant for nitrification 4.8 × 10-6 mM-1 s-1

KmO2
Limiting concentration of O2 0.008d mM

KmNO−
3

Limiting concentration of NO3
- 0.001d mM
fron
Units for solutes are in mmol dm-3 pore water, denoted as mM, background concentrations
are set to 0.
a, Anwar et al. (2014);
b, Robinson et al. (2014);
c, Shen et al. (2019);
d, Spiteri et al. (2008).
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The model considered nitrification, denitrification, aerobic

respiration, and DOC degradation.

The reaction model simulated the first-order reaction that

required mixing for the inflow of DO, NO3
-, NH4

+, and DOC.

The study omitted the production of NH4
+ from DOC degradation

and nitrification and only focused on the transformation of NO3
-

from marine-derived sources. The reactions and kinetic rate

expressions are shown in Table 3. Kim et al. (2017) validated this

reaction network by comparing the simulation results with field

data from the Cape Shores beach adjacent to Delaware Bay.

Based on the studies of Bardini et al. (2012) and Spiteri et al.

(2008), the parameters of the reactions are shown in Table 1. This

study determined the influence of preferential flow under tide

influence on the chemical transformations in a nearshore aquifer.

The sensitivity analyses on the specific kinetic parameter values

adopted were not performed, although these parameter values vary

in different coastal settings. Similar to salt transport, the nutrient

concentration was set along with the aquifer–ocean interface for the

reactive solutes. The boundary conditions of the nutrients are

presented in Figure 1, and the specific nutrient values are shown

in Table 1. The TOE (the saltwater wedge toe) was used to evaluate

the length of the saltwater wedge, and the NO3
- removal efficiency

(RN) Equation 13 was quantified by:

RN =

Z t

0

Z
W
RNO�

3
qdWdt

Z t

0

Z
l
c0NO�

3
fbdl

(13)

where W is the domain area, t is the tidal cycle time (12 h), fb is

the boundary flux, RNO−
3
is the rate of NO3

- reaction, and l is the

length of the boundary layer.

We performed four steps: (i) groundwater flow and salinity

distributions for all cases at the static water level were run to steady

state, (ii) the hydraulic gradient and salinity distributions obtained

at the static water level were used as the initial conditions under

tidal action, (iii) the salinity distributions obtained in step (ii) were

used as the initial conditions for the chemical solute transport and

were run to steady state; (iv) and the results of the previous step

were run as the initial conditions for the reaction network until they

stabilized. The simulations were run for 700 days to allow the

reactive solutes to reach equilibrium.
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3 Results

3.1 Model calibration

To verify the reliability of the model, we developed a numerical

model consistent with the lab experiment of Xie et al. (2023), with

an aquifer length of 4 m and width of 0.7 m and porosity of 0.45; the

parameters a and ni were set to 5.9 m-1 and 2.68, respectively, and

the longitudinal dispersion coefficient (aL) was 0.005 m and

transverse dispersion coefficient (aT) was 0.0005 m [for the

specific parameters, please refer to Xie et al. (2023) for details].

We consider three case conditions: non-preferential flow,

preferential flow at x = 0.8 m, z = 0.3 m, and preferential flow at

x = 1.8 m, z = 0.3 m, and the preferential flow scales and parameter

settings are also consistent with those of Xie et al. (2023).

From the experimental results in Xie et al. (2023) and numerical

simulation results (Figure 2), the simulated results matched the

experimental in all cases well (Figure 2). We can find that tidal

forcing formed a USP and SW in the intertidal zone where saltwater

infiltrated near the high tide mark and was discharged near the low

tide mark. A fresh groundwater discharge zone (FDZ) separated the

circulation cell from the lower interface located at the base of

the beach. As expected, under the impact of preferential flow, when

the preferential flow location is at x = 0.8 m, it has some effect on the

salinity distribution and reduces the saltwater wedge deed extension.

When the preferential flow location was at x =1.8 m, it has little effect

on the salinity distribution, which is consistent with the salinity

distribution pattern of the no-preferential flow condition.

The experimental and numerical results consistently demonstrated

that the preferential flow could affect the salinity distribution in

terrestrial environments, and the 2-D numerical model could be

used to predict the water–salt exchange processes in aquifers.
3.2 Salinity and pore water flow

The salinity distribution under two different conditions is

presented in Figure 3. Preferential flow modified the salinity

distribution under tidal influence. The average salinity (average

value of the whole aquifer) in the aquifer decreased from 7.21 to

7.03 ppt, while the TOE decreased from 24.2 to 23.09 m. Under the
TABLE 2 Model parameters and TOE and average salinity.

Case Tide Depth (m) Quantity (n) TOE
(m)

Average salinity
(ppt)

Case1 N-P √ × × 24.20 7.21

Case2 P-1 √ 2.30 1 23.10 7.19

Case4 P-2 √ 3.30 1 23.09 7.03

Case5 P-3 √ 4.30 1 22.90 7.00

Case6 P-4 √ 4.30 2 22.35 6.96

Case6 P-5 √ 4.30 3 22.50 6.94
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tidal condition (Figure 3), the area of the mixing zone (MZA) (the

area between 10% and 90% salinity contour) was 53.87 m2, the area

of USP (USPA) was 10.37 m2, and the area of SW (SWA) was 156.0

m2. However, under the preferential flow, the mixing zone and USP

were increased, and SW was decreased, i.e., the MZA is 64.20 m2,

the USPA is 12.98 m2, and the SWA is 148.79 m2. This indicated

that the preferential flow enhanced freshwater–saltwater mixing

and USP (Figure 3E); the preferential flow weakened the length of

SW in the aquifer and reduced the salinity.

To determine the effect of preferential flow on groundwater

flow, saltwater circulation, and saltwater–freshwater exchange

under tidal conditions, the travel time for specified particles in

the aquifer was calculated [readers may refer to Xin et al. (2010) for

more details]. Three particles were released both near the inland

boundary and the beach surface (refer to Figure 3, Table 4 for the

specific release location).

Under tidal action (Figure 3), a USP developed in the intertidal

zone, with particles released from inland along the moving path of

freshwater bypassing the USP and SW discharge to the sea. The

deeper particles took longer than those in the shallow, e.g., the one

starting from the shallow (x = 75 m, z = 9 m) took 257.1 d, while

that from the deep inland (x = 75 m, z = 3 m) took 267.8 d

(Figure 3), increasing by 4.2%. The difference in travel time among

the three particles at the seaside varied dramatically as the particles

released to the deeper beach moved further landward and took

longer paths, e.g., the particle starting from x = 13 m, z = 8.8 m took

176.7 d, while that from x = 3 m, z = 7.42 m took 1,026.9 d

(Figure 3, Table 4).

Preferential flow leads to pore water flow and an increase in

USP. Therefore, the particles released from the inland shallow layer

experienced USP resistance across the preferential flow, with the

travel time increased slightly, e.g., it took 257.1 d for particles

released from x = 75 m and z = 9 m and 258.2 d for preferential flow

(Figure 3). The travel time of particles released from the beach was

consistent with the travel time under non-preferential flow,

decreasing with an increase in USP, e.g., the particle released

from x = 3 m and z = 7.42 m needed 1,026.9 d with the non-

preferential flow but only 908.4 d in the presence of

preferential flow.
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To further discuss the influence of preferential flow on

groundwater flow and circulation, Figure 4 presents the velocity

distribution of rising tide, high tide, falling tide, and low tide

without and with preferential flow. Only the velocity distribution

in the area of preferential flow is shown for comparison. As shown

in Figure 4, the velocity distribution differed with the seawater level.

When the tide rose, salt water flowed into the aquifer through the

intersection of the tidal level and the aquifer. When the tide fell, the

tidal water retreated, and the pore water flowed to the ocean

(Figure 4). Under the preferential flow condition at the rising

tide, a relatively large pore water velocity appeared and rapidly

flowed into the aquifer, thereby providing a preferential gateway for

the pore water. When the flood completely flowed over the marsh

platform (t = 3 h), the saltwater level reached the maximum

(10.5 m), and a sharp rise in the pore water velocity near the

preferential flow model was observed [Figure 4—(2B)]. The

direction of the pore water flow under preferential flow was

vertically downward, and the magnitude increased considerably.

This indicated that the over-topping water rapidly enters

preferential flow and diffuses into the surrounding marsh soil.

Furthermore, preferential flow enhances the mixing and dilution

of saltwater–freshwater, thus reducing the salinity of groundwater

and increasing the quality of drinking water.
3.3 Distribution of nutrients

The distributions of DO, NO3
-, NH4

+, and DOC under tidal

[Figure 5—(1A), (2A), (3A), and (4A)] and preferential flow

conditions [Figure 5—(1B), (2B), (3B), and (4B)] are presented in

this section. There were differences in the distribution of nutrients.

DOwas mainly concentrated in the shallow layers of the aquifer and

NO3
- was in the shallow and medium layers of the aquifer (Note: we

used shallow, middle, and deep zones to differentiate the

characteristics of the distribution area of DO, NO3
-, NH4

+, and

DOC. In this study, these three intervals are a relative region

varying with the preferential flow, so we are only distinguishing

between the same model) [Figure 5—(1A), (1B), (2A), and (2B)],

while NH4
+ [Figure 5—(3A) and (3B)] and DOC [Figure 5—(4A)
TABLE 3 Reaction and kinetic rate expressions.

Reaction Rate expression

DOC degradationa

Aerobic respirationb

Nitrificationb

Denitrificationb

DOC→CO2

DOC+O2→CO2+H2O

NH4
++2O2 + 2HCO3

-→NO3
-+2CO2 + 3H2O

5DOC+4NO3
-+4H+→5CO2 + 7H2O+2N2

Rate= Kfox[DOC]

If [O2] > KmO2; Rate = Kfox[DOC]

If [O2]< KmO2; Rate = Kfox[DOC]
½O2�
KmO2

Rate = Knitri[NH4
+][O2]

If [O2] > KmO2; Rate = 0
If [O2]< KmO2and [NO3

-] > KmNO−
3 ;

Rate = Kfox[DOC](1-
½O2�
KmO2

)

If [O2]< KmO2and [NO3
-]< KmNO−

3 ;

Rate = Kfox[DOC](1-
½O2�
KmO2

)
½NO−

3 �
KmNO−

3

aBardini et al. (2012).
bSpiteri et al. (2008).
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and (4B)] were distributed in the entire aquifer with a relatively high

concentration in the shallow layer and in the middle and shallow

layers, respectively, e.g., the average concentration of DOC in the

region z > 4 m is 0.058 mM larger than that at z< 4 m (0.025 mM),

and the average concentration of NH4
+ in the region z > 4 m is 0.012

mM larger than that at z< 4 m (0.011 mM). The nutrient

concentration increased along preferential flow in the reaction

process [Figure 5—(1B), (2B), (3B), and (4B)].
3.4 Reaction rate distribution

The reaction rate distributions of nitrification [Figure 6—(1A)

and (1B)], denitrification [Figure 6—(2A) and (2B)], respiration

[Figure 6—(3A) and (3B)], and DOC degradation [Figure 6—(4A)

and (4B)] are described in this section.

Nitrification and respiration occurred primarily in the surface

layers of the aquifer, while denitrification was dominant under the

influence of anaerobic bacteria in the middle and deep layers

where oxygen is depleted (Figure 6). DOC degradation occurred

in the USP and SW of the whole aquifer under tidal action and

preferential flow. However, the reaction rate in the middle and

upper layers was relatively high [Figure 6—(4A) and (4B)], e.g.,

the average rate of DOC degradation in the region z > 4 m is 1.49 ×

10-5 mM d-1 larger than that at z< 4 m (6.54 × 10-6 mM d-1).

Compared to the non-preferential flow condition, preferential

flow resulted in the extension of nitrification, respiration, and

DOC degradation along with the preferential flow in the reaction
Frontiers in Marine Science 07
process. However, denitrification consistently took place in the

deeper USP.

We quantitatively analyzed the NO3
- removal efficiency (RN).

Under non-preferential flow condition, the RN is 7.9%. When we

insert the preferential flow, the NO3
- removal efficiency (RN) was

modified, e.g., under the preferential flow action, the RN is 8.97%.

These results suggest that preferential flow increases the NO3
-

removal efficiency, thus decreasing the salinity distribution.
3.5 Sensitivity analysis

3.5.1 Preferential flow depth
The mixing zone and USP increased vertically with preferential

flow depth, the retreat of SW, and the decrease in salinity in the

aquifer with an increase in preferential flow depth (Figure 7), e.g.,

when the preferential flow depth was 2.3 m, MZA was 59.04 m2, USP

was 12.50 m2, SW was 152.50 m2, salinity was 7.19 ppt, and TOE was

23.10 m, and when the preferential flow depth was increased to 4.3 m,

MZA was 69.11 m2, USP was 13.01 m2, SW was 147.22 m2, salinity

was 7.00 ppt, and TOE was 22.90 m (Figure 7).

The travel time of particles released from deep inland increased

with preferential flow depth. With the persistent vertical increase of

USP, the travel time and path of the particle passing the USP

became longer, e.g., the particle released from x = 75 m and z = 3 m

took 273 d and 280.6 d with depth that was 2.3 and 4.3 m,

respectively. The travel time of the particle released from the

beach was consistent with the previous section, decreasing with
A1

B1

C1

A2

B2

C2

FIGURE 2

Experimental (A1), (B1), (C1) (Xie et al., 2023) and simulated (A2), (B2), (C2) results of non-preferential flow and preferential flow. The horizontal
dotted lines is tidal range; in (A1), (B1), and (C1), the solid black lines indicate the numerical results for 50% salinity contour isohalines by Xie et al.
(2023), and in (A2), (B2), and (C2), the solid black lines indicate 50% salinity contour isohalines based on COMSOL. PF is preferential flow.
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the preferential flow depth, e.g., the particle released from x = 3 m

and z = 7.42 m took 1,007.6 d with depth that was 2.3 m, while

under the preferential flow with depth at 4.3 m, it only required

927.1 d. This might be due to the retreat of SW with the change in

preferential flow depth (Figure 8, Table 4).

The distribution of nutrients was consistent with the discussions

in Sections 3.4 (Supplementary Figure S1). The significance of

preferential flow depth on the distribution of nitrification,

denitrification, respiration, and DOC degradation is shown in

Supplementary Figure S2. All reactions were consistent with the

discussions in Section 3.5. Nitrification and respiration consumption

of deeper DO have their long residence time in the aquifer.

Nitrification and respiration primarily occurred in the surface

layers (Supplementary Figure S2). Denitrification was dominant in

the middle and deep layers of the aquifer (Supplementary Figure S2),
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and DOC degradation occurred throughout the aquifer with a faster

reaction rate in the middle and upper layers (Supplementary Figure

S2). However, each reaction at the USP acted differently with

preferential flow depth due to the rapid inflow of nutrients through

the preferential flow, e.g., when the preferential flow depth was 2.3 m,

the NO3
- produced by nitrification was 3.184 g d-1, and the NO3

-

removal efficiency was 8.72%. However, under a preferential flow

depth of 4.3 m, the NO3
- produced by nitrification was 3.298 g d-1,

and the NO3
- removal efficiency was 9.04%.

3.5.2 Preferential flow quantity
The USP increased with preferential flow quantity, MZ

increases and then decreases, SW decreases and then increases

and decrease in salinity in the aquifer with an increase in

preferential flow quantity (Figure 9), e.g., when the preferential
A B

D

E

C

FIGURE 3

Simulation results: salinity distribution of tidal action in (A, B), the pink, black, and white solid lines show the 10%, 50%, and 90% salinity contour,
respectively. Saltwater wedge (SW), upper salinity plume (USP), saltwater wedge toe (TOE), and fresh water discharge area (FDZ). TOE is the
intersection of 50% salinity contour and x-axis. The horizontal black dotted line shows the average sea level and tidal range. In (C, D), the white solid
line and data are particle path and travel time (unit: day). The particles start from the inland boundary and the beach, respectively. The gray vertical
line indicates the preferential flow (h = 3.3 m). (E) Salinity difference graph (preferential flow - no preferential flow).
TABLE 4 Particle travel times and starting position.

Starting position
(m)

No preferential
Flow (d)

h = 2.3 m
(d)

h = 3.3 m
(d)

h = 4.3 m
(d)

n = 2
(d)

n = 3
(d)

x = 3 m, z = 7.42 m
x = 8 m, z = 8.14 m
x = 13 m, z = 8.8 m
x = 75 m, z = 3 m
x = 75 m, z = 6 m
x = 75 m, z = 9 m

1,026.9
465.9
176.7
267.8
259.7
257.1

1,007.6
453.1
181.6
273
265.4
258.1

908.4
404.5
172.2
276.7
272
258.2

927.1
406.9
183
280.6
269.6
258.4

851.2
375.8
161.1
283.7
268.9
259.4

872.2
395.7
165.4
281.5
269.4
257.5
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flow was 1, MZA was 69.11 m2, USP was 13.01 m2, SW was 147.22

m2, salinity was 7.00 ppt, and TOE was 22.9 m, and when the

preferential flow quantity was increased to 3, MZA was 66.40 m2,

USP was 13.63 m2, SW was 145.04 m2, salinity was 6.94 ppt, and

TOE was 22.50 m (Figure 9).

The travel time of particles released from deep inland increased

with preferential flow quantity. With the persistent vertical increase

of USP, the travel time and path of the particle passing the USP

became longer, e.g., the particle released from x = 75 m and z = 3 m

took 280.6 d and 281.5 d at n = 1 and n = 3, respectively. The travel

time of the particle released from the beach was consistent with the

previous section, decreasing with the preferential flow quantity, e.g.,

the particle released from x = 3 m and z = 7.42 m took 927.1 d with

n that was 1, while under the preferential flow with n that was 3, it

only required 872.2 d (Figure 10, Table 4).

The significance of preferential flow quantity on the distribution

of nitrification, denitrification, respiration, and DOC degradation is
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shown in Supplementary Figure S3. Nitrification and respiration

consumption of deeper DO have their long residence time in the

aquifer. Nitrification and respiration primarily occurred in the

surface layers (Supplementary Figures S3, S4) , while

denitrification was dominant in the middle and deep layers of the

aquifer (Supplementary Figure S3), and DOC degradation occurred

throughout the aquifer with a faster reaction rate in the middle and

upper layers (Supplementary Figure S4). However, each reaction at

the USP acted differently with preferential flow quantity due to the

rapid inflow of nutrients through the preferential flow, e.g., when

the preferential flow quantity was 1, the NO3
- produced by

nitrification was 3.298 g d-1, and the NO3
- removal efficiency was

9.03%; when the preferential flow quantity was 2, the NO3
-

produced by nitrification was 3.347 g d-1, and the NO3
- removal

efficiency was 9.04%. However, under a preferential flow quantity

that was 3, the NO3
- produced by nitrification was 3.34 g d-1, and

the NO3
- removal efficiency was 8.73%.
1A 1B

2A 2B

3A 3B

4A 4B

FIGURE 4

Simulation results: flow velocity at rising tide (t = 1 h), high tide (t = 3 h), falling tide (t = 6 h), and low tide (t = 9 h), (1A) - (4A), (1B) - (4B) under
without and with preferential flow, respectively. (Note: for comparison, only the velocity distribution in the area where the preferential flow).
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4 Discussion

4.1 Implication of preferential flow on pore
water flow

A USP promotes the retreat of SW under tidal action, which

renders the SW closer to the ocean and limits saltwater intrusion.

Preferential flow enhanced (Figure 3) this effect, driving SW further

seaward, and this impact gradually increases with the depth of

preferential flows (Figures 7, 9). These results are consistent with

those of Gao et al. (2023), but they consider the under spring-neap

tide action. The high hydraulic conductivity of the preferential flow

increased the salt transport, resulting in a larger USP than the non-

preferential flow; this could control SWI to some extent. Several

previous studies have been performed to investigate saltwater–

freshwater mixing dynamics—for example, Xie et al. (2023)

investigated the effect of fracture characteristics on salinity

distribution and groundwater flow through experiments and

numerical simulations. They reported that the vertical fractures

had a limited impact on most SWI properties. This seems to be

different from our results. This is mainly due to the effect of fracture

on SWI properties depending on their relative position to the

saltwater. In our study, we focused on the longitudinal rift located

inside the USP and connected to it. In addition, they noted that

fractures can increase the mixing zone, which is consistent with our

results. Preferential flow acted as a drain for the shallow layer

during the falling tide and for a recharge well during the rising tide.
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This was the main reason for the increase in USPs and the decrease

in the salinity of the aquifer. Additionally, Xiao et al. (2019) found

that the salinity in crab burrows in the intertidal zone at high tide

was slightly higher than in the soil matrix, e.g., the salinity of crab

burrows reached 34 PSU and larger than the nearby soil matrix

(33.4 PSU). This suggested that the presence of crab burrows can

greatly enhance salt transport in salt marshes.
4.2 Implication of preferential flow on
nitrification and denitrification

The nutrients from the sea were initially input in the numerical

model with the salinity simultaneously. Nitrification primarily

occurred in the surface layer (Figure 6, Supplementary Figures S2,

S4) since nitrification, respiration consumption of deeper DO, and

denitrification were dominant in the middle and deep layers of the

aquifer (Figure 6, Supplementary Figures S2, S4). Shuai et al. (2017)

had the same report, and they assumed that DO, NO3
-, NH4

+, and

DOC primarily originate from rivers. They noted that nitrification

occurs in the shallow layers, while denitrification occurs in the

deeper anaerobic layers. In the presence of preferential flow,

nitrification mainly occurred in the surface layer of the aquifer

and extended along with the preferential flow (Figure 6,

Supplementary Figures S2, S4). Nitrification and respiration

consumption of deeper DO (Figure 5, Supplementary Figures S1,

3) and the preferential flow increase in the area of sediment air/
1A

1B

2A

2B

3A

3B

4A

4B

FIGURE 5

Simulation results: nutrient concentration distribution without preferential flow action (A) and with preferential flow action (B) (1), (2), (3), and (4) is
DO, NO3

-, NH4
+, and DOC distribution after reaction, respectively. The black solid line is the isoline of denitrification, and the gray vertical line

indicates the preferential flow; note that only the intertidal zone is shown.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1369869
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Gao et al. 10.3389/fmars.2024.1369869
1A 1B 1C

2A 2B 2C

3A 3B 3C

4A 4B 4C

FIGURE 6

Simulation results: reaction distribution (mM s-1). (1C)–(4C) is nitrification, denitrification, aerobic respiration, and DOC degradation reaction zone
comparison under tidal and preferential flow. The gray vertical line indicates the preferential flow, PF is preferential flow.
A B

D E F

C

FIGURE 7

Simulation results: the mixing zone area (MZA) (A), the USP area (USPA) (B), the SW area (SWA) (C), the salinity (D), TOE (E), and the NO3
- removal

rate (RN) (F) with a different preferential flow depth.
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water interface increased the exchange between surface water and

groundwater and the concentration of DO in the aquifer. This

resulted in the extension of nitrification and respiration along the

preferential flow (Figure 6, Supplementary Figures S2, S4) and

decreased the carbon stock of the sediment. Preferential flow

increased the concentration of nutrients at the USP by

dramatically enhancing nutrient transport and reducing SW as
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the USP pushed the SW seaward. However, total nitrification

increased under preferential flow conditions and gradually

increased with depth and amount of preferential flow; however, it

decreases after a certain quantity.

In the presence of tidal action, the distribution of nutrients in the

aquifer formed a USP and a SW. The travel and residence times were

longer in the deeper layers of the aquifer for nutrients, nitrification,
A B

C

FIGURE 8

(A–C) Simulation results: rate of change in particle transport time. Positive values indicate an increase, while negative values indicate a decrease, and
the colors and the data in parentheses are the coordinates of the particle release point.
A B

D E F

C

FIGURE 9

Simulation results: the mixing zone area (MZA) (A), the USP area (MZA) (B), the SW area (MZA) (C), the salinity (D), TOE (E), and the NO3
- removal rate

(F) with a different number (n) of preferential flow.
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and respiration consumption of deeper DO (Figure 5, Supplementary

Figures S1, S3), creating anaerobic conditions for denitrification.

Subsequently, the NO3
- produced was used up during

denitrification, resulting in the reduction of NO3
- in the deep layer

(Figure 5—(2B), NO3
- distribution). Denitrification occurred in the

deeper USP as nitrification in the upper USP not only provided the

reactant for denitrification but also offered an anaerobic

environment. The NO3
- removal efficiency increased compared to

that in non-preferential flow, and this effect increases progressively

with the depth and number of preferential flows; however, it

decreases after a certain quantity. It can be observed that the

existence of macro-porosity (such as crab burrows and invertebrate

nests) facilitates the removal of NO3
- from sea sources. Some previous

studies demonstrated that denitrification also increased with the size

of the mixing zone (Spiteri et al., 2008; Heiss et al., 2017; Gao et al.,

2023). Heiss et al. (2017) reported that saltwater–freshwater mixing

could promote denitrification in the intertidal zone.

In addition, Gao et al. (2023) investigated the effect of macropores

on the salinity distribution and denitrification of the aquifer under

spring-neap tide action. They pointed out that macropores can lead

to NO3
- removal efficiency increase. They investigated the reaction

between DOC from the sea source and NO3
- from the land source. In

this study, we considered the relationship between DOC from the sea

source and NO3
-, which is the main reason for the difference, and it is

also noteworthy that they also suggested that macropores can

increase the mixing of saltwater and freshwater. This is consistent

with our results. Thus, our study provides new insights into the

relationship between macropores and salinity distribution and

denitrification in the aquifers.
4.3 Knowledge gaps and research needs

This study elucidated the effect of preferential flow on salinity

change and solute transformation under tidal conditions.

It determined the importance of the depth and quantity of

preferential flow, which guide the mitigation of saltwater

intrusion and contaminant removal. However, the location and
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density (Fanjul et al., 2008; Ying, 2021) distribution of preferential

flow should be further studied. The preferential flows are based on

the actual and generalized, and the real aquifer preferential flow

distribution pattern and specifications are extremely complex.

Future research can focus on the real aquifer preferential flows on

the saltwater intrusion characteristics as well as on the impact of

solute transport transformation. Waves drive seawater recirculation

(Anwar et al., 2014), and seasonal groundwater level drives

groundwater fluctuations (Michael et al., 2005; Liu et al., 2016).

This leads to the more complex nearshore mixing dynamics of

freshwater and seawater, which, in turn, complicates NO3
-

transformation. In addition, other factors may also impact the

biogeochemical processes in aquifers, including precipitation,

evaporation, and long fluctuating tides (e.g., spring-neap tides),

and sediment heterogeneity (Heiss and Hichael, 2014; Geng and

Boufadel, 2017; Kreyns et al., 2020; Gao et al., 2023; Zheng et al.,

2023), which need to be considered in the future work.
5 Conclusions

This study examined the combined effect of preferential flow

and tide on pore water flow and marine nitrogen transport reaction

in coastal aquifers. The following conclusions might be drawn:
(1) Under tidal action, preferential flow increases the hydraulic

conductivity of the aquifer and accelerates the pore water

flow and solute transport. The preferential flow results in

the vertical increase of the USP and further retreat of SW.

In the presence of preferential flow, the NO3
- removal

efficiency is increased.

(2) Nitrification mainly occurs in the surface layer of the

aquifer, while denitrification dominates the middle and

deep layers. The nitrification effect increases with the

increase in the depth and quantity of preferential flow,

and the NO3
- removal efficiency increases progressively

with the depth and number of preferential flows; however,

it decreases after a certain quantity.
A B

FIGURE 10

(A, B) Simulation results: rate of change in particle transport time. Positive values indicate an increase, while negative values indicate a decrease. The
colors and the data in parentheses are the coordinates of the particle release point.
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