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Guilin University of Aerospace Technology, Guilin, China, 3School of Electronic Science and
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During underwater operations, divers must determine their own trajectories

using the Inertial Navigation System (INS) they carry to improve operational

efficiency. However, the INS contains a sensor bias that is also incorporated into

the quadratic integration process to obtain the displacement, resulting in

trajectory drift of the divers during prolonged self-guidance. To overcome the

above problem, other aids are needed to correct the accumulated error of the

INS. The single-beacon Assisted Inertial Navigation (AIN) method can improve

the flexibility of inertial error correction while simplifying the localization

equipment, which is suitable for the INS cumulative error correction scenario

of divers. However, most of the traditional single-beacon assisted correction

methods do not consider the effect of acoustic line bending on hydroacoustic

ranging, and at the same time, they do not consider the problem of singular or

pathological coefficient matrices introduced by inertial navigation neighbor

localization deviations. Based on the above two shortcomings, this paper uses

the acoustic velocity profile for acoustic line tracking, combines the localization

idea of Mobile Primitives (MP), and proposes an MP-based acoustic line tracking-

Assisted Inertial Navigation Localization (AINL) method, which constructs a

sliding time window (STW) by taking the historical positioning of divers as a

virtual primitive, and combines the nonlinear optimization method for iterative

optimization search as a means to improve the accuracy and stability of self-

navigation of the divers.
KEYWORDS

underwater active localization, assisted inertial navigation localization, sound source
localization, sound velocity profiling, mobile primitives
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1 Introduction

Marine localization and navigation technology is widely used in

many fields such as diving and salvage, resource exploration, and

environmental monitoring [Luo et al. (2021); Zhang et al. (2021); Su

et al. (2023); Zhang et al. (2024); Ye et al. (2023)]. Diving is the

primary means by which humans explore, exploit and strategize the

oceans [Brown and Wang (2013); Kaneko and Kubota (2021)]. The

localization and navigation methods for divers mainly include the

hydroacoustic localization method, which uses sound waves as

information carriers, and the combined navigation method based

on INS. Among them, INS is very suitable for diver navigation

scenarios due to its good autonomy, continuity, stealth and real-time

advantages in the navigation process (Lyu et al. (2022)). However, the

drift deviation of the inertial sensor in INS causes the localization

error of divers to accumulate over time, and it is difficult for a single

INS to meet the application requirements of long-term underwater

navigation Liu et al. (2021). Therefore, it is necessary to use other

auxiliary methods to correct the accumulated error of the INS in time.

Acoustic wave, as the only information carrier that can be transmitted

over long distances underwater, has become an effective means to

AIN for error correction [Cheng et al. (2022)].

Literature [Zhang et al. (2023)] designed two combined navigation

schemes for Autonomous Underwater Vehicles (AUV) for different

surface and underwater navigation requirements, respectively.

Literature [Xu et al. (2022)] proposed a decentralized co-location

method based on Adaptive Cubature Kalman Filter (ACKF) to

improve the navigation accuracy of two lead AUVs. Literature

[Zhang et al. (2022)] designed a Kalman Filter (KF) method based

on a hybrid distribution model derived from acoustic signal round trip

delay and pitch angle measurement models to reduce the effect of

underwater carrier motion on navigation accuracy, but did not

fundamentally eliminate the INS cumulative error. Literature [Ju-

Cheng et al. (2017)] proposed an AUV navigation augmentation

method based on single beacon ranging, which effectively suppresses

the INS cumulative error by introducing distance, speed, and azimuth

as measurement information. The single-beacon localization

technique, which uses a single acoustic beacon to assist INS in self-

navigation, not only simplifies the transponder deployment process of

traditional hydroacoustic positioning systems, but also provides a high

degree of localization flexibility with navigation accuracy similar to that

of INS combined with traditional hydroacoustic localization systems

[Hegrens et al. (2009)]. Literature [Jin et al. (2019)] combined acoustic
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localization and inertial navigation to propose a low-cost single beacon

inertial navigation augmentation localization method, but it assumes a

constant underwater acoustic velocity and does not consider the

problem of acoustic line bending. Literature [Zhang et al. (2019)]

proposed an AUV self-localization method based on Virtual Long

Baseline (VLBL) and STW, but the method sets the ocean acoustic

velocity to a fixed value without sound line correction, and the

corresponding coefficient matrix is prone to singular or pathological

situations, at which time it is difficult to directly solve the spatial

localization of the AUV.

Therefore, this paper focuses on the basic array deployment

problem of diver localization scenarios, adopts a single beacon on

the water surface for Acoustic-Assisted Inertial Navigation

Localization (AAINL), and combines the localization ideas of

acoustic velocity field inversion and MP to reduce the

deployment cost of the localization system while meeting the

scenario requirements of high accuracy, near real-time and high

flexibility of diver self-navigation. The localization method in this

paper can effectively improve the accuracy, robustness and

flexibility of localization estimation of the divers, which is of great

practical value and significance for protecting the personal safety for

divers and improving the efficiency of underwater operations.
2 Problem and methodologies

2.1 Inertial navigation and
localization scenarios

Aiming at the problem of cumulative localization errors generated

by divers in long-term inertial navigation scenarios, this paper proposes

an AINL method based on acoustic line tracking of MP, and the

localization scenario is shown in Figure 1A. Three adjacent locations

P0, P1, P2, where the diver receives the acoustic signal from the surface

beacon (SB) during the moving process, are selected as virtual

primitives to construct the first STW, in which the adjacent

displacements of the INS output and the slant distances obtained

from the acoustic tracking are combined to solve the spatial localization

of the diver at the nearest instant by the system of joint localization

equations. The STW is updated and iterated as the diver moves until

the corrected localization accuracy meets the requirements.

Figure 1B shows the components of the first two STWs, where

the orange dashed box represents the first STW constructed by P0,
BA

FIGURE 1

Localization scenarios for acoustic tracking inertial navigation methods based on MP. (A) Localization Scenarios; (B) STW.
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P1, and P2, and is denoted as STW 1. Assuming the initial

localization is P0(x0,y0, z0), acoustic tracking is used to obtain the

slant distance between the diver and the beacon as R0. After a period

of time, the coordinates of divers are P1(x1,y1, z1), the relative

displacement of P0 and P1 is recorded in the INS as DP10 = (Dx10,
Dy10), and acoustic tracking is again used to obtain the slant

distance R1. The third time the acoustic signal is received, the

corresponding coordinate is set to P2(x2,y2, z2), and the

displacements of P1 and P2, DP21 = (Dx21, Dy21), and the slant

distance, R2, are recorded. The two-dimensional coordinates P0 and

P1 (depth measured by the pressure transducer) are expressed as the

difference between the coordinates to be solved, P2, and the relative

displacement of the known INS in the form of Equation 1:

(x0, y0) = ((x2 − Dx20), (y2 − Dy20))

(x1, y1) = ((x2 − Dx21), (y2 − Dy21))
,

(
(1)

where Dx20 = Dx10 + Dx21 and Dy20 = Dy10 + Dy21 :
Combined with the slant distance Ri(i = 0, 1, 2) obtained by

acoustic tracking, the system of joint nonlinear localization

equations is:

R0  =  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½(x2  − Dx20)  − xs�2  + ½(y2  − Dy20)  − ys�2  + (z0  − zs)

2
q

R1  =  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½(x2  − Dx21)  − xs�2  + ½(y2  − Dy21)  − ys�2  + (z1  − zs)

2
q

R2  =  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x2  − xs)

2  + (y2  −  ys)
2  + (z2  − zs)

2
p

:

8>>>><
>>>>:

(2)

In (2), the depth zi(i = 0,1,2) at each localization is measured by

the pressure transducer, which can be considered a known quantity.

The coordinate estimation problem for the diver P2 can be

transformed into the problem of solving the corresponding system

of localization equations in (2). Considering that the deviation of the

adjacent localizations of the INS output may cause the problem of

singular or pathological coefficient matrix, this paper adopts a

nonlinear optimization method to iteratively search for the optimal

solution of the localization of divers Wang et al. (2022).
2.2 Localization p process

Figure 2 shows the overall flow of the localization method in this

paper, which includes a delay estimation module, a sound tracking

module, an inertial navigation module, a nonlinear optimization

module, and a STW iterative update module. The inverse sound
Frontiers in Marine Science 03
velocity profiles are based on Array for Real-time Geostrophic

Oceanography (Argo) data at 116.63-119.63E and 17.5-18.5N after

Multi-Layer Perceptron (MLP) estimation of the first five orders of

Principal Components (PC) estimation for better range.

The INS solution of the Inertial Navigation Module requires the

following four steps in sequence: attitude update, coordinate

transformation, velocity update, and localization update.

The acoustic line tracking module, as a crucial component of

the inertial navigation-based error correction, aims to obtain the

acoustic distance measurement information between the diver and

the SB, thus providing the slant distance required for the nonlinear

optimization process. The acoustic tracking module is first provided

with the time of arrival (TOA) of the beacon acoustic signal by the

time delay estimation module. Then, an iterative dichotomous

search is performed to correct the acoustic line curvature based

on the initial grazing angle of the acoustic line. Considering the

shallow sea environment where divers operate, the acoustic signal is

easily disturbed by multipath channels and environmental noise

during propagation, so the TOA method should be selected with

both multipath and noise resistance. In this paper, Second

Generalized Cross Correlation (SGCC) is selected as the

localization method to estimate the TOA of the received signal

from the diver in order to avoid pseudo peaks in the cross

correlation Yang et al. (2010). The method steps are as follows:

First, the autocorrelation operation is performed on x1(t) to

obtain the autocorrelation function Rx1x1(t). Second, the mutual

correlation function Rx1x2(t) of x1(t) and x2(t) is calculated,

followed by the calculation of the mutual power spectral

function GRR(f) of Rx1x1 and Rx1x2. Then, the frequency domain

filtering of GRR(f) is performed in conjunction with the

generalized frequency weighting function yg(f). Finally, the

filtered secondary mutual power spectrum is subjected to

Fourier Inverse Transform to obtain the Second Generalized

Cross Correlation function R(g)
y1y2 , as shown in Equation 3:

R(g)
y1y2 (t) =

Z ∞

−∞
yg(f )GRR(f )e

j2p f tdf : (3)

Since the method in this paper corresponds to the active

localization scenario, when the power of the acoustic signals

emitted by SB is large, the function normalizes the amplitude of

the reciprocal power spectrum in the frequency domain, and is able
FIGURE 2

The general flowchart of the localization method in this paper.
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to effectively sharpen the correlation peaks in active localization

scenarios with large signal power, and is suitable for underwater

acoustic environments with low or moderate reverberation, and the

expression for the phase transformation (PHAT) weighting

function is given by yg(f ) =
1

GRR(f )j j.
When searching for peaks for (3), the time corresponding to the

peaks is the time delay for the diver to receive the signal as D̂ , as

shown in Equation 4:

D̂ = arg max
t

½R(g)
y1y2 �

� �
: (4)

The SGCC-PHAT method in the attempted study combines

both good noise immunity and multipath immunity, and is more

suitable than other algorithms for delay estimation scenarios of

diver-received signals in the noisy environment of the shallow sea.

The nonlinear optimization module is mentioned in the

next section.
2.3 Nonlinear optimization

The system of localization Equation (2) is transformed into the

following form if the depth of divers, the coordinates of the single

beacon on the water surface and the acoustic distance

measurements R1, R2, R3 are known:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
0  − (z0  − zs)

2
p

=  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½x2  − (Dx20  + xs)�2  + ½y2  − (Dy20)  + ys)�2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1  − (z1  − zs)

2
p

=  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½x2  − (Dx21  + xs)�2 +

q
½y2  − (Dy21)  + ys)�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
2  − (z2  − zs)

2
p

=  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x2  − xs)

2  + (y2  − ys)
2

p
,

8>>>><
>>>>:

(5)

where (Dx20,Dy20) is the coordinate change of INS outputs P0
and P2 in the inertial reference system.

If the coordinate (x2, y2) to be solved is set to (x, y), the Equation

(5) is expressed in the form of the following error vector:

e(x, y)  =  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½x  −  (Dx20  +  xs)�2  +  ½y  −  (Dy20)  +  ys)�2

q
  −  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
0  −  (z0  −  (zs)

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½x  −  (Dx21  +  xs)�2  +  ½y  −  (Dy21)  +  ys)�2

q
  −  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1  −  (z1  −  (zs)

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x  −  xs)

2  +  (y  −  ys)
2

p
  −  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
2  −  (z2  −  zs)

2
p

2
66664

3
77775 :

(6)

Squaring the Equation (6) yields the objective function E(x, y) as

follows:

E(x, y) =
1
2
e(x, y)Te(x, y) =

1
2o

3

i=1
e2i (x, y) : (7)

The sum of squares of the minimized range error terms

according to Equation (5–7), and then use the iterative method to

nonlinearly optimize the above least squares problem. The

localization method in this paper uses the Levenberg-Marquardt

(LM) method for nonlinear optimization of the spatial localization

of divers in the following way:

First, the coordinates to be solved are set as a vector x(x,y). The

error term e(x) is linearized based on a first order Taylor series

expansion with the expression in Equation 8:
Frontiers in Marine Science 04
e(x + Dx) ≈ e(x) + J(x)Dx, (8)

where J(x) is the Jacobi matrix of e(x) with respect to x and Dx is
the iteration step.

The minimization objective function is then approximated as a

linear least squares problem to solve for the increment, as shown in

Equation 9:

Dx* = arg min
Dx

1
2
‖ e xð Þ + J xð ÞDx ‖2 (9)

The LM method introduces a damping coefficient µ in the

construction of the incremental equation, which can be expressed as

Equation 10:

(J(x)TJ(x) + mI)Dx = −J(x)Te(x), (10)

where I is the unit array; the initial value of the damping

coefficient, µ0 = t × max{aii}, where A0 = J(x0)
TJ(x0), aii is the

diagonal elements of A0; and t is a constant, usually set to 10−3 or 1.
The quality of each iteration step is evaluated according to the

change in the goodness of approximation m, which defines the gain

ratio r, as shown in Equation 11:

r =
e(x + Dx) − e(x)

J(x)Dx
: (11)

The denominator represents the degree of decrease of the first-

order differential component in each iteration, and the numerator

represents the decrease of the actual function. When r is small, it

means that the approximation degree of the iteration step is poor,

and µ should be increased accordingly; on the contrary, when r is

large, µ should be decreased. In this paper, the localization method

adopts the µ updating strategy as follows: when r  >  0,  m  =
 m �   max   1

3 , 1  −  (2r  −  1)3
� �

; otherwise, µ = µ × n n = 2 × n,
the initial value n0 = 2. After adjusting the damping coefficient, it is

first substituted into the increment equation to compute the

increment amount, and then the increment amount is iterated to

update the localization, and then a new round of iteration is started,

and the iteration is stopped only when the increment amount is

sufficiently small or the gradient of the descent is sufficiently small.
3 Simulation results and analysis

3.1 Simulation analysis of delay
estimation module

To investigate the estimation performance of the SGCC-PHAT

method in the delay estimation module in shallow sea localization

scenarios, this subsection compares the delay estimation effects of

different cross-correlation algorithms in terms of noise resistance

and multipath resistance, respectively. Assuming that the receiver

and transmitter have completed time synchronization, the anti-

noise performance of the method is analyzed by adding Gaussian

white noise of different power to the transmit signal; and the

multipath resistance of the method is explored by simulating the

shallow sea multipath channel using the BELLHOP channel model.
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First, the noise immunity performance of the four cross-

correlation algorithms is analyzed. In this simulation, a single-

frequency sine wave with a frequency of 1000 Hz is used as the

transmit signal in this 167 simulation. The signal is sampled at 50

kHz, with 1024 samples and a real-time delay value of 100 sample

intervals (i.e., 2 ms). The simulation analyzes the noise immunity of

the four cross-correlation algorithms from the two scenarios of high

signal-to-noise ratio (SNR) (20 dB) and low SNR (-20 dB).

Figure 3 shows the delay estimation results of the Cross

Correlation (CC) algorithm, the Generalized Cross Correlation-

PHAT (GCC-PHAT) algorithm, the Second Cross Correlation

(SCC) algorithm, and the SGCC-PHAT method at high SNR.

Overall, all four algorithms can accurately estimate the true delay

value of the received signal below 20 dB. From the horizontal

comparison, it can be observed that when the signal power is greater

than the noise power, the GCC-PHAT method has sharper

correlation peaks compared to the CC algorithm, the peak

spreading of the CC method leads to a reduction in the resolution

of the peaks, and the SGCC-PHAT method and the SCC method

have a similar pattern. From the longitudinal comparison, it can be

observed that the amplitude of the interference noise around the

peaks is significantly reduced in the SGCC-PHAT method

compared with the GCC-PHAT algorithm, thus verifying that the

two cross-correlation operations can sharpen the peaks and further

inhibit the noise from interfering with the signal. The above

simulation verifies the good resolution of the SGCC-PHAT

method for delay estimation under high SNR conditions, as well

as a certain resistance to side flap interference.
Frontiers in Marine Science 05
Figure 4 compares the estimation performance of the four types

of cross-correlation algorithms under low SNR conditions. Among

the four algorithms, only CC and SCC estimate accurately, the true

value of delay of GCC-PHAT is overwhelmed by a large amount of

noise, and the estimate of SGCC-PHAT method contains a small

amount of bias (0.00012 s). From the side-by-side comparison, it

can be seen that CC has better noise immunity compared to GCC-

PHAT, and the true delay value can still be estimated under low

SNR conditions. The estimation accuracy of GCC-PHAT decreases

sharply with the increase of noise power under the low SNR

conditions. This phenomenon occurs because the PHAT

weighting function in GCC-PHAT relies on phase delay

estimation. When the signal is flooded with noise, the phase of

the noise occupies the main component in the estimation result, so

the estimation error increases sharply. Compared with GCC, CC

has better noise immunity because it preserves the amplitude

information in the frequency domain. From the longitudinal

comparison, although the estimation accuracy of SGCC-PHAT

decreases accordingly under the low SNR condition, its

estimation error is generally very small (0.00012 s) compared to

GCC-PHAT, which confirms that SGCC-PHAT has better noise

suppression ability compared to GCC-PHAT. From the above

simulation analysis of the anti-noise performance, it can be seen

that under the high SNR condition, the SGCC has a sharper

correlation peak compared with the SCC and is more sensitive to

the estimation error; under the low SNR condition, the SGCC-

PHAT benefits from the two cross-correlation operations to inhibit

the interference of the noise on the signal better than the GCC-
B

C D

A

FIGURE 3

Estimation performance comparison of four cross-correlation algorithms under high SNR conditions (20 dB). (A) CC; (B) GCC-PHAT; (C) SCC; (D)
SGCC-PHAT.
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PHAT, and it has a higher robustness. Considering that the water

SB in the localization scenario of this chapter is actively

transmitting acoustic signals as a sound source, there is no low

SNR environmental condition, in which case it is feasible and

superior to choose the SGCC-PHAT as the delay estimation

method for localization in this chapter.

Second, simulation analysis is performed to analyze the anti-

multipath performance of the four types of cross-correlation

algorithms. In this simulation, the BELLHOP model is selected to

simulate the underwater multipath channel, and the received acoustic

signal is obtained by calculating the convolution of the transmitted

signal and the channel impulse response, and the different cross-

correlation algorithms are applied to the received signal for time delay

estimation. It should be noted that the sound velocity profile used in

the BELLHOP model is the inverted sound velocity profile of August

2017 in the China South Sea, and the rest of the parameter settings are

shown in Table 1. Considering the complexity of the underwater

environment, in this simulation, the linear frequency modulation

(LFM) signal is selected as the transmission signal, the center

frequency of the signal is set to 30 kHz, the bandwidth is 5 kHz,

the duration is 20 ms, and the real propagation time of the acoustic

signal can be obtained from the model calculation as 0. 65645 s. The

LFM signal before and after passing through the BELLHOP channel

is shown in Figure 5, and the change of the waveform shows that the

received signal is not only delayed in time, but also the multipath

effect leads to different degrees of attenuation of the signal amplitude.

Based on the received signals shown in Figure 5, the antimultipath

performance of the four types of cross-correlation algorithms is
Frontiers in Marine Science 06
compared, and a total of thirty simulations are performed, which

shows that the SGCC-PHAT has a better antimultipath capability,

and only one simulation result is shown as shown in Figure 6. The

figure reflects the ability of different cross-correlation algorithms to

resist the multipath effect in the shallow sea, fromwhich it can be seen

that the GCC-PHAT and the SGCC-PHAT have better anti-

polymath performance compared to the other two algorithms, and

the delay estimation error of both of them is only 0. This verifies that

the SGCC-PHAT can resist the multipath effect in the shallow sea,

and the estimation error of CC and SCC is extended to 0.00001s. This

verifies that SGCC-PHAT can resist the multipath effect in the

shallow sea, and SCC is more effective in the shallow sea. SGCC-

PHAT can extract the propagation delay of the direct signal in the
TABLE 1 BELLHOP model parameterization.

Parameter Name Value

Sound Source Depth (m) 40

Receiver Depth (m) 60

Transmitter to Receiver Horizontal Distance (m) 1000

Acoustic Frequency (kHz) 30

Number of voices 30

Sound Line Exit Angle Sector (°) -15∼15

Seabed Sediment Sound Velocity (m/s) 1600

Seafloor Sediment Density (g/cm3) 1.8
front
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FIGURE 4

Estimation performance comparison of four cross-correlation algorithms under low SNR conditions (-20 dB). (A) CC; (B) GCC-PHAT; (C) SCC; (D)
SGCC-PHAT.
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multipath channel better than CC and SGCC, and is more suitable for

the localization scenarios the shallow sea operation of divers.

In summary, this subsection verifies, based on simulation, that

the SGCC-PHAT has both good anti-noise performance and anti-

multipath performance, and is more suitable than other algorithms

for the delay estimation scenarios of the received signals of divers in

the noise environment of the shallow sea, and thus the methodology
Frontiers in Marine Science 07
in this chapter selects the SGCC-PHAT as a delay estimation method

for the voice tracking module with feasibility and superiority.
3.2 Nonlinear module simulation
and analysis

This subsection demonstrates the INS cumulative error

correction results of the proposed method, and also explores the

effect of the transmission period of SB on the INS cumulative error

correction. Based on the received signal delay estimation using the

SGCC-PHAT algorithm, the INS cumulative error correction

performance of the proposed method is simulated and analyzed.

The Inertial Measurement Unit sensor error settings in the

simulation are the same as in Table 2, and the measurement period

is set to 0.1 seconds. The diver is moving at a speed of

approximately 1 knot. The SB is placed at a depth of 0.5 m

underwater, and the corresponding latitude and longitude are

17.5016N and 116.6016E. In this simulation, the East-North-Up

(ENU) coordinate system is used as the reference coordinate system

for navigation, and the initial localizations of divers of 17.5N and

116.6E are used as the origin of the reference system, and the

relative localizations of the moving trajectory of divers and the SB

are shown in Figure 7. The simulation uses Root Mean Square Error

(RMSE) to measure localization accuracy.

Table 3 shows the localization errors for different STWs for a

beacon transmission period of 20 seconds, and from the analysis of

the graphs, it can be seen that the localization errors of the four STWs
B

C D

A

FIGURE 6

Estimation performance comparison of four cross-correlation algorithms under BELLHOP multi-traffic channels. (A) CC; (B) GCC-PHAT; (C) SCC;
(D) SGCC-PHAT.
FIGURE 5

Comparison of signal waveforms before and after passing through
the BELLHOP channel.
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are less than 5 meters, and the corresponding localization errors of

the second and third STWs are reduced to about 1 meter, which

improves the accuracy of INS localization by about 98% compared

with the INS localization accuracy, and the percentage of localization

error is less than 0.5%, and the high-precision correction of the

cumulative INS error is achieved in a minimum of only three STWs.

Next, the number of STWs is selected as four, and the total

simulation time is set to 1000 seconds, of which the first 420 seconds

is for Purely Inertial Navigation (PIN), and the AAINL is performed in

420-520 seconds, thus simulating the actual operation scenario in

which the diver moves for a certain period of time and then

performs error correction. Figure 8 shows the localization trajectory

and error of this method when the transmission period of the SB is 20

seconds, 40 seconds, 60 seconds and 80 seconds. The black line in the

figure indicates the ideal motion trajectory of divers during 420 seconds

to 520 seconds, the blue line indicates the motion trajectory of divers

output by the INS, and the red line corresponds to themotion trajectory

of divers after AINL by the method of this paper. The depth of divers is

measured by the pressure sensor with negligible numerical error.

From Figure 8, it can be observed that the cumulative INS error

causes the localization of divers solved by PIN to deviate seriously

from the true value, and the acoustic-assisted correction using SB in

method of this papers can estimate the localization of divers closer

to the true coordinates. The reason why the MP trajectory in
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Figure 8 is close to the ideal trajectory at the beginning and then

gradually moves away from it is that in the iteration of the STW, the

accuracy of the localization of divers first gradually improves with

the introduction of acoustic ranging, and then, due to the increase

in the distance between the diver and the SB, the accuracy of

acoustic ranging at this time decreases, leading to the increase in the

localization error corresponding to the fourth STW.

From the left vertical comparison of each figure in Figure 8, it can be

seen that although the moving trajectories vary under different acoustic

distance measurement cycles, they are generally closer to the real value

than the trajectories output by the INS, and the above phenomenon is

attributed to the fact that method of this papers uses acoustic ranging to

introduce the auxiliary information of distance constraints.

Further observation shows that when the diver is closer to the SB,

the accuracy of this method is higher, indicating that the distance

between the SB and the diver is a key factor affecting the performance

of acoustic assisted localization, and the beacon should be deployed as

close as possible to the moving trajectory of divers. The localization

errors under different acoustic measurement cycles are shown in the

right vertical comparison of each figure in Figure 8, from which it can

be seen that the localization error of method of this papers is

significantly smaller than the INS localization error. As the

cumulative error of the INS increases, the localization error of the

MP also increases. When the beacon transmission period is 40 seconds,

the localization errors of the four STWs are less than 10 meters; when

the beacon transmission period is 60 seconds, the maximum

localization error corresponding to the STWs is close to 20 meters;

when the beacon transmission period further increases to 80 seconds,

the maximum error corresponding to the STWs has exceeded 20

meters. The reason for the above increase in the localization error of the

MP is that the size of the SB transmission period essentially reflects the

distance between adjacent localizations in the STW, i.e., the length of

the baseline between the MP. Increasing the beacon transmission

period leads to a larger distance between neighboring localizations in

the STW, at which time the INS cumulative error also increases, and

substituting the relative displacement with a larger deviation into the

set of nonlinear localization equations increases the auxiliary

localization error. The method in this paper has the problem of

choosing the beacon transmission period, because the INS neighbor

displacement is introduced as a known quantity, and the localization

accuracy improvement is limited by the INS cumulative error.

The localization accuracy improvement values for the four

transmission cycles compared with INS in Figure 8 are shown in

Table 4, fromwhich it can be seen that as the beacon transmission cycle

increases, the localization accuracy improvement of method of this

papers as a whole shows a decreasing trend, which is related to the

increase of the INS neighborhood localization deviation. It should be

noted that the localization accuracy of the method in this paper is also

related to the distance of the diver from the SB, so the larger value of the

localization accuracy improvement under each transmission period in

the table tends to correspond to the STW closest to the beacons.

According to the simulation verification, the localizationmethod in this

paper has a certain degree of error correction effect in transmission

cycles less than 200 seconds.

From the above simulation analysis, it can be seen that the

localization method in this paper can effectively correct the
TABLE 2 Inertial Measurement Unit (IMU) sensor error
parameter settings.

Sensor
Type

Error Parameters Numeric
Value

Gyros

Constant Drift (°/h) 0.05

Angular Velocity Random Walk

(°/
ffiffiffi
h

p
)

0.01

Accelerometer
Constant Zero Offset µg √ 50

Speed Random Wandering µg/
ffiffiffiffiffiffi
Hz

p
10
FIGURE 7

Diver motion trajectory and SB localization.
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cumulative error of INS under different beacon broadcasting cycles, and

the effect of improving the localization accuracy is very significant. The

factors affecting the estimation accuracy of the localization method in

this paper are mainly the broadcasting period of the SB and the

proximity of the diver to the SB. In this paper, the 20-second

transmission period is chosen as the acoustic distance measurement

period for the AINL, and the SB is placed as close as possible to the

trajectory of divers to realize the fast and high-precision INS error

correction. Considering that divers need to quickly correct the

accumulated INS error during underwater operation, designing too

manyMPwill causemore serious localization deviation and thus reduce

the localization accuracy, so this paper chooses three MP to construct a

STW In the process of localization, three to four STWs can quickly

eliminate the accumulated INS error, and choosing toomany STWs not
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only increases the computational complexity, but also is prone to the

interference of acoustic ranging distance and affects the correction effect.
4 Conclusion

In this paper, an acoustic tracking AINLmethod based onMP is

proposed. Considering that it is difficult to lay a large number of

acoustic base arrays in a short time for the sudden operation

scenarios of divers, acoustic tracking assisted localization using a

single beacon on the water surface combined with acoustic line

tracking combines the flexibility and simplicity of single beacon

localization and improves the aquatic acoustic localization accuracy

of divers. The localization idea of MP is introduced, and a STW
TABLE 3 Comparison of localization errors for a 20-second beacon duration.

STW Number 1 2 3 4

AINL Error(m) 3.2881 1.1322 0.8715 4.8232

INS Localization Error(m) 51.9373 55.9669 60.0731 64.4272

Improved Localization Accuracy(%) 93.67 97.98 98.55 92.51

Percent Localization Error(%) 1.43 0.47 0.35 1.86
B
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FIGURE 8

Diver trajectories and localization errors under different beacon transmission cycles. (A) Beacon transmission time of 20 seconds; (B) Beacon
transmission time of 40 seconds; (C) Beacon transmission time of 60 seconds; (D) Beacon transmission time of 80 seconds.
TABLE 4 Improving the localization accuracy of the method of this paper over INS with different beacon transmission periods.

Broadcast PeriodSTW Number 1 2 3 4

20 seconds 93.67% 97.98% 98.55% 92.51%

40 seconds 93.88% 96.25% 86.90% 92.31%

60 seconds 61.08% 89.91% 92.86% 76.35%

80 seconds 85.59% 87.45% 81.75% 78.74%
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consisting of three virtual primitives is constructed using the

current localization of divers and two historical positions, and the

spatial localization of divers at the nearest moment is solved based

on the acoustic distance measurement and the inertial navigation

displacement in the neighboring measurement period. To solve the

problem of singularity or pathology in the coefficient matrix of the

localization equation system due to the deviation of the neighboring

localizations of the inertial guides, the LM method is used for

nonlinear iterative optimization search. Then, how to realize the

time synchronization between the SB and the diver is investigated

and the corresponding underwater experiments are carried out.
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