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Although existing in situ oceanographic data are sparse, such data still play an

important role in submarine monitoring and forecasting. Considering budget

limitations, an efficient spatial sampling scheme is critical to obtain data with

much information from as few sampling stations as possible. This study improved

existing sampling methods based on the Quadtree (QT) algorithm. In the first-phase

sampling, the gradient-based QT (GQT) algorithm is recommended since it avoids

the repeated calculation of variance in the Variance QT (VQT) algorithm. In addition,

based on the GQT algorithm, we also propose the algorithm considering the change

in variation (the GGQT algorithm) to alleviate excessive attention to the area with

large changes. In second-phase sampling, QT decomposition and the greedy

algorithm are combined (the BG algorithm). QT decomposition is used to divide

the region into small blocks first, and then within the small blocks, the greedy

algorithm is applied to sampling simultaneously. In terms of sampling efficiency, both

the GQT (GGQT) algorithm and the BG algorithm are close to the constant time

complexity, which is much lower than the time consumption of the VQT algorithm

and the dynamic greedy (DG) algorithmand conducive to large-scale sampling tasks.

At the same time, the algorithms recommend above share similar qualities with the

VQT algorithm and the dynamic greedy algorithm.
KEYWORDS

observing system simulation experiments, spatial sampling, gradient-based quadtree
(GQT), variance quadtree (VQT), block-greedy algorithm
1 Introduction

In situ data can provide high-quality marine information that can be used for data

assimilation and correction of satellite data, thus further contributing to operational

applications such as marine monitoring or forecasting to prevent environmental

disasters. Obtaining in situ oceanic observations is vital but expensive, so it is desirable
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to maximize the gathering of useful information from as few

sampling stations (moored buoys) as possible. Thus far, moored

buoys have contributed greatly to the study of tropical ocean–

atmosphere interactions (Legler et al., 2015), but are still sparsely

distributed (Centurioni et al., 2019). The expansion of the moored

buoy network is essential to provide more accurate and real-time

data for oceanic simulations or predictions.

A critical aspect of this expansion is the design of a spatial

sampling scheme for moored buoys. Observing System Simulation

Experiments (OSSEs), or OSSE-like experiments, is one possible

solution (Zhang et al., 2010, 2020). OSSE-like experiments mainly

include three parts: (1) the “true” ocean, which is the output of a

high-resolution ocean model (nature run), or satellite observations

considered to reflect the true state of the ocean; (2) simulated

observations, where sampling systems are used to collect data in the

reference ocean; and (3) error quantification, which is obtained by

comparing the mapping of sampling data and the reference ocean.

The goal of an OSSE-like experiment is to minimize the expected

error by optimizing the sampling strategy.

To minimize the sampling error, spatial sampling generally

follows two principles (Van Groenigen et al., 1999). First, the

geometric coverage of the study area should be as reasonable as

possible to ensure sufficient distance among sampling stations.

Secondly, the sampling stations need to be distributed in areas

where large changes occur, to capture as much variation as possible.

As such, when the sampling budget is limited, an effective spatial

sampling strategy is important for obtaining accurate predictions.

Sampling in a geostatistical context is a viable option.

McBratney et al. (1981) and Van Groenigen et al. (1999)

optimized their sampling schemes by minimizing the kriging

variance. Critics of this approach point out that it requires prior

knowledge or prediction of the semivariogram of the variable of

interest, and the kriging variance assumes that the variable is

stationary, which is often violated in practice. Directly

considering the spatial coverage (Royle and Nychka, 1998) or

mean square distance (Brus et al., 2006, 1999) based on a

geometric criterion is an alternative method, which avoids

considering the semivariogram. However, if spatial information

on variables such as satellite observations or simulation outputs is

present, it is necessary to take the variable features into account in

the sampling scheme to further improve the sampling quality.

To capture the features of the variation in a variable, its gradient

(Chen et al., 2019), variance (Lin et al., 2010; Yao et al., 2012; Yoo

et al., 2020), and entropy (Angulo et al., 2005; Andrade-Pacheco

et al., 2020) can be used as suitable indicators. Then, once these

features have been specified by the indicators, the sampling

algorithm can begin adding sampling stations to the sampling

scheme. McBratney et al. (1999) applied the method of quadtree

(QT) decomposition to obtain sub-regions with similar variance to

be sampled. Rogerson et al. (2004) added sampling points

sequentially via the greedy algorithm to quickly arrive at a

suboptimal solution. Meanwhile, Delmelle and Goovaerts (2009)

used the simulated annealing algorithm to simultaneously search

sampling points to approach the optimal solution.

In practice, the complexity of spatial sampling requires finding a

balance between the consumption of computing resources and the
Frontiers in Marine Science 02
quality of the sampling scheme. The vast solution space of spatial

sampling raises the problem that heuristic algorithms, such as

simulated annealing, are time-consuming and cannot truly

achieve the optimal solution. Moreover, to ensure a good

sampling scheme, it is necessary to compare with some fast

algorithms or use the results given by these algorithms as the

initial solution for iteration. Moreover, the sampling objects are

diverse, and they have different emphases. In the case of moored

buoys, temperature, salinity, absolute dynamic topography, and

even some marine biochemical parameters such as dissolved

oxygen, are all variables to monitor. So, the sampling algorithm

needs to be as flexible and simple as possible, which means that an

appropriate sampling scheme can be obtained according to different

variables or objects by the algorithm without multiple parameters

and statistical assumptions. In addition, when employing simulated

data or satellite data for simulated sampling, the data used will

inevitably be different from the real situation. Consequently, an

imprecise sampling algorithm, which only determines the

approximate sampling location, may be more suitable. Therefore,

a fast, simple, flexible and imprecise algorithm is needed in practice

to solve the above problems.

In this paper, in section 2, the QT algorithm is used as a feasible

method that divides the area of interest into sub-regions with

certain homogeneous features for sampling. To reduce the time

consumption and increase the flexibility of sampling different

objects, we propose a novel sampling method based on the

variance QT by replacing the variance with the gradient to

optimize the first-phase sampling scheme. Moreover, we combine

the QT algorithm with the greedy algorithm for the second-phase

sampling to improve the efficiency. In section 3, sea surface

temperature (SST) and sea surface salinity (SSS) in the northern

Bay of Bengal are chosen for validating the improved sampling

methods. This is because the Bay of Bengal is one of the most active

breeding grounds for tropical cyclones, and these tropical cyclones

can make landfall (Bandyopadhyay et al., 2021; Wu et al., 2023) and

then have impacts on weather in southwestern China (Li et al.,

2023). In addition, surface zonal and meridional velocities have also

been added in long-term multi-variable experiments. In section 4,

the potential issues involved in using variation as a criterion for

spatial sampling are discussed, and a new feature that can better

capture the spatial variability is proposed. The conclusions are listed

in section 5.
2 Methods

In this section, we will develop the gradient-based QT (GQT)

algorithm for the first-phase sampling and the Block Greedy (BG)

algorithm for the second-phase sampling (Figure 1). Here, the first-

phase sampling refers to the process of collecting samples in regions

without pre-existing sampling stations, whereas the second-phase

sampling involves augmenting sample stations in regions where

sampling stations already exist.

The GQT algorithm, an improvement of the Variance QT

(VQT) algorithm, refines the computation of changes with the

objective of accelerating calculations and is able to maintain the
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sampling quality. The procedure encompasses the computation of

gradients, quadtree decomposition, and station adjustment in

sub-region.

The BG algorithm amalgamates the principles of the Greedy

algorithm with quadtree decomposition to circumvent redundant

computations that arise from the sequential addition of sampling

stations. The related steps include the computation of the utility

function, quadtree decomposition, and greedy sampling within

sub-regions.

Subsequent sections will provide a detailed exposition of the

processes involved in these two algorithms. Section 2.1 introduces

two algorithms for first-phase sampling: the traditional VQT

method, and the GQT method recommended in this article.

Section 2.2 introduces the second-phase sampling method. In this

section, three utility functions are compared, and then the BG

algorithm is proposed to achieve fast sampling. Section 2.3

introduces the method of dealing with the problem of long-term

multi-variable sampling. Section 2.4 briefly introduces the

reconstruction tool, Kriging interpolation method, used to test the

sampling effect.
2.1 First-phase sampling methods

2.1.1 The VQT algorithm
The QT algorithm is a hierarchical decomposition technique

that divides a two-dimensional area into four equal-sized strata.

This process is repeated iteratively until each stratum meets some

criterion of homogeneity. QT algorithm is widely used in the
Frontiers in Marine Science 03
structuring of spatial data, image and data compression, spatial

sampling design, grid division, and even path planning (Csillag and

Kabos, 1996; Poveda and Gould, 2005; Minasny et al., 2007; Huo

et al., 2019; Jiang et al., 2020; Jewsbury et al., 2021; Lee et al., 2021).

The VQT algorithm is based on the principle of QT

decomposition, where an area of interest is divided into sub-

regions that have more-or-less equal variation (McBratney et al.,

1999, 2003). In the process of decomposition, the sub-region with

the largest variance is selected for subsequent QT decomposition,

and the process is iterated until a certain threshold is reached. The

threshold can be total number of sub-regions, variance value, or

number of iterations. The variance Qh within sub-region h is

defined in Equation (1).

Qh =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2o

nh

i=1
o
nh

j=1
½z(xi) − z(xj)�2

s
(1)

where nh is the number of model grid points, xi and xj represent

the location in sub-region h, and z is the variable of interest.

If we assume that the change in spatial variation is not high

[(Minasny et al., 2007), we can use the simplified form Equation

(2)] as the splitting criterion.

Qh = nh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nh−1o
nh

i=1
½z(xi) − zh�2

s
(2)

where zh is the mean value of the variables in the sub-region.

The VQT algorithm has several features, as listed in the

following aspects.
FIGURE 1

The logical schematic figure that describes the methods. The Fast and Flexible are noted.
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Consideration of spatial changes. It takes into account the

change in variables and places more sampling stations in areas

where the spatial variance is large, which consequently optimizes

the spatial sampling scheme.

Few parameters. It requires only the number of iterations as a

parameter and does not assume any form of spatial covariance

function, or isotropy.

Widely adaptable. It can be carried out in irregular areas, which

allows it to be sampled in a realistic and complex environment.

Besides, it can reasonably arrange the sampling stations according

to the cost, without the limit on the number of stations as is often

the case with systematic sampling. It can also be extended to multi-

variable sampling to adapt to various sampling needs.

However, the VQT algorithm also has some deficiencies:

Repeated calculation. During calculation, even if the simplified

form is used, it is still necessary to calculate the variance n times in

n iterations.

Ignores arrangement. The algorithm cannot reasonably

compare areas with different arrangements but the same

elements. Taking two one-dimensional arrays, [1,2,3,4,5] and

[1,4,3,2,5], as an example, the variance of these two arrays is the

same, but the former is easier to predict than the latter because there

is a clear linear trend in the former.

Constrained relative weighting. Spatial sampling tries to find a

balance between the two principles of geometric coverage being as

reasonable as possible and capturing as much variation as possible.

The VQT algorithm will obtain a fixed sampling scheme for a

certain variable field, which is designed to minimize the variance

and thereby improve the overall reconstruction result. However, a

fixed scheme is not conducive to adjustment for different sampling

goals and sampling objects.

We aspire to achieve a sampling algorithm where the relative

weighting between these two principles can be adjusted at will.

Given the strong spatial correlation often exhibited by desired

variables, we propose for the QT algorithm an adjustable relative

weighting between the two independent indicators—the rate of

variable change and the size of the sub-region.

Here, the relative weighting is defined as q = l
m, where l is the

exponent of the variable’s rate of change and m is the exponent of

the area of the sub-region. It is envisioned that a sufficiently large

range should be encompassed by q (ideally, q ∈ (0, +∞) to

guarantee that q can accommodate the optimal relative weighting

for different variables.

The variance of the VQT algorithm integrates the rate of change

and distance (sub-region area). It is postulated that the variable’s

change is positively correlated with the rate of change and a certain

function f (d) of the distance. Further, it is assumed that the rate of

change within the sub-region remains stable, as ah. Upon further

summation of f (d), it can be represented as a function F(nh)

concerning the area nh of the sub-region. That is,

Qh ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
nh

i=1
o
nh

j=1
½ahf (dij)�2

s
= ah

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
nh

i=1
o
nh

j=1
f 2(dij)

s
= ahF(nh) (3)

Furthermore, given that variation is typically positively

associated with distance in Equation (3) (the greater the
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separation between variables, the more significant the change), if

F(nh) is approximated as a power function with nh raised to the

exponent p, p is generally greater than 1. Therefore, the relative

weighting q will be fixed at 1
p, with the range being 0–1.

General sampling results. The algorithm only gives a final series

of sampling areas and does not specify where in these areas to

sample. Typically, sampling stations are simply randomly sampled

within an area or are habitually placed in the center of the area.
2.1.2 The GQT algorithm
To solve the above deficiencies and retain the advantages of the

VQT algorithm, a new indicator Q
0
h in the QT is defined in

Equation (4)

Q
0
h =o

nh

i=1
Q0(x)k (4)

where k is a parameter controlling the importance given to the

Q0(x) meaning the relative weight of variation, and

Q0(x) = Gxj j + Gy

�� �� (5)

Gx =

−1 0 1

−2 0 2

−1 0 1

2664
3775 ∗ (zx),Gy =

−1 −2 −1

0 0 0

1 2 1

2664
3775 ∗ z(x) (6)

Here, Gx and Gy are the gradients of variables along the

horizontal direction and the vertical direction, respectively,

obtained by convolving the Sobel operator with z(x). It should be

noted that the missing parts need to be interpolated and the initial

field needs to be expanded by one pixel in each direction to ensure

convolution can be performed and the result is the same size as the

origin. This method is often used to detect image edges (Mlsna and

Rodrıǵuez, 2009; Nixon and Aguado, 2012; Jana et al., 2021). Since

Q0(x) is the gradient magnitude of the variable, this method is

referred to as the GQT algorithm.

The GQT algorithm considers the variation of the chosen

variable. Meanwhile, since only the variation indicator has

changed, the GQT algorithm is simple in form and can be

adapted to a variety of sampling requirements, retaining the

various advantages of the VQT algorithm.

However, the difference is that the GQT algorithm only sums

the gradient magnitude in the selected area during the iterative

process, avoiding repeated calculations of the variation indicator,

which is expected to save a considerable amount of calculation time.

At the same time, the gradient magnitude gives the variable’s rate

of change at each position, which allows the algorithm to

distinguish between areas with the same elements but more

irregular arrangements.

Moreover, because the changing rate and distance are

independent of each other, the GQT algorithm can adjust the

relative weights freely to accommodate the sampling of different

variables. When k is large, the algorithm will prioritize variation,

making it suitable for hotspot detection. Conversely, a small k will

result in more evenly distributed sampling stations. If k = 0, the

algorithm will be similar to systematic sampling, which can be
frontiersin.org
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applied to the first-phase sampling of unknown variable fields. To

align with VQT and optimize the reconstruction error, k should

assume an appropriate value within 0–1. To propose a suitable

weight for the prior, we assume a sufficiently large square sub-

region where variable variation is linearly related to distance.

Then,

F(nh) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n3h(1 −

1
nh
)

q
≈   n

3
2
h (7)

and k is adjusted to 2
3 accordingly [Supplementary Material

provides specific derivation procedures for Equation (7)].

Using the gradient magnitude field can further guide the

adjustment of sampling stations: the gradient field Q0(x) obtained
based on Equation (5) and Equation (6) can be regarded as

“density”, and the sampling stations are adjusted to the center of

gravity s
0
h of the region, as shown in Equation (8).

s  
0

h = o
nh
i=1Q

0(xi)
kxi

onh
i=1Q

0(xi)
k (8)

In this paper, the GQT algorithm after station adjustment

(GQT-ad) only performs station adjustments on sub-regions

whose average gradient magnitude is greater than 80% of the

gradient magnitude in the whole area (Q0(x) + 0:84s (Q0(x))), to
ensure that when variation is weak, more attention is paid to

achieving a uniform spatial distribution.
2.2 Second-phase sampling methods

2.2.1 Utility function
Second-phase sampling is defined as adding new samples to

existing ones to improve the overall estimate of the variable of

interest, the aim of which is to collect new samples to minimize

prediction error. Therefore, the goal of second-phase sampling is to

find a suitable indicator and reduce this indicator as much as

possible when adding new sampling stations.

Kriging variance sKV (x)
2 is one of the commonly used

indicators. It provides the uncertainty of prediction and can be

expressed as

sKV (x)
2 = s2 − cT (x)C−1c(x) (9)

where C−1 is the inverse matrix of the covariance matrix C

based on the covariance function, c is a column vector, and cT is its

corresponding row vector.

However, the kriging variance assumes a stationary variable but

does not take into account the real variation of the variable.

Therefore, the introduction of weighted kriging variance helps to

better select new sampling stations (Delmelle and Goovaerts, 2009),

as follows:

sWKV (x)
2 = w(x)lsKV (x)

2 : (10)

Here, w(x) is the weight and l is a parameter controlling the

importance given to the weight. When l is 0, Equation (10)

degenerates into Equation (9). In this paper, the weight uses the

gradient field Q0(x) obtained by Equation (5), and l is set to 1.
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With the help of the presence of simulation output or satellite

data, another effective method is to directly subtract the predicted

field zf (x) obtained through the first-phase sampling stations from

the model simulation field z(x) to obtain the error field e(x). e(x)

shown in Equation (11) is equivalent to adaptively selecting a

suitable value of l so that it can be a feasible substitute for the

weighted kriging variance:

e(x) = z(x) − zf (x)
�� �� (11)
2.2.2 The BG algorithm

Upon acquiring the error field, the set of potential sampling

locations for the spatial search may be extensive. For instance, in the

studied area, with 992 valid grid points, the number of possible

combinations from adding 5 new stations to the 20 sampling

stations (according to the first-phase sampling) can reach 7.16 ×

1012. To find satisfactory solutions in this vast solution space,

leveraging different algorithms is necessary. Typically, a fast

heuristic algorithm, such as the greedy algorithm, is applied firstly

to obtain an acceptable sampling scheme. If higher quality is

required for the sampling scheme, iterative algorithms, such as

simulated annealing or genetic algorithms, can be used to further

optimize the existing scheme towards an optimal solution. The

greedy algorithms can be employed in the design of second-phase

sampling since they can provide a satisfactory final scheme, serve as

a starting solution for iterations, or act as a benchmark for other

heuristic algorithms.

For problems that require adding n new sampling stations,

taking the error field as an example, the greedy algorithm searches

the first n positions with the largest current error for sampling.

However, since the error is often spatially correlated, the results

obtained in this way are likely to cause the new stations to cluster

together, thus obtaining poor results. Therefore, a dynamic greedy

(DG) algorithm (sequentially added greedy algorithm) is generally

used for second-phase sampling (Rogerson et al., 2004). The DG

algorithm adds one sampling station at the position with the

maximum error in the error field each time and recalculates the

error field. As a result, the DG algorithm can flexibly arrange

stations based on utility functions. This process is repeated until

the required number of samples n is reached. This method can

make the distribution of new sampling stations more reasonable to

optimize the second-phase sampling, but the number of

calculations also increases to n.

To achieve a reasonable distribution of new sampling stations

while reducing the number of calculations, the BG algorithm is used

in this study. This method uses the QT algorithm to divide the

research area into sub-regions, then uses the greedy algorithm to

sample in each sub-region. For a second-phase sampling task of

adding n sample stations, the specific steps are:
(1) Divide the irregular research area into multiple sub-regions

with similar areas through the QT algorithm.

(2) Determine whether the threshold is met. In this study, it is

required that the number of sub-regions is not less than n,

the standard deviation of the sub-regions is sufficiently
frontiersin.org
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Fron
small, and the sub-region with the nth largest average error

is required to be greater than the average error of the entire

study area. Step 1 will be repeated until the above

requirements are met.

(3) Select the top n sub-regions with the largest total error

among these sub-regions and use the greedy algorithm

for sampling.
In this way, the error field only needs to be calculated once, and

the new sampling stations will not be clustered together.
2.3 Long-term and multi-variate
sampling methods

In reality, observation systems often need to perform

observation tasks for a certain time scale, and need to perform

observations of multiple variables. Therefore, a multi-variable

sampling scheme that is suitable for long-term observations

is necessary.

In multivariate sampling, integrating information frommultiple

variables and finding their common characteristics is a key step.

Proposed methods include performing the principal component

analysis (PCA; Hengl et al., 2003; Aquino et al., 2014), creating a

Latin hypercube of the variables (Minasny and McBratney, 2006;

Erten et al., 2022), calculating Eigen-Entropy (Huang et al., 2023),

and measuring pointwise mutual information (Dutta et al., 2019).

Two feasible multivariate sampling solutions for the GQT

algorithm are provided, and both solutions need normalize the

variables (i.e., remove the mean and divide by the standard

deviation) at the first step. After that, the first solution involves

calculating the variation of each normalized variable and

performing a weighted linear combination. The second solution

involves performing PCA on normalized variables and calculating

the var iat ion using corresponding mode of the firs t

principal component.

In this study, we use the second approach to reduce time cost

since the gradient is calculated one time only. This can avoid

calculating the spatial variation for all variables. Moreover, for

multi-variable sampling under a time series, the indicator is

adjusted to

Q∗
h =o

T

t=1
o
nh

i=1
Q∗(xi,   t)

k (12)

In Equation (12), T is the time series length, andQ∗(xi,   t) is the

variation indicator calculated on corresponding mode of the first

principal component.
2.4 Interpolation method

After obtaining the sampling stations, Kriging interpolation is

used to interpolate and predict the variables (using the PyKrige

package in Python). Also, the method is selected as

OrdinaryKriging, and the variogram is selected as “spherical”.
tiers in Marine Science 06
3 Results

In this section, the northern Bay of Bengal is chosen as a study

case to gain insights into the application of sampling algorithms. In

addition to testing the sampling effect of the algorithm, the

sampling design in the northern Bay of Bengal also has practical

and scientific value.

The oceanic surface environment (such as the SST and SSS) in the

Bay of Bengal can affect the formation of tropical cyclones, which the

addition of in situ data can help to accurately understand. SST and

SSS data in the northern Bay of Bengal (15°–22°N, 80°–98°E) in 2022

are chosen to demonstrate the application of this algorithm. The

SST data used are from NOAA’s 1/4° Daily Optimum Interpolation

Sea Surface Temperature (OISST) dataset, and the SSS data are from

ESR’s 1/4° 7-day Optimum Interpolation Sea Surface Salinity

(OISSS) dataset. In addition, since ocean velocity is also an

important research variable, we also add surface zonal and

meridional velocities (U and V) in the long-term multivariable

experiment. The 1/4° daily surface velocity data used are from

“Sea level gridded data from satellite observations for the global

ocean from 1993 to present” (Copernicus Climate Change Service,

Climate Data Store, 2018). To ensure temporal consistency among

the four sets of data, the SST, U, and V data are averaged over a 7-day

time scale starting from 2 January 2022, and output at 4-day intervals.

Consequently, four sets of data are obtained with a time dimension

of 91 and a spatial dimension of 28 × 69.

Figures 2A, B show the SST and SSS fields in the first week of

2022 (2021.12.30 to 2022.1.5), while Figures 2C, D show the

corresponding spatial gradient fields, reflecting the spatial

distribution of variable change rates. The spatial gradient fields

show that the steepest changes in SST occur in the northern and

northwestern coastal parts of the region, while changes in SSS occur

in the southeastern region and a “Z”-shaped region running from

north to south near 91°E.

Below, we conduct a quantitative analysis of the sampling

efficiency and quality of the GQT algorithm and the BG

algorithm. Furthermore, we design a long-term bivariate first-

phase sampling and second-phase sampling scheme with practical

application value.
3.1 Fast spatial sampling scheme

The GQT algorithm circumvents the need for repeated utility

function calculations (e.g., spatial gradient or error), resulting in O

(1) time complexity (only considering the calculation time of utility

function). Figure 3 provides a quantitative comparison of

calculation times across different sampling algorithms.

In the first-phase sampling design, the VQT algorithm takes

about 19 seconds to obtain 150 sampling stations for SSS in the

study area with a time dimension of 91 (Figure 3A), with the utility

function calculation accounting for over 99% of the total sampling

time (Figure 3C). Simplifying the VQT algorithm reduces the

sampling time to approximately 2.5 s. Still, the proportion of time

dedicated to the utility function calculation remains stable at about
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95%. Therefore, optimizing the utility function calculation method

is key to reducing the calculation time efficiently. With the GQT

algorithm, obtaining 150 sampling stations takes less than 0.5 s,

which is 1/40 the time of the VQT algorithm and 1/5 the time of the

simplified VQT algorithm (Figure 3B). Due to significantly

reducing the time cost, the fast sampling design is achieved.

Obtained from 5 to 150 sampling stations, the calculation time

remains almost unchanged. This implies that the sampling process

is fast for a large number of stations. In general, the GQT algorithm

has the advantage of fast sampling, and this advantage can be

maintained in large sampling tasks.
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In the second-phase sampling, the DG algorithm’s time

consumption increases linearly, while the BG algorithm, with its

O(1) time complexity, greatly reduces the time consumption when

adding a large number of sampling stations. Therefore, both the

GQT and BG algorithms significantly enhance the sampling

efficiency and are beneficial for large-scale sampling.

While the time consumption in this example is only several

seconds and entirely manageable, the advent of higher-resolution

simulations or satellite data and broader exploration areas in the

future will significantly increase the overall time required for

sampling. Furthermore, the increasing frequency and intensity of
FIGURE 3

(A) Time consumption of the sampling based on SST to obtain 150 stations by using VQT (purple), simplified VQT (green), and GQT (red). (B) Time-
consumption ratio of VQT to GQT (purple) and that of simplified VQT to GQT (red). (C) The ratio of the time consumption of calculating the utility
function to its total time consumption using VQT (purple), simplified VQT (green), and GQT (red). (D) Time consumption of DG (purple) and BG (red).
(E) The time-consumption ratio of the two (red), in which the black dotted line is the reference line with a slope of 1.
FIGURE 2

(A) SST field in the first week and (C) the corresponding spatial gradient field. (B, D) As in (A, C) but for SSS.
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future field observation studies will underscore the importance of

rapid sampling. These methodologies hold potential application

value for ocean detection and spatial sampling tasks across

various fields.
3.2 Sampling results

3.2.1 Sampling quality based on the
GQT algorithm

As the goal of fast sampling is achieved, the reconstruction

results after sampling are examined. The sampling of SST and SSS

based on the VQT algorithm (Figures 4A, B) and GQT-ad (k = 2/3,

Figures 4C, D) is initially presented. As demonstrated, the overall

sampling results are akin to the VQT algorithm, with dense

sampling in areas of large variation.

Figures 4E, F further illustrate the spatial distribution of average

error from using GQT-ad. For SST, the error in most areas is

controlled within 0.2°C, and only a few coastal areas exceed an error

of 0.2°C. For SSS, the error is less than 0.3 psu in most areas, with an

error of approximately 0.4 psu only in the northern and eastern

parts of the area. In general, the large errors are mainly located far

away from the sampling point and in the position with large

variation. Compared to the VQT algorithm (Figures 4G, H),

GQT-ad has a similar error overall but performs better in
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locations with greater variation (e.g., the nearshore area for SST

and northern parts of area for SSS). This shows that the error in the

critical area can be reduced due to the flexible adjustment of the

stations. This will induce the relative uniform spatial

error distribution.

To further quantitatively analyze the advantages of the GQT

algorithm, the root-mean-square error (RMSE) is calculated

according to Equation (13).

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N

i=1
(Vi − bVi)

2

s
(13)

Here, N is the total grid points, Vi is the original data value, V̂i is

the reconstructed value. Figures 5A, B show the RMSE of the SST and

SSS under a range of sampling stations by using random sampling, the

VQT algorithm (The results obtained by the simplified VQT algorithm

are basically the same as the VQT algorithm. SM, Supplementary

Figure 1), and the GQT algorithm (including GQT-ad, k = 2/3).

Compared with random sampling, both the VQT and GQT algorithms

optimize the RMSE greatly, especially when stations are sufficient.

When the number of stations exceeds 25, the RMSE of the SST and SST

fields reconstructed by the VQT and GQT algorithms are significantly

reduced. (Initially, the normality of RMSE was tested, and it was found

that the majority of the data did not adhere to a normal distribution.

SM, Supplementary Table 1. Consequently, the one-sided Mann-
FIGURE 4

The reconstructed (A) SST and (B) SSS fields in the first week using VQT. (C, D) As in (A, B) but using the GQT algorithm after station adjustment
(GQT-ad, k = 2/3). White points represent the 50 sampling stations. (E) Average SST error field and (F) average SSS error field using GQT-ad. (G)
Difference between the average SST error fields of VQT and GQT-ad. (H) As in (G) but for SSS.
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Whitney U test was utilized to conduct the significance test, a = 0.05.

SM, Supplementary Table 2).

The GQT algorithm and the VQT algorithm yield similar

reconstruction effects for both SST and SSS, with no significant

difference between them (The two-sided Mann-Whitney U test is

used to perform the significance test, a = 0.05. SM, Supplementary

Table 3). The GQT algorithm shows a slightly worse reconstruction

result than the VQT algorithm, increasing the average RMSE by

about 2%. After station adjustment, the RMSE difference is lower

than 0.4%. In addition, with the help of station adjustment, GQT-ad

performs better when the number of stations is larger, reducing the

average RMSE by 1.9% for SST and 5.1% for SSS. Combined with

the comparison with random sampling, it indicates that emphasis

putting on variation can effectively reduce errors only when there

are sufficient sampling stations. Although GQT-ad does not show

obvious optimization on the whole, flexible station adjustment has

become a non-negligible advantage of GQT-ad in locations with

sufficient sampling stations and large variation.

Moreover, the adjustable and flexible attribution of the GQT

algorithm allows for potential improvement in the reconstruction

field by selecting a more suitable k. For instance, SST variation is

primarily concentrated in a small coastal area, which may limit the

algorithm’s ability to capture it. Therefore, increasing k could yield

better results. This is indeed observed when adjusting k. Compared

to when k=2/3, increasing k to 1 results in a reduction of the average

RMSE by 0.4%. However, if k is decreased to 1/2, the average RMSE

appears an increase of 1.1%. In the case of SSS, the area of

significant variation extends from north to south near 91°E,

which may overemphasize the change. Consequently, reducing k

could amplify the effect. Similarly, when k is decreased to 1/2, the
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average RMSE reduce by 0.3%, but an impressive increase of 4.5% is

observed when k is increased to 1.

The RMSE exhibits distinct variations across different periods

(Figures 5C, D). A notable deterioration in the reconstruction

efficacy of SST is evident during the winter months, while the

reconstruction of SSS appears to be significantly compromised in

the summer and autumn seasons. Interestingly, the augmentation

of sampling stations primarily diminishes the RMSE during periods

of high RMSE values, yet this reduction is less pronounced during

periods characterized by lower RMSE. This suggests a potential

need for an increased number of samples during periods with larger

RMSE to meet the requisite threshold. And conversely, a reduction

in sample size is acceptable during periods with smaller RMSE to

circumvent unnecessary expenditures.

Furthermore, it is important to note that fluctuations in RMSE

are strongly correlated with changes in spatial gradient (At 10

stations, the correlation coefficient exceeded 0.95 for SST and 0.84

for SSS). This correlation can be instrumental in providing

preliminary guidance for the sampling scheme.

3.2.2 Long-term multi-variate sampling scheme
In practical applications, it is essential to consider the

information on SST and SSS over a given period for the design of

the sampling scheme. The first principal component, derived from

PCA, accounts for an average of 68.7% of the variance and is

utilized in the computation of the utility function. Figure 6A

illustrates the joint spatial gradient, which encapsulates the long-

term comprehensive variation distribution of SST and SSS. Notably,

significant variations are observed along the northwest coast,

northern region, and southeastern part of the area under study.
FIGURE 5

The RMSE of the (A) SST and (B) SSS reconstruction versus the number of stations by using random sampling (black), VQT (red), GQT (green), and
GQT-ad (purple). The RMSE of the (C) SST and (D) SSS reconstruction versus time under 10 (dashed line) and 50 (solid line) sampling stations by
using VQT (red) and GQT-ad (purple). The black solid line is the averaged spatial gradient.
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Decomposing this distribution of variation yields the sampling

scheme of the GQT algorithm.

In comparison to the sampling scheme that only considers a

single variable (Figure 6B), the prediction that incorporates

bivariable information is optimized by an average of 5.6% (with a

6.5% optimization when considering SST and a 4.7% optimization

when considering SSS). Figures 6C, D depict the RMSE

optimization of the long-term bivariate sampling scheme in the

GQT algorithm as compared to the VQT algorithm. On the whole,

the reconstruction fields of the GQT algorithm and the VQT

algorithm exhibit high similarities.

In the long-term bivariate sampling scheme, the temporal trend

of the RMSE (Figures 6E, F) mirrors that depicted in Figures 5C, D.

However, a significant decrease in RMSE is observed when the

number of stations is minimal and the variation is substantial.

Given that the algorithm incorporates weekly changes during long-

term sampling, this suggests that during periods of greater

variation, the sampling distribution will be more uniform. This

further implies that when the sampling budget is constrained (i.e.,

the number of stations is small), considering variable variations may

not be an effective strategy to reduce the reconstruction error,

particularly during periods with large variations.

Figures 6G, H presents the sampling scheme, reconstruction

field, and error of 50 sampling stations by employing a long-term
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bivariate sampling scheme based on the GQT algorithm. The

sampling stations are densely positioned in the area where the

joint spatial gradient is large, as depicted in Figure 6A. The error is

effectively controlled within 0.2°C for SST and 0.3 psu for SSS across

most regions, which is not obviously larger than that shown in

Figures 4E, F, thereby validating the efficacy of this long-term

bivariate sampling scheme.

To further test the stability of the algorithm under long-term

multi-variable scenarios, zonal and meridional velocities are added

(Figure 7). Similarly, simultaneously considering multiple variables

can help improve the sampling effect. Compared with only

considering a single variable, the average improvement is 3.2%

(optimized by 3.4% for SST, 2.6% for SSS, 2.1% for U, and 4.8% for

V). The obtained sampling results are comparable to those achieved

by the VQT method, with a difference of less than 0.2%.

However, spatial variations of ocean velocity measurements

present more complexity, with pronounced anisotropy and

heightened variability. As a result, the velocity error in some areas

even exceeds 0.2m/s (Figures 7C, D), which means that the flow in

this area is not well reconstructed. Thus, a greater number of

sampling stations (with 100 sampling stations, the average error

of velocity can be reduced to 0.08-0.09 m/s) or more advanced

interpolation methods are necessary to ensure reliable

reconstruction. In cases where sampling budgets are constrained,
FIGURE 6

(A) The average joint spatial gradient of the corresponding mode of the first principal component. (B) The average RMSE optimization of the long-
term bivariate sampling scheme in GQT compared to only considering one variable in GQT. The RMSE of the (C) SST and (D) SSS reconstruction
versus the number of stations by using VQT (red) and GQT (purple). The RMSE of the (E) SST and (F) SSS reconstruction versus time under 10
(dashed line) and 50 (solid line) sampling stations by using VQT (red) and GQT (purple). (G) Average SST error field and (H) average SSS error field
using GQT. The black stars represent 50 sampling stations.
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methods such as lifting interpolation, as exemplified by the

objective analysis method (e.g. OAX, McGillicuddy et al., 2001),

can prove especially critical. In addition, the complex spatial

structure of velocity makes assimilation in combination with

other observation methods particularly important.

3.2.3 Second-phase sampling
Based on the long-term bivariate sampling scheme obtained by

the GQT algorithm, a second-phase sampling scheme was further

designed. To verify whether the ability of the utility function to

optimize the second-phase sampling scheme improves after

considering variation, Figures 8A-D display the RMSE

optimization of using error-based utility function compared to

using Kriging Variance (Figures 8A, B) and Weighted Kriging

Variance (Figures 8C, D) as the utility function under a series of

first-phase designed stations.

Qualitatively, as mentioned before, when the number of stations

is limited, a reasonable spatial distribution becomes more critical

and may even emerge as the primary determinant of the error.

Consequently, utilizing error as a utility function yields

unsatisfactory results when the number of initial stations is

limited. However, as the quantity of initial stations reaches an

adequate level, the benefits of this approach become increasingly

evident. In other words, the error-based utility function is suitable

for second-phase sampling tasks with adequate initial stations.

Figures 8E, F present the sampling scheme for adding 10

stations to the 40 first-phase designed stations by using the DG

and BG algorithm. Since there are enough initial stations, error is

used as the utility function here. The BG algorithm enables the

sampling stations to achieve a reasonable spatial distribution while
Frontiers in Marine Science
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capturing the maximum error. Compared to the distribution

obtained by the DG algorithm, 6 out of the 10 stations are

identical. It implies that the BG algorithm can enhance efficiency

while also maintaining flexibility of the Greedy algorithm.

To systematically evaluate the performance of the BG algorithm

against the DG algorithm, Figures 8G, H display the RMSE

optimization of the BG algorithm under a series of first-phase

designed stations. When compared to the DG algorithm under

the error-based utility function, the overall reconstruction error

increases by 0.5%. The reconstruction of SST shows an overall

deviation, with an increase of 2.7% in RMSE, while the

reconstruction of SSS optimizes by 1.7%. Therefore, compared

with the DG algorithm, although the calculation time is greatly

reduced, the sampling results are still at the same level. Additionally,

when the initial number of stations is limited, the BG algorithm has

a slight advantage. This reflects the improvement of globality

brought by the use of quadtree decomposition. As a combination

of quadtree decomposition and the Greedy algorithm, the BG

algorithm can achieve the fast and flexible sampling scheme,

which successfully combines the advantages of both.
4 Discussions

Spatial variation of variables is an important feature. Capturing

the variation in variables as much as possible is therefore one of the

principles of spatial sampling. Many spatial sampling schemes also

rely on measures of change, such as entropy, variance, or, as

mentioned in this study, gradient. After considering the changes

in variables, more satisfactory results were indeed obtained.
FIGURE 7

(A) The average joint spatial gradient of the corresponding mode of the first principal component. (B) The average RMSE optimization of the long-
term multivariate sampling scheme in GQT compared to only considering one variable in GQT. (C) Average SST error field, (D) average SSS error
field, (E) average U error field, and (F) average V error field using GQT. The black stars represent 50 sampling stations.
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However, for a sampling scheme that aims at interpolation

reconstruction, the change information of variables can be reflected

not only by the interpolation points themselves but also by the

changes between interpolation points. In other words, to accurately

capture the changes in variables, the sampling points should be

distributed more evenly in the areas with large changes, rather than

specific locations. Ideally, the sampling scheme should first identify

the areas with larger changes and allocate more sampling points to

them. Then, the sampling points should be located at the positions

that can best depict the changes in the variables (for example, the

positions where the changes start to increase or decrease rapidly),

rather than the positions with the maximum change. This requires

that the utility function in the algorithm can reflect the areas with

large changes at the macro level, as well as capture the valuable

sampling points, such as extreme points, at the micro level.

Using the Laplacian operator to obtain the spatial second

derivative of the variable and applying it to QT decomposition

may be a feasible method to achieve this goal (Equation (14) and

Equation (15). Since this algorithm uses the gradient of the gradient

as the criterion for QT decomposition, it is later called the GGQT

algorithm. Here,

Q
0
h−new =o

nh

i=1
Q

0
new(x)

k (14)
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−1 −1 −1

−1 8 −1

−1 −1 −1

2664
3775 ∗ z(x) (15)

Similarly, the adjustment of the sampling station changes as

shown in Equation (16).

s             
0

h−new = o
nh
i=1Q

0
new(xi)

kxi

onh
i=1Q

0
new(xi)

k
: (16)

When the spatial second-order derivative of a certain position is

large, it means that the change in position is larger. Compared with

the first-order derivative, it will sample at a position closer to the

extreme point rather than the position with the largest change. At

the same time, it also means that there are areas of greater change

nearby. This method meets the above requirements and may

achieve better sampling results.

Figures 9A, B depict the spatial second-order gradient, which

is more pronounced around the nearshore location in the SST

and the “Z”-shaped region in the SSS. A sampling scheme is

subsequently derived through QT decomposition. Figures 9C, D

present the sampling results of 50 stations, demonstrating that

the stations are indeed more densely populated in areas with

significant variable changes. However, the sampling stations
FIGURE 8

The (A) SST and (B) SSS RMSE optimization rate of ER compared to KV. The (C) SST and (D) SSS RMSE optimization rate of E compared to WKV. (E)
The sampling stations based on DG. (F) as in (E), but the sampling stations are based on BG. For (G) SST and (H) SSS, the optimization rate of BG
compared to DG with error as the utility function, where the positions of the white stars indicate significant differences between the two RMSEs
(using the two-sided Mann-Whitney U test, with a = 0.05).
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tend to be more dispersed around areas exhibiting high values of

variation. To quantitatively evaluate their impacts, the RMSE of

both the GGQT algorithm and the GQT algorithm are compared

(Figures 9E, F). The RMSE of SST based on GGQT-ad shows a

decrease of 3.6% on average compared to GQT-ad. Similarly,

that of SSS decreases by 2.6%. In terms of the spatial distribution

of errors (Figures 9G, H), GGQT-ad shows significantly better

results in some regions, such as the northwest shore (19°N, 85°E)

for SST and the southeast part (15.5°N, 97.5°E) for SSS. At the

same time, compared with VQT, GGQT-ad is optimized by

3.1% on average. In addition, since only one convolution

kernel is used, the GGQT algorithm will be faster than the

GQT algorithm.

These findings suggest that the proposed algorithm effectively

enhances the reconstruction result, thereby demonstrating its

significant application value. However, since it is challenging to

find a corresponding theory for adjusting the relative weight k in the

GGQT algorithm, the value of k = 2/3 is retained here in the above

comparison. This choice inevitably introduces some subjectivity.

Therefore, a future research direction is to explore a theoretically

derived pre-given k.

In our future research, there is substantial scope for further

enhancements and improvements. Sampling at specific temporal
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scales can enable observations to address pertinent scientific

inquiries more effectively. By filtering variables on either a

temporal or spatial scale, a more suitable sampling plan can be

devised for distinct scientific challenges (Liu et al., 2018).

Moreover, expanding the sampling algorithm to encompass

three-dimensional space and taking into account the vertical

variations of variables can facilitate a more comprehensive

observation of actual oceanic processes. The utilization of an

Octree instead of the Quadtree can address the issue of sub-

region segmentation in three-dimensional space. When combined

with the fast algorithm presented in this study, it is anticipated that

the substantial computational demand of three-dimensional

sampling can be mitigated, thereby achieving an efficient and

stable design for three-dimensional sampling.
5 Conclusions

In this study, we employed the GQT algorithm, a novel QT

sampling method that utilizes the gradient magnitude of variables

rather than the variance, to build the first-phase sampling scheme.

The GQT algorithm offers several advantages over the

VQT algorithm:
FIGURE 9

(A) Second-order spatial gradient field of SST in the first week. (B) As in (A) but for SSS. The (C) SST and (D) SSS reconstruction fields in the first week
using GGQT-ad, where white points represent the 50 sampling stations. The RMSE of the (E) SST and (F) SSS reconstruction versus the number of
stations by using GQT (green), GQT-ad (purple), GGQT (black), and GGQT-ad (red).
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Fron
(1) The computation time does not significantly increase with

the rise in the number of stations, facilitating large-scale

multi-station sampling.

(2) It can provide the variation of specific locations, offering

more precise guidance for the sampling stations.

(3) It allows for a more flexible allocation of variation weights,

adapting to the reconstruction of different variables.
Additionally, the BG algorithm, which employs the QT

algorithm to ensure a reasonable spatial distribution and reduce

time consumption, can obtain a spatially reasonable sampling

scheme with the time complexity of O(1). At the same time, the

combination with the greedy algorithm can flexibly arrange the

station according to the utility function. It is applied in the second-

phase sampling.

Through an example in the Bay of Bengal, we provide a set of

sampling schemes based on the aforementioned two algorithms to

verify their sampling quality and compare time-consumption. For the

first-phase sampling, similar to the VQT algorithm, the reconstruction

effect of the GQT algorithm is significantly optimized compared to

random sampling. Besides, the GQT algorithm performs slightly

better where the variables of interest with large variation, because of

the ability to adjust stations in response to variations. By further

reducing the excessive focus on change, the GGQT algorithm can be

optimized by more than 3% compared to the VQT algorithm. At the

same time, the computation time is about 1/40 of that of VQT (at 150

sampling stations in this study). For the second-phase sampling,

compared with the DG algorithm, the BG algorithm can control the

time consumption to a constant time complexity while ensuring that

the sampling effect is comparable.

During the comparison of the algorithms, notable

considerations regarding sampling are mentioned. It was observed

that the spatial gradient exhibits a strong correlation with the level

of error. Adjusting sampling budgets based on spatial gradients is

anticipated. Moreover, incorporating variability in study variables

does not effectively optimize error under constrained

sampling budgets.

Nevertheless, there are several aspects that warrant further

investigation. Developing specific temporal scales will facilitate

the seamless integration of sampling algorithms into scientific

research. Extending the algorithm to three-dimensional space will

enhance the generalizability of sampling schemes. Additionally,

integrating a broader range of interpolation and assimilation

methods will promote the more efficient utilization of existing

data and the reconstruction of variables with intricate variations.

In general, the GQT (GGQT) and BG algorithms are

characterized by their simplicity, requiring no intricate debugging

or excessive parameter configurations. Their universal applicability

extends to any number of sampling stations and irregular areas,

making them versatile for a range of sampling tasks. Moreover,

these algorithms are highly efficient, circumventing the need for

repeated computation of the sampling criterion. The GQT (GGQT)

algorithm, in particular, offers the flexibility to adjust the weight of

variable variation, catering to different sampling objects or targets.
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The fast and efficient attribution of the GQT (GGQT) and BG

algorithms equips them with the capability to efficiently execute a

diverse array of sampling tasks while maintaining a high standard of

quality. In the future, it is expected that these two algorithms can be

further applied to massive ocean sampling task, so as to highlight

their advantages of high efficiency.
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