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Typhoon-induced storms surges and river flooding events represent two types of

natural disasters that affect a wide range, occurring with high frequency and causing

serious societal losses. Due to the limited duration of instrumental records, there is

an inadequate understanding of the patterns and mechanisms underlying the

variations in typhoons and floods. The interpretation of sedimentary records aptly

compensates for these deficiencies in terms of the temporal scale, becoming a

crucial medium for extending the temporal span of typhoon and flood records.

Previous studies in this field have primarily focused on the identification of single

types of extreme events. The Changjiang Estuary, particularly Chongming Island, is

significantly affected by both typhoons and river floods, making it an excellent area

for synchronous comparative studies of these two types of extreme events. Based

on the analysis of a core sample, ZP02, collected fromChongming Island, in terms of

chronological, sedimentological, and geochemical characteristics, specific tracing

fingerprints for event deposits from typhoon and flood events are established.

Sediments from typhoon events generally exhibit erosive contact surfaces, coarser

grain sizes, and a tendency to become finer upwards, often featuring layers mixed

with coarse sand and shell fragments. In contrast, flood event deposits vary in grain

size, either coarser or finer, with abrupt contact surfaces compared to normal

sediment layers, and are predominantly brownish-yellow in color. The fingerprint

tracing results indicate that the typhoon event layers are characterized by high values

in principal component 2 (PC2) of the elements, Zr/Fe and Sr/Fe ratios, with low

values in principal component 1 (PC1) the elements and Ti/Ca ratio. Flood event

deposits are marked by high values in PC1 and Ti/Ca ratio, low values in PC2 and Sr/

Fe ratio, and an increase in Zr/Fe ratio in coarser flood layers but no significant

change in finer layers. Based on these fingerprints, 19 layers of typhoon and the same

number of flood events were identified in core ZP02, which correspond well with

documentary records. The establishment of tracing fingerprints for typhoon and

flood event deposits provides methodological support for the identification and

interpretation of various extreme event deposits.
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1 Introduction

Estuarine and coastal regions, as transitional zones between the

sea and land, are characterized by significant land-sea interactions

and constitute an integral part of the Earth system. These regions

are also a focal area of the international geoscience research

program ‘Future Earth Coasts’ (Tessler et al., 2015; Gao, 2018).

Natural disasters represent one of the major environmental

challenges currently facing coastal zones, with typhoon and flood

disasters being the most widespread, frequent, and damaging

globally (Webster et al., 2005; Kuleshov et al., 2014; Vousdoukas

et al., 2018; Schröter et al., 2021). Within the context of global

warming and accelerated sea-level rise, extreme events such as

storms and floods are exhibiting trends of changing frequency

and intensity (Emanuel, 2005; Guan et al., 2018; Bhatia et al.,

2019; Gao et al., 2019; Murakami & Wang, 2022), with typhoons

over the West Pacific region showing a tendency to move toward

mid and high latitudes (Yang et al., 2020a; Xu et al., 2022).

According to the IPCC Sixth Assessment Report, it is projected

that by the year 2100 global sea level will rise by 0.38–0.77 m,

compared to the period of 1995-2014 (Fox-Kemper et al., 2021).

Further, the relative sea level rise rate in the Yangtze River estuary is

much higher than the global average, reaching up to 10 mm/yr

(Yang et al., 2020b). Concurrently, the global concentration of

population and wealth in coastal areas may exacerbate the losses

caused by typhoon and flood inundations, with the potential for

damages from events of the same intensity to be several times

greater than before (Meiler et al., 2023; Rentschler et al., 2023).

Additionally, in the context of global climate change, the recurrence

intervals of extreme events in regions such as the Northwest Pacific

and Southeast Asia are expected to decrease (Donnelly &Woodruff,

2007; Hirabayashi et al., 2013). Considering these factors, coastal

areas are likely to face increased risks related to typhoon and flood

impacts in the future (Wu et al., 2021; Shan et al., 2022; Sun et al.,

2022), necessitating adjustments to coastal protection engineering

standards. However, due to the temporal limitations of

instrumental data, the design of coastal protection works can only

provide frequency-intensity calculations based on the centennial

scale supported by instrumental data, which is inadequate for future

needs. There is an urgent requirement to extend the temporal series

of extreme event data. Sediment records, which contain rich

environmental information, aptly compensate for these temporal

limitations and become ideal carriers for reconstructing long-term

series of extreme events like typhoons and floods.

Chongming Island, located in the Changjiang Estuary, is the

world’s largest riverine sedimentary island (Obodoefuna et al., 2020;

Zhang et al., 2020). Characterized by its low ground surface

elevation, the island is particularly vulnerable to various extreme

events such as typhoons and floods (Zhou et al., 2021; Song et al.,

2023). Additionally, Chongming Island receives abundant sediment

supply, which causes rapid accumulation, making it an ideal

location for studying extreme events. This island is currently

undergoing a major construction program; it also has been

experiencing accelerated tourism development and has a dense

population. Its coastline is home to significant ports and ferry
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terminals, increasingly intensifying the pressure on coastal

protection (Shan et al., 2022). Therefore, in the context of climate

warming, rising sea levels, and intense human activities, there is an

urgent need to examine the sedimentary archive of Chongming

Island for signatures of extreme flooding events, such as those

associated with typhoons and river floods. This research contributes

to the effective identification of typhoon and flood deposits and to

reveal the century-scale evolutionary patterns of typhoon and

flood activities.

The processes associated with extreme flooding events that

affect tidal flat environments differ significantly from those under

normal weather conditions, resulting in distinct sedimentary

records, including layering, color, texture, and physicochemical

properties (Fan et al., 2006; Morton et al., 2007; Zhou et al., 2021;

Szcześniak et al., 2023). Extensive research has been conducted on

sedimentation resulting from typhoons and river floods (e.g.,

Woodruff et al., 2009; Zhao et al., 2016; Yang et al., 2020a; Zhou

et al., 2021). However, studies on the coupled sedimentation

processes of various extreme events, including both typhoons and

river floods, impacting estuarine sand islands like Chongming

Island, are relatively scarce. Additionally, criteria to trace

fingerprints of such events in sedimentary sequences are not yet

fully developed. Hence, the techniques for extracting long-term

records of typhoon and flood activities from sedimentary archives,

and the closely related challenge of distinguishing between typhoon

and river flood sedimentary record, are pressing issues that need to

be addressed. In this respect the following working hypothesis is

relevant: riverine floods and typhoon-induced storm surges leave

distinct imprints in stratigraphic records, and by tracing the

fingerprints of sediment provenance riverine flood and typhoon-

induced storm deposits can be differentiated. Hence, in the present

contribution, we traced event-layers in sediments to retrieve

geological information indicative of high energy inundations

triggered by flood and typhoon events. Such an effort may

provide additional sources of information on the typhoon and

flood pattern changes in response to climate and sea-level changes.
2 The study area

Chongming Island is located at the Changjiang Estuary and is a

typical estuarine sand island. It faces the river on three sides, with

the eastern part adjacent to the East China Sea. It is approximately

positioned between 121°09′30″E to 121°54′00″E and 31°27′00″N to

31°51′15″N. Extending around 80 km in length and varying

between 13 to 18 km in width, the island covers an area of about

1.35×103 km2 and divides the Changjiang Estuary into its southern

and northern branches (Wu et al., 2019; Luo et al., 2022) (Figure 1).

In estuarine areas, the reduction in river flow velocity, combined

with the influence of river water intrusion, prompts the rapid

deposition of sediment, leading to the formation of estuarine sand

bars. Estuarine sand bars continually receive sediment overflow,

causing them to gradually aggrade and expand, eventually emerging

above the water surface as estuarine sand islands (Yan and Xu, 1987;

Bao and Gao, 2021). Chongming Island extends in a northwest-
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southeast direction, featuring a flat terrain with elevations typically

ranging from 3.47 to 5.07 m (Wu et al., 2019); it should be noted

that the elevation data are expressed in terms of Local Datum,

which is some 1.66 m below the mean sea level (Gao, 2022). The

island is higher in the northwest and central parts, slightly lower in

the southwest and east. The predominant sediments consist of sand,

silt, and clayey silt (Yan and Xu, 1987).

Due to measures such as soil and water conservation and dam

construction along the Yangtze River, the suspended sediment flux

in the Yangtze River has significantly decreased (Chu et al., 2009;

Nian et al., 2022; Wang et al., 2022). Hydrological statistical data

from 1953 to 2020 indicate an average annual runoff of 9.0×102 km3

a-1 entering the sea from the Yangtze River (Ministry of water

resources, Changjiang Water Resources Commission, 2021). The

multi-year average sediment flux into the sea was about 5.0×108 t a-1

before the dam construction (1953-1968) and approximately

1.3×108 t a-1 thereafter (2003-2021) (Ministry of water resources,

Changjiang Water Resources Commission, 2021; Yang et al., 2021).

The Changjiang estuary, influenced by river runoff and tidal forces,

is a typical mesotidal estuary (Davies, 1964; Li et al., 2019). It

exhibits an irregular semidiurnal tide, with a multi-year average

tidal range of 2.66 m and a mean tidal range on spring tides of about

4.62 m (Li and Wang, 1998; Li et al., 2019). The predominant wave

types in the Changjiang estuary are wind waves and mixed waves,

with wind waves being the primary driver and swell being

secondary. The significant wave height can reach several meters

during typhoon events (Yang et al., 2000; Huang et al., 2022).

Historically, multiple embankments have been constructed on

Chongming Island for the purposes of reclamation and flood

prevention, with sedimentary records between these seawalls

representing different historical periods (Chen, 1988).
3 Materials and methods

This study examines the sedimentary sequences in a core

labeled ZP02, taken from Chongming Island. The core has a
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length of 820 cm and a diameter of 9 cm (Figure 1). At the core

site, the ground elevation is around 4.5 m (Local Datum); since the

Local Datum is some 1.66 m below the mean sea level (Gao, 2022),

the ground elevation here is about 2.84 m above the mean sea level.

Taking into account the mean tidal range, i.e., 4.62 m (Li andWang,

1998; Li et al., 2019) and the definition of intertidal zone (Gao,

2018), the top 0.53 m of the core belongs to supratidal zone, the

section of 0.53–5.15 m represents intertidal zone, and the section

below 5.15 m is subtidal zone.

The core recovery rate was 92.7%, slightly less than the planned

sampling length, possibly due to compression within the borehole.

The missing section was proportionally extrapolated to the planned

sampling depths. After collection, the core sections were transported

to the laboratory, where they were split longitudinally into two halves

using a core-cutting machine for sedimentary characteristics

description. One half of core was sealed, refrigerated for

preservation, and transported to a darkroom for selecting layers for

dating. Samples were excavated and stored in multi-layered opaque

black bags and tin foil layers for Optically Stimulated Luminescence

(OSL) experiments. The surface of the other half of the core was

smoothed for photography and X-ray fluorescence (XRF) scanning.

Subsequent sampling was conducted at 1 cm intervals, with samples

placed in numbered bags for grain size analysis.
3.1 OSL dating

The OSL dating technique was first introduced by Huntley et al.

(1985) and has a measurement range extending from a few hundred to

several hundred thousand years (Ballarini et al., 2003; Nian et al., 2021).

In recent years, it has been widely applied in studying the chronology of

sedimentary strata in coastal zones (Nian et al., 2018, 2019).

Four samples of core ZP02 were collected for OSL dating. The

split core was examined to eliminate potentially contaminated

surface samples under dim red light. Subsequently, a sampling

spoon was employed to scrape samples multiple times from both

the surface and the region near the contact of the core with the PVC
FIGURE 1

Geographical location of Chongming Island at the Changjiang estuary (A) and the position of core ZP02 (B). “1954 seawall” represents the seawall
completed in 1954 (Chen, 1988). H12 as cited in Duan et al., 2020. CM02 as cited Chen et al., 2021.
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tube, yielding approximately 30 g. These samples were used for

water contents (weight of water/weight of dry sediment.), as well as

U, Th, and K testing. For the central, entirely unexposed section,

approximately 100 g of sediment were scraped. These samples were

sieved using the wet sieving method to separate components with

grain size<45 mm, 45–63 mm, and >63 mm. This study focused on

the 45–63 mm quartz fraction, following preparations (30% H2O2,

10% HCl, 40% HF). The purity of the separated quartz was

examined through infrared–s t imulated luminescence

measurements to ensure there was no contamination of feldspar

in the samples (Duller, 2003). Equivalent dose testing was

conducted using the Lexsyg research model of OSL reader

produced by Freiberg Instruments.

The Bayesian model in the rBacon program was utilized for

calculating OSL dating results, which is a stepwise autoregressive

gamma procedure based on the Bpeat model (Blaauw and Christen,

2011). We ultimately obtained the best age-depth curves with a 95%

confidence interval. All OSL ages are reported relative to AD 2018.

Specific preprocessing and experimental procedures can be found in

Lai et al. (2010) and Cunha et al. (2010), and dating calculations

were undertaken as in Blaauw and Christen (2011).
3.2 Grain size analysis

Grain size characteristics of detritic sediments are closely related

to sedimentary environments, and their frequency distribution is

associated with provenance, transport and accumulation processes,

facilitating the identification of sedimentary environments (Gao and

Collins, 1998). Grain size parameters include mean grain size (Mz),

sorting coefficient (d), skewness (Sk), and kurtosis (Ku). Core samples

taken at 1 cm intervals were analyzed using the Mastersizer 2000 laser

particle size analyzer, manufactured by Malvern Instruments, UK,

with a measurement range of 0.02 to 2000 mm. Initially, an

appropriate amount of sample was placed in a small beaker, to

which a 0.5 mol/L solution of sodium hexametaphosphate was added,

and left to stand for 24 hours to disperse the sediment particles.

Subsequently, the sample was loaded into the instrument for grain

size analysis. The measurement results were exported at 1/4j
intervals, and the method of moments was used to extract the

grain size parameters using the McManus formula (1988)

(Equations 1–4).

�X = o
n
i=1Xifi
100

(1)

d =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(Xi − �X)2fi
100

s
(2)

Sk =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(Xi − �X)3fi
100

3

s
(3)

Ku =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(Xi − �X)4fi
100

4

s
(4)
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Where �X is the mean grain size (which can be also written as

Mz), d is the sorting coefficient, Sk is skewness, Ku is the kurtosis. Xi

is the mid-point of each class interval and fi is the frequency in

weight percent, n represents the number of grain size groups in

the sample.

Mz is reported in microns (mm) or phi (j) units, where it is

appropriate, while sorting coefficient is in phi (j) units. Phi (j) is a
dimensionless expression for statistical grain size parameters

(McManus, 1963) (Equation 5).

j = − log2
d
d0

(5)

Where d is the grain diameter in millimeters, d0 is the diameter

of 1 mm grain.

The sand-silt-clay triangular diagram proposed by Folk et al.

(1970) was employed for sediment classification.
3.3 Core scanning

Core ZP02 was scanned for geochemical elemental analysis

using an X-Ray Fluorescence (XRF) scanner produced by the Dutch

company Avvatech. This instrument offers advantages over more

traditional methods, such as non-destructive analyses, rapid

measurement, and high resolution, and it has been applied in

fields like sedimentology and paleoclimatology (Swindles et al.,

2018; Croudace et al., 2019; Seki et al., 2019). Its applications

include paleoclimate reconstruction; identification of event

deposits such as river floods and typhoons; tracing of marine and

terrestrial sediments; as well as delineation of sedimentary strata

(Huang et al., 2019; Wang et al., 2019; Xue et al., 2021).

For core geochemical analysis, the first step involved

smoothening the surface of the core sections, followed by

covering with Ultralene film. This reduces the impact of surface

roughness and prevents contamination of the instrument’s probe by

the sample. The scanning interval was set at 5 mm. The target X-ray

tube used was a Rh tube, with testing voltages of 10 kV, 30 kV, and

50 kV, and a current of 500 mA. This enabled the acquisition of

relative intensity values for 29 elements including Al, Si, S, Cl, K, Ca,

Ti, Zr, Rb, Fe, Br, Ag, and Ba. The results obtained from XRF are

relative values, and the quality of the data is influenced by factors

such as grain size and water content variations, core surface

imperfections, presence of organic matter, and water pooling on

the sample surface (Croudace and Rothwell, 2015). To mitigate

these influences, element-to-element ratios were used. Fe is usually

used as a reference element (Grygar and Popelka, 2016; Zhou et al.,

2021). After elemental scanning of the core, the probe was adjusted

and a U-shaped non-magnetic base was mounted to use the

magnetometer attached to the instrument, obtaining the magnetic

susceptibility per unit volume at a scanning interval of 5 mm. The

instrument is equipped with a high-resolution camera, which was

used to obtain high-definition images of the core. Subsequently,

principal component analysis (PCA) was conducted on the XRF

data to identify major sediment end-members and detect

correlations between elements (Rapuc et al., 2019).
frontiersin.org

https://doi.org/10.3389/fmars.2024.1366676
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhao et al. 10.3389/fmars.2024.1366676
3.4 The documentary record:
data collection

Documentary records have been extensively utilized in the

reconstruction of paleoclimatic and hydrological events. Various

terms in these documents represent typhoon and flood events, such

as ‘water disaster’, ‘dike breach’ and ‘great flood’. Shanghai, as a

major economic and cultural center in China, is a region where

scientific and technical observations of catastrophic events were

made early on, making use of its rich documentary archive. ‘The

History of Natural Disasters in Shanghai’ (Liu et al., 2010)

chronicles storm surges, floods, strong winds, and other natural

disasters from AD 751 to 1949, including their occurrence times,

locations, and damage inflicted. ‘Encyclopedia of Meteorological

Disasters in China, Shanghai Volume’ (Wen and Xu, 2006)

documents typhoons from AD 251 to 2000 and floods from AD

371 to 2000. These two compilations were used as our

documentary database.
3.5 Identification of event layers

The characteristics of sedimentary facies are determined by

sediment sources, sedimentary processes and type of

sedimentary environment (Reading, 1986). However, the

permanent sedimentation regime of any deposit ional

environment can be disturbed during high-energy events.

These events cause brief overland floods with high flow

velocities and are reflected in the sediment by marked

contrasts in grain size and composition, reflecting both the

origin of the displaced sediment and the hydrodynamic

conditions of the sedimentation, which differ from the

permanent regime (Morton et al., 2007; Chagué-Goff et al.,

2011; Peters and Jaffe, 2010). In the context of a tidal flat,

characterized by fine-grained sediments, the occurrence of

coarser sediment laminae interbedded with fine grained

sediment in the core may be indicative of an extreme event.

This statement holds whether the coarsening is related to a

change in sediment source or to selective winnowing of finer

particles and the formation of a coarse lag deposit.

The procedure of identifying the peaks of the coarse fraction is

as follows. Extreme outliers in the coarse tail of the distribution,

identified using the quartile method and visualized in box plots, are

first removed from the data set. The mean (X̄) and standard

deviation (s) are then recalculated excluding these outliers

(Ercolani et al., 2015), and finally, take X̄+s and X̄−s (unit: mm)

as the background thresholds for coarse and fine grains,

respectively. Although tidal flat sediments show a general

tendency for mean grain size to decrease from offshore to

onshore, in many cases the flat hosts several sub-environments

that complicate this simple spatial pattern (Fan et al., 2006; Yang

et al., 2022a). Therefore, the calculation of background parameters

was performed in different sections of core ZP02, in agreement with

the changing environmental conditions interpreted from the

sedimentary column.
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4 Results

4.1 Lithostratigraphic characteristics

The color, composition and structure vary along ZP02 core

length. The colors are diverse, mainly gray-brown, yellow-brown,

and bluish-gray. The texture shows significant variations, including

clay, sandy silt, and silt. Based on texture and lithological

characteristics, it can be roughly divided into three units, as

described below (all depths mentioned in the study refer to

depths below the ground surface):
• 70–0 cm: Gray-brown, yellow-brown silt, low moisture

content, low in moisture, stiff and with no apparent

bedding. At 22 cm, modern rice straws are present, and

rust stains are observed between 40 and 70 cm, indicating

noticeable anthropogenic disturbance. Data for this core

section will not be presented in this study.

• 263–70 cm: Sticky yellow-brown, gray-brown sediment

predominantly composed of silt, exhibiting low moisture

content. This unit features sandy-silty interlayers and

lenticular bedding. Muscovite is present, rust stains occur

at 147–148 cm, and shell debris is found at 215 cm.

• 820–263 cm: Grayish-blue, yellow-brown, and gray-brown,

silty sand, with high moisture content and sandy-silty

interlayers in multiple locations. There is a mud layer

appears at 291–301 cm and a finer sand layer in the range

of 675–686 cm, with a gray-brown color, showing a sharp

contact with the sediments above and below. Abundant

shell debris and coarse sand are present at 282 cm, 710–750

cm, and 801–803 cm, and muscovite is observed in

multiple layers.
4.2 Chronology

The rBacon program was used to calculate OSL ages using samples

at 167 cm, 474 cm, 680 cm, and 752 cm; the ages obtained were 0.243 ±

0.01 kyr BP, 0.305 ± 0.02 kyr BP, 0.341 ± 0.02 kyr BP, and 0.405 ± 0.03

kyr BP, respectively (Supplementary Table 1), with no age inversions.

Results include the 95% confidence interval, median andmean ages for

each depth (Figure 2). The most recent OSL age predates 1954, the date

of construction of the seawall closer to sea at the sampling site

(Figure 1). Additionally, the dating results are consistent with those

found in Chen et al. (2021) and Duan et al. (2020) study on

Chongming Island, which reinforces the credibility of the OSL dating

results presented in this paper. We choose the minimum age as the

value for the dating framework.
4.3 Grain size characteristics

The sediment characteristics of the core (Figure 3), are

predominantly silt and sand, with minor amounts of clay.
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Overall, and over time, the sand fraction in the sediment first

increases and then decreases; the silt fraction initially decreases and

subsequently increases; the clay fraction shows a decreasing trend.

Core ZP02 sediment (Figure 3) is mainly composed of sand (0.4%–

90%), followed by silt (7.2%–86%) and, least, clay (2.0%–24%).

There is a variation in sediment types, transitioning from silt to silty

sand, and then to sandy silt again. The vertical variations in their

characteristics are depicted in Figure 3 and allowed to divide the

core into three sediment units.

Unit I (70–0 cm) varies less in grain size parameters than the

underlying units, with mean grain size in the range of 6.1j–7.1j
(12.1–27.0 mm), sorting coefficient value between 1.68j and 1.93j,
skewness value in the range of 2.40–1.79, and kurtosis value

between 2.14 and 2.54.

Unit II (263–70 cm) shows larger variation in the grain size

parameters, with mean grain size in the range of 4.6j–7.0j (13.8–

72.0 mm), sorting coefficient in the range of 1.40j–2.15j, skewness
in the range of 1.37–2.0, and kurtosis in the range of 2.19–2.85.

Unit III (820–263 cm) shows very large changes in the grain size

parameters, with mean grain size in the range of 3.5j–7.3j (10.4–

123.1 mm), sorting coefficient in the range of 1.26j–2.42j, skewness
in the range of 0.91–2.50, and kurtosis in the range of 2.04–3.12.
4.4 Geochemistry and
magnetic susceptibility

Marine and riverine sediments contain a wealth of information

on environmental changes, such as climate variations, regional
FIGURE 3

Vertical distribution of sediment grain size and parameters in core ZP02. The gray dashed line represents the depth boundaries of different units.
FIGURE 2

Age-depth model for the sediment sequence of core ZP02. The
gray dashed lines represent the 95% confidence interval. The blue
symbols indicate OSL test points on the core.
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events, and human activities (Croudace and Rothwell, 2015; Yan

et al., 2020). Among the 29 elements obtained through XRF

scanning, the elements that are closely associated with marine

(e.g., Zr, Sr, Ca and Cl) and terrestrial (e.g., Al, Si, K, Ti, Mn, Fe,

Zn, Rb and Ba) inputs were selected for further analysis (Haug et al.,

2001; Grygar and Popelka, 2016; Tian et al., 2019; Goslin et al.,

2022). The average of ratios Al/Fe, Si/Fe, Cl/Fe, K/Fe, Ca/Fe, Ti/Fe,

Sr/Fe, Zr/Fe, Rb/Fe, Ba/Fe, Zn/Fe in the whole core are 0.08, 1.06,

0.16, 0.24, 0.80, 0.13, 0.22, 0.30, 0.10, 0.10, 0.04, respectively. The

vertical variations in their concentrations are depicted in Figure 4

and support division of the core into two sections.

From 263 to 70 cm, the Al/Fe and Si/Fe ratios are 0.03–0.12 and

0.50–1.86, with mean values of 0.08 and 1.0, respectively, showing

an initial increase followed by a decrease upcore. The Cl/Fe, K/Fe,

Ti/Fe, Zr/Fe, Rb/Fe and Zn/Fe ratios vary within the ranges of 0.07–

0.22, 0.15–0.31, 0.08–0.22, 0.09–0.75, 0.06–0.13 and 0.02–0.06,

respectively. The Ca/Fe, Sr/Fe and Ba/Fe ratios exhibit decreasing

trends upcore, within the ranges of 0.39–1.18, 0.09–0.29 and 0.04–

0.12, respectively.

From 820 to 263 cm, the Al/Fe and Si/Fe ratios are 0.02–0.13

and 0.26–2.01, with mean values of 0.08 and 1.08, respectively. The

Cl/Fe ratio ranges from 0.09 to 0.33, with a mean value of 0.17, and

the element ratio decreases upcore. The K/Fe ratio varies between

440–820 cm and then decreases. The Ca/Fe and Sr/Fe ratios

generally upwards, in the range of 0.31–1.39 and 0.08–0.41,

respectively. The Ti/Fe ratio ranges from 0.08 to 0.26, with a

mean value of 0.03, and the element ratio increases significantly

in the 263–380 cm section. The Zr/Fe ratio ranges from 0.08 to 1.57,

with a mean value of 0.31, and the element ratio initially shows

pronounced variations, followed by an increase upcore. The Rb/Fe

ratio ranges from 0.04 to 0.17, with a mean value of 0.11, and the

ratio initially shows variations, and then decreases upcore. The Ba/

Fe ratio ranges from 0.04 to 0.18, with a mean value of 0.1, and the

element ratio varies significantly. The Zn/Fe ratio ranged from 0.03

to 0.08, with a mean value of 0.04.

Principal Component Analysis (PCA) of the aforementioned

elements was used to clarify the relationships among the elements

and the geochemical distribution within the sedimentary sequence

(Figure 5). The plot diagram in Figure 5 shows that the analyzed

elements cluster in two major groups. Group I (Zr, Sr, Ca) is

positively correlated with PC2, showing high loadings (0.4 to 0.6),

and we have interpreted this group as of marine origin. Group II

(Al, Si, K, Ti, Mn, Fe, Zn, Rb, Ba) is positively correlated with PC1,

also showing high loadings, and we classified this group as of

terrigenous origin.

The plot of magnetic susceptibility with depth (Figure 6) is

compatible with the division of ZP02 core in the two major units,

below 70 cm, as indicated above. From 70 to 263 cm, the magnetic

susceptibility ranges from 22.2 to 214.8 SI, with a mean value of 50.3

SI, showing small variations in the magnitude over this depth range.

From 263 to 820 cm, the magnetic susceptibility ranges from 22 to

938.5 SI, with a mean value of 73.1 SI, and it increases significantly

in the 263–300 cm section, with a mean value of 308.7 SI.
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4.5 Characteristics of the sedimentary
environments and facies

In most cases, sediment on tidal flats consists of materials

ranging in size from sand to clay. Sandy materials tend to

accumulate in the lower part of the tidal flat, while muddy

materials deposit in its upper part (Reineck and Singh, 1980; Gao,

2018). Between the upper and lower parts, the central region of the

tidal flat usually consists of interbedded sand and mud.

The lowest part of the core ZP02 consists of sandy layers, which

are interpreted as corresponding to the lower intertidal and subtidal

zones (Reineck and Singh, 1980; Gao, 2018). Sediment cores taken

from the upper part of tidal flats often exhibit ‘fining upward’ size

grading (Klein, 1985).

Based on the lithological characteristics, chronological framework,

grain size, and geochemical data, and excluding the artificially

disturbed layer from 0 to 70 cm, the depositional environment since

AD 1665 can be reconstructed. The part of the sediment core analyzed

can be divided into two sedimentary environments: the intertidal zone

and the subtidal zone. There are three sedimentary facies: silt facies,

sand facies, and silty sand facies (Figure 6).

In terms of the development stages, the sedimentary sequence

can be divided into two phases.

Phase One: AD 1665–1776, burial depth of 8.2 to 2.6 m. During

this period, the sediment grain size shows an upward coarsening

trend, accompanied by the abundant presence of shell fragments

and the development of parallel lamination. The coloration is

primarily gray-brown and bluish-gray, indicating predominance

of a reducing environment which is compatible with extended

periods of submersion. The Sr/Fe ratio is relatively high overall,

but it noticeably decreases in certain regions of the core (e.g., 668–

685 cm), reflecting the influence of both marine and terrestrial

sediments. This phase corresponds to sedimentation from subtidal

to intertidal zones. The sedimentary facies include sand and silty

sand facies, with a boundary at approximately 6.6 m.

Phase Two: AD 1776-1816, burial depth of 2.6 to 0.7 m. In this

segment, the sediment is fining upwards, characterized by interbedding

of mud and sand, and the development of lenticular bedding. The color

transitions from gray-brown to yellow-brown, and rust spots appear in

the upper part, indicating a transition to an oxidative environment. The

Sr/Fe ratio decreases upwards. This phase represents the upper part of

the intertidal zone in terms of the sedimentary environment, with

sedimentary facies characterized by silt.
5 Discussion

5.1 Establishment of sedimentary tracing
fingerprints for typhoon and flood events
on Chongming Island

Extreme events in tidal flat environments, such as typhoons

and floods, leave distinct sedimentary records that markedly differ
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from those formed under calm weather conditions (Fan et al.,

2006; Gao, 2017; Muller et al., 2022). Typhoon-related deposits are

typically present as minerogenic sandy sediments (coarse sand

layers) or mixed with a large amount of shell debris. These

deposits can reach centimeter-scale thickness and exhibit

distinct sedimentary structures and geochemical profiles (such

as peaks in Sr) compared to normal weather deposits (Woodruff

et al., 2009; Muller et al., 2022; Yang et al., 2022a). During flood

events in the Yangtze River, a significant influx of terrestrial

materials into the estuary occurs. Flood deposits exhibit

no t i c e ab l e d i ff e r en c e s i n s t r a t i g r aphy , co l o r , and

physicochemical properties compared to deposits formed under

tranquil conditions (Wang et al., 2011; Zhou et al., 2021; Lu et al.,

2023). During intense hydrodynamic river flood events in the
Frontiers in Marine Science 08
Yangtze River, deposits in the core exhibit an upward coarsening

in grain size and poor sorting, but also show significant regional

variation (Zhou et al., 2021). Low-frequency or near-zero flow

velocity with advection or diffuse flow form relatively finer-

grained event layers (Yang et al., 2022b).

Due to the effects of tidal flat elevation and water level, typhoons

exhibit distinct sedimentary characteristics at various locations

within the tidal flat. Consequently, the establishment of typhoon

event tracing fingerprints in tidal flats necessitates differentiation

across the various sub-environments of tidal flats (Fan et al., 2006;

Gao, 2018; Yang et al., 2022a). This involves calculating the

background threshold values for normal deposition at each

stratigraphic level and then identifying event layers that exceed

these background thresholds.
FIGURE 4

Variation of elemental ratios in Core ZP02. The red dashed line represents the average value. The blue solid line represents the depth boundaries of
different units.
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Variations in elemental composition within sediments are

closely linked to both marine and terrestrial inputs (Haug et al.,

2001; Grygar and Popelka, 2016; Tian et al., 2019; Yan et al., 2020;

Goslin et al., 2022). By conducting PCA on elements such as Al, Si,

Cl, K, Ca, Ti, Mn, Fe, Zn, Rb, Sr, Zr, and Ba in the sediment cores

from Chongming Island, it was determined that the plot of elements

along PC1 and PC2 could provide information on terrestrial and

marine inputs. The greater the input, the higher the load in each of

these principal components (Figure 5).
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Geochemical elements are often utilized in the form of ratios,

and when combined with the characteristics of individual elements,

the Zr/Fe ratio can indicate the presence of coarse-grained particles

within a core, particularly useful in identifying coarse sediment

deposits in estuarine regions (Tian et al., 2019; Zhou et al., 2021;

Zhao et al., 2023). The Ti/Ca ratio is indicative of terrestrial inputs,

while the Sr/Fe ratio signals marine sources (Croudace and

Rothwell, 2015). The combination of Ca and Sr, which have

affinity properties, indicates the eventual source changes,

facilitating the further identification of typhoon event deposits.

As such, the deposition resulting from typhoon and flood events

can be identified based on the following characteristics (Figure 7):
• The sediments exhibiting grain size coarser than the

threshold of background-coarse grains, with Principal

Component 2 at peak values, and Zr/Fe and Sr/Fe ratios

showing peak variations, are indicative of typhoon deposits.

• Sediments with grain size coarser than the threshold of

background-coarse grains, with Principal Component 1 at

peak values, coupled with peak variations in the Zr/Fe and

Ti/Ca ratios, are indicative of river flooding event deposits.

• Sediments with grain sizes finer than the threshold of

background-fine grains, but with Principal Component 1

in the high peak value range, and exhibiting no significant

change in Zr/Fe ratio but a peak variation in Ti/Ca ratio, are

indicative of flood event deposits.

• Sediments with grain sizes slightly coarser than the

threshold of background-coarse grains, finer than the

threshold of background-fine grains or between the two
FIGURE 5

Rotated loading plot of principal elements in core ZP02. Orange
arrows indicate elements with high PC1 values, and blue ones
indicates elements with high PC2 values.
FIGURE 6

Stratigraphy of core ZP02 and classification of sedimentary environments and facies. MS refers to magnetic susceptibility. Mz refers to mean
grain size.
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Fron
thresholds, but with no significant variation in other

indicators, are characteristic of normal tidal flat deposit.
5.2 Application to Chongming Island core

5.2.1 Analysis of typhoon and flood events
in sediment

Based on grain size, elemental composition, and magnetic

susceptibility, the 70–263 cm section of Core ZP02 is identified as

silt facies (Figure 6), the threshold of background-fine and coarse

grains are 19.9 mm and 30.4 mm, respectively. The 263–820 cm

section corresponds to the sand and silty sand facies, where grain

size coarsens from bottom to top and shows significant variation at

different depths. This section was divided into two segments, 263–

660 cm, and 660–820 cm. For the former, the thresholds of

background-fine and coarse grains are 56.5 mm and 76.9 mm,

respectively. For the latter, the thresholds of background-fine and

coarse grains are 38.6 mm and 70.7 mm, respectively. Typhoon and

flood events identified in Core ZP02 using these tracing fingerprints

are illustrated in Figure 8, where gray and yellow areas represent

typhoon and flood event deposits, respectively, with 19 layers each

(for a photograph of a typical extreme event layer, see Figure 9).

In summary, typhoon deposits typically exhibit sharp contact

surfaces, coarser grain sizes with an upward fining trend, and often

contain layers with minerogenic coarse sand and shell fragments, or

just minerogenic sand (Figures 8, 9). In these layers, Principal

Component 2 (PC2), as well as Zr/Fe and Sr/Fe ratios, tend to be

high while the Ti/Ca ratio usually remains in a range of low values

(Figure 8). Flood event deposits display either coarser or finer

sediment compared to the background threshold, with Principal

Component 1 (PC1) and the Ti/Ca ratio in higher value regions.

Usually, PC2, Sr/Fe ratios, and Ca concentrations in flood deposits

tend to be in lower-value regions. Notably, in cases where flood

event deposits show coarser grain sizes, the Zr/Fe ratio also tends to

be high (Figures 8, 9). The sedimentary layers deposited during
tiers in Marine Science 10
typhoons and river floods also exhibit color changes in comparison

with the permanent regime sediments.

Dividing the comprehensive depth-age model of Chongming

Island cores into 50 years-long intervals (Table 1) suggests that

more typhoon and flood event layers occurred in the periods 1665-

1714 and 1765-1816 compared to 1715-1765. Generally, both

typhoon and flood frequencies exhibit an ‘increase-decrease-

increase’ pattern over these intervals.

5.2.2 Comparison of sedimentary records with
documentary records

The sedimentary column accumulated from 1665 to 1816, and

sampled by Core ZP02, contains 19 typhoon layers and 19 flood

layers (Figure 8). According to the sedimentary record, typhoons

were more frequent in 1665-1702, 1727-1755, and 1766-1816

(Figure 10), with 7, 5, and 7 events respectively. As for flood

layers, they were more frequent during 1665-1702 and 1769-1801

(Figure 11), with 7 and 6 occurrences respectively, followed by 3

events from 1733 to 1755, while no flood layers were identified in

other periods. Notably, both typhoon and flood events were

recorded in Core ZP02 in 1732 and 1755.

According to documentary records, a total of 49 years is

characterized by typhoon occurrences and 57 years by flood

events from 1665 to 1816. Comparing these two types of extreme

events as identified in Core ZP02 and documentary records

(Figures 10, 11), it was found that in some years both typhoon

and flood events occurred. For instance, in 1732, documentary

records mention a storm surge on July 16th in Chongming County

that caused widespread inundation and numerous deaths, but no

flood event is recorded. However, in 1733, flood conditions are

described, although falling within the margin of chronological error.

In 1755, both typhoon and flood events are documented in the

literature, with descriptions such as ‘severe storm tides’ and ‘major

flood disasters’ (Wen and Xu, 2006; Liu et al., 2010). In both 1755

and 1732, flood deposits occurred before typhoon deposits. The

corresponding event-layers of both flood and typhoon events

exhibit coarser grain sizes and high Zr/Fe ratios. The difference
FIGURE 7

Tracing fingerprints of typhoon and flood deposits and flow chart for their identification. “Non-typhoon” refers to flood and regular sedimentation.
“Non-flood” refers to typhoon and regular sedimentation.
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lies in the PC2, Sr/Fe and Ca values, which are high in typhoon

layers and low in PC1, whereas the flood layers characteristics are

the opposite (Figure 8).

The event layers in core ZP02 indicate that there were 16

typhoon layers and 14 flooding layers from 1665 to 1815

co r r e spond wi th documen ta ry ev idence (Tab l e 2 ) .

Additionally, there were 3 years of typhoon and flood events

recorded solely in the core and not matched in documents.

Conversely, there were 33 years of typhoon and 43 years of

flood events recorded in documents that were not identified in

the core. Combining the sedimentary and documentary records,

we conclude that during 1665-1816, there were a total of 52 years

with typhoon events and 61 years with flood events .
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Documentary records two types of extreme events that were

not identified in the sedimentary record. Firstly, extreme events

may not leave positive sedimentary records in areas, where they

primarily cause erosion. In these cases, only erosional surfaces

appear in the sedimentary column without the formation of

event deposits (Fan et al., 2006; Donnelly and Woodruff, 2007;

Tian et al., 2019). Additionally, the preservation potential of

event deposits is influenced by factors such as the channel

meander ing in the estuary, low sedimentat ion rates ,

hydrodynamic conditions, and spatial location (Gao, 2009;

Feng et al., 2016; Gao et al., 2019). Conversely, documentary

descriptions are susceptible to loss or damage due to wars,

natural disasters, and other disturbances, leading to inevitable
FIGURE 9

Photographs of typical typhoon and flood event deposits in core ZP02. The yellow arrows panels (A, C) indicate flood deposits, and white arrows
panels (B, C) indicate typhoon deposits.
FIGURE 8

Multi-indicator typhoon and flood identification layer diagram of core ZP02. In the Mz diagram, the vertical dashed lines (left) represent mean grain
size−one standard deviation (unit: mm) and the vertical dashed lines (right) represent mean grain size+one standard deviation (unit: mm). The
horizontal light gray bands represent typhoon layers, while the yellow bands denote flood layers.
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gaps in records. The use of sedimentary fingerprints of extreme

typhoon and flood events provides a methodological foundation

for interpreting sedimentary records in regions affected by these

two types of events. The study of typhoon and river flood events

on Chongming Island provides valuable insights for its

management. It aids in formulating measures to protect and

restore the ecosystem and enhances the capacity to respond to

future extreme events.
TABLE 1 Time variation of the occurrences of typhoon and flood events
identified in core ZP02.

Age (AD) Typhoon occurrences Flood occurrences

1665-1714 7 8

1715-1765 5 3

1765-1816 7 8
FIGURE 10

Typhoon chronology in core ZP02 (1665-1816). Column I indicates dates of typhoon events identified in core sediments using the tracing
fingerprints proposed herein; column II indicates the dates of typhoon events according to ‘The History of Natural Disasters in Shanghai’ (Liu et al.,
2010); column III indicates dates of typhoon events as per ‘The Encyclopedia of Meteorological Disasters in China: Shanghai Volume’ (Wen and Xu,
2006); column IV contains a compilation of typhoon event dates by combining the first three columns; Horizontal gray stripes indicate the
alignment of typhoon events in the core with documentary records.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1366676
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhao et al. 10.3389/fmars.2024.1366676

Frontiers in Marine Science 13
6 Conclusions

In this study we conduct a comprehensive analysis of the ZP02

sediment core taken from the eastern Chongming Island, using OSL

dating, lithological, grain size, and geochemical properties and

magnetic susceptibility assessment, for paleoenvironmental

reconstruction, focusing on trace fingerprints associated with extreme

river floods and typhoons. Sedimentary data were combined with
TABLE 2 Number of occurrences of the typhoon or flood events that
were recorded in core but absent in documents (CO), in documents but
absent in core (DO), and both in core and documents (C&D), from 1665
to 1816.

Event
type

CO DO
C&D

Typhoon 3 33 16

Flood 3 43 14
FIGURE 11

Flood chronology in core ZP02 (1665-1816). Column I indicates dates of flood events identified in core sediments using the tracing fingerprints
proposed herein; column II indicates the dates of flood events according to ‘The History of Natural Disasters in Shanghai’ (Liu et al., 2010); column III
indicates dates of with flood events as per ‘The Encyclopedia of Meteorological Disasters in China: Shanghai Volume’ (Wen and Xu, 2006); column IV
contains a compilation of flood event dates by combining the first three columns; Horizontal gray stripes indicate the alignment of flood events in
the core with documentary records.
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documentary records of typhoons and floods. The main conclusions

are as follows.

(1) Grain size and elemental composition of event deposits

exhibit significant differences when triggered by typhoon and flood

events. In typhoon event layers, sediment grain size coarsens, the

load of diagnostic elements along Principal Component 2 (PC2)

reaches peak values, and Zr/Fe and Sr/Al ratios show high

variations. In river flood event layers, sediment grain size can

increase, maximum loads of diagnostic elements were found

along Principal Component 1 (PC1), and Zr/Fe and Ti/Ca show

very large; alternatively, the grain size can decrease with PC1 at peak

values, but without significant change in Zr/Fe and large variations

in Ti/Ca.

(2) Utilizing the tracing fingerprints established in this study,

19 typhoon and the same number of flood event layers were

identified in sediments accumulated during the 1665-1816 period.

By dividing the depth-age model of Chongming Island core

50 years-long intervals, frequency of typhoons and floods was

observed to change and characterized by a pattern of ‘increase-

decrease-increase’.

(3) From 1665 to 1816, the extreme event layers identified in the

core were compared with documentary records of typhoons and

floods in the region of Shanghai, resulting in a match for 16 typhoon

event years and 14 flood event years. Combining the event deposit

records from Core ZP02 with documentary records, we conclude

that there were 52 years with typhoon events and 61 years with

flood events during that period. Part of the non-matching data may

be due to gaps in the documentary compilations and inability of

typhoon or flood inundations to leave positive sedimentary record.

As a result, the number and frequency of typhoon and flood events

recorded in documents covering the Changjiang estuary and

number and frequency of the events identified in sediment are

fewer and lower, respectively than the actual occurrences.
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