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Skin ulceration syndrome of sea cucumbers is one of the most serious diseases in

intensive aquaculture, and it is the most effective way of preventing the spread of

this disease to detect the abnormal behavior of sea cucumbers in time and take

corresponding measures. However, the detection and tracking of multi-object is

a hard problem in sea cucumber behavior analysis. To solve this problem, this

paper first proposes a novel one-stage algorithm SUS-YOLOv5 for multi-object

detection and tracking of sea cucumbers. The proposed SUS-YOLOv5 optimizes

the maximum suppression algorithm in the overlapping region of the object

detection box. Next, the SE-BiFPN feature fusion structure is proposed to

enhance the transmission efficiency of feature information between deep and

shallow layers of the network. Then, a MO-Tracking algorithm is proposed

integrated with DeepSORT to achieve real-time multi-object tracking.

Experimental results show that the mAP@0.5 and mAP@0.5:0.95 of the

proposed object detector reach 95.40% and 83.80%, respectively, which are

3.30% and 4.10% higher than the original YOLOv5s. Compared with the

traditional SSD, YOLOv3, and YOLOv4, the mAP of SUS-YOLOv5 is improved

by 5.49%, 1.57%, and 3.76%, respectively. This research can realize the multi-

object detection and tracking, which lays the foundation for the prediction of skin

ulceration syndrome in sea cucumbers and has a certain practical application

value for improving the intelligence level of aquaculture.
KEYWORDS

deep learning, sea cucumber, skin ulceration syndrome, YOLOv5S, object detection,
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1 Introduction

Sea cucumbers have high edibility and medicinal value and are

the precious seafood (Zhu et al., 2020; Li et al., 2021). According to

the Food and Agriculture Organization of the United Nations, the

production of sea cucumbers in the world reached 40,000 tons in

2020 (FAO, 2022). In recent years, as the improvement of living

standards of people, the demand has been increasing for sea

cucumbers, which makes the farming area of sea cucumbers have

been increasing. Whereas, there are some problems in intensive

aquaculture, such as the slow growth speed and high incidence of

disease (Wang et al., 2021). Among the diseases of sea cucumbers,

skin ulceration syndrome (SUS) is one of the most serious diseases,

which is caused by the infection of Vibrio alginolyticus. Vibrio

alginolyticus is characterized by rapid and widespread infection (Lv

et al., 2019), which will cause significant economic losses if farmers

cannot detect SUS in time and take corresponding measures.

Therefore, the prevention of SUS is of great significance in the

cultivation process of sea cucumbers.

Recently, various fields have widely applied deep learning

technology (Li et al., 2023), including tea buds detection (Xu

et al., 2022), crop yield estimation (Hu et al., 2021; Gao et al.,

2022), underwater image enhancement (Guo et al., 2020), industrial

control (Zhao et al., 2017; Liu et al., 2021), human behavior

detection (Yu and Lee, 2015) and new energy (Ma et al., 2022)

and so on. In particular, with the development of intelligent

aquaculture, some scholars have started to use artificial

intelligence technology to diagnose diseases in aquaculture (Li

and Du, 2022). For example, a diagnosis system for fish disease is

developed based on image processing technology (Park et al., 2007),

which extracted the pathogenic areas from microscopic images of

infected fish tissues and matches them quickly in a database. A 3D

computer vision system is established to monitor the movement of

fish and control the dissolved oxygen in aquaculture based on

breeding experience (Bao et al., 2018). Deep learning technology is

used to detect fish in an abnormal environment with high levels of

ammonia nitrogen and a 3D behavioral trajectory of the fish is

plotted, providing a new approach for animal behavior analysis (Xu

et al., 2020). Li et al. (2020) propose a framework of deep learning

based on Faster R-CNN for detecting, localizing, and analyzing sea

cucumbers behavior trajectories, providing important information

for sea cucumbers cultivation, status monitoring, and early disease

warning. The above researches and related researches indicate that

timely detecting of abnormal behavior of underwater animals and

taking corresponding preventive measures are of great significance

for ensuring the healthy and sustainable development of

aquaculture. However, the existing approaches of the object

tracking focus on the single object for sea cucumbers, and we

have not seen the object tracking and behavior analysis researches

for multiple sea cucumbers.

As we all know, the key to object tracking and behavior analysis

is object detection. Therefore, underwater object detection

technology has become an important research direction based on

deep learning, and some scholars have made some active

explorations in this field. For example, Liu et al. (2020) propose a

real-time method to monitor the invasion condition of marine
Frontiers in Marine Science 02
organisms that combined image processing and deep learning,

which achieves the calculation of marine organism density,

detection, and measurement of marine organism species. This

approach provides a warning reference for the invasion of

biological in the coastal area. Xu et al. (2023) propose a multi-

object behavioral tracking method based on automatic coordinate

matching of frame. This method tracks multiple sea cucumbers and

calculates their motions for quantitative and qualitative behavioral

analysis. Zhang et al. (2020) propose a deep residual network with

multiple forms and stochastic gradient descent (SGD) training

algorithm for recognizing sea cucumbers on the seabed, which

achieves an average accuracy of 97.90%, but the network is unable

to achieve high accuracy in complex scenarios. To attain accurate

quantitative detection for submarine benthic animals, Liu and

Wang (2021) propose a quantitative detection algorithm for

marine benthic animals based on Faster R-CNN, which improves

the recognition accuracy of marine benthic animals from 93.25% to

96.32% and provides a new way to quantitatively detect small and

dense objects in the seabed. Zeng et al. (2021) propose to add the

adversarial occlusion network in the basic Faster R-CNN detection

algorithm, which effectively prevents the detection network from

over-fitting the generated fixed features and improves the mean

average precision (mAP) of the object detection by 4.2% in complex

underwater environments. Nevertheless, the above research on

object recognition and detection doesn’t take into account the

influence of noise, lighting, and other factors, which can affect the

generalization ability of model. More importantly, the research on

sea cucumbers with SUS using deep learning technology is still in

the exploratory stage.

To solve the above problems, the behavior of sea cucumbers

infected by Vibrio alginolyticus is studied in the laboratory

environment. A new approach called SUS-YOLOv5 is proposed

in this paper. The main contributions are fourfold: (1) to solve the

problem that Non-Maximum Suppression (NMS) only considers

the overlapping area of detection boxes to suppress errors, this

paper proposes an improved YOLOv5s algorithm with Soft Non-

Maximum Suppression (Soft-NMS), which gives different penalty

degree for candidate boxes with different overlapping degrees; (2) to

solve the loss problem which is caused by the different importance

of feature maps from different channel during the convolution

pooling process, a SUS-YOLOv5 approach is proposed to

enhance the capability of feature information representation; (3) a

SE-BiFPN feature fusion structure is proposed to enhance the

transfer ability of feature information between the deep and

shallow layers of the model, which avoids the loss of feature

information and improves the detection accuracy of the object

detection; and (4) the proposed SUS-YOLOv5 combined with the

DeepSORT algorithm can achieve real-time multi-object tracking,

compute and analyze the mean movement quantity under different

infection conditions.

This research is structured as follows: a brief description of the

experimental materials is provided and the proposed approach is

outlined in section 2. In Section 3, the experimental platform is

introduced and the evaluation criteria is brought in, offering a

comprehensive analysis of the experimental results. Section 4 delves

into the challenges encountered during the research and discusses
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avenues for future research. Finally, Section 5 concludes this study,

summarizing the key findings and highlighting their significance.
2 Proposed method

In the series of YOLO (You Only Look Once), YOLOv1 lays the

foundation for the entire series, and other versions of YOLO are

improved based on the first version (Redmon et al., 2016). YOLOv1

innovatively uses the one-stage structure to accomplish the task of

classification and object localization, but it has a smaller receptive

field and the network losses are not specific (Ahmad et al., 2020).

YOLOv2 introduces batch normalization while removing the fully-

connected layer so as to further improve the model performance

(Shi et al., 2021). YOLOv3 adds a detection box prediction function

to YOLOv2 and uses the Darknet-53 to extract features (Tian et al.,

2019). Based on the above object detection architecture, YOLOv4

incorporates many optimization algorithms in different aspects of

data processing, backbone network training, activation functions,

loss functions, and more (Guo et al., 2021). YOLOv5 has made

some new improvements based on YOLOv4 so that its speed and

accuracy have been greatly improved (Yuan et al., 2022).

YOLOv5 contains five network structures, i.e., YOLOv5n,

YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x, whose depth

and width are progressively deepened and widened (Qu et al.,

2022). Whereas, with the complexity upgrade of the YOLOv5

series, the detection accuracy improves, the detection speed

decreases, and the requirements of hardware configuration

become higher. Among the five kinds of YOLOv5, the YOLOv5s

has a better real-time detection effect and saves the cost of training

and deployment.

To improve the detection performance on sea cucumbers, the

SUS-YOLOv5 is proposed based on YOLOv5s in this research, and

the network structure of SUS-YOLOv5 is shown in Figure 1.
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In Figure 1, the parts with an asterisk are the added or improved

parts, and the sections with solid red lines are added links. The main

improved parts of SUS-YOLOv5 are as follows.
2.1 Optimization of detection boxes

To select the best detection box from a set of overlapping boxes,

the NMS used in YOLOv5s only considers the overlapping area of

the detection frame, which often leads to false suppression and

reduces the effect of object detection. To solve this above problem,

the research proposes adding the Soft-NMS module to realize the

NMS function, which accepts the intersection ratio of two object

detection candidate boxes through the Gaussian function and

makes different degrees of punishment. The Soft-NMS combines

different penalties to modify the confidence of the object so that the

best detection box is selected from a set of overlapping boxes.

NMS is mainly used for post-processing the output of the object

detection model. In the prediction stage of object detection, many

candidate anchor boxes will be output, among which some

prediction detection boxes are overlapped around the same

object. At this time, NMS can be used to merge similar detection

boxes of the same object to remove redundant detection boxes and

get correct detection results. The NMS processing method can be

intuitively represented by the following score reset function,

si =
si, iou  L,  Dið Þ<Nt

0, iou  L,  Dið Þ ≥ Nt

(
(1)

In Equation 1, where i stands for the serial number of the

remaining boxes with the highest score from high to low except for

the box L. L represents the maximum score of the detection boxes.

Di is the score of detection boxes with the slightly lower score L. Nt

stands for the threshold. s represents the confidence score.
FIGURE 1

Structure of SUS-YOLOv5.
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However, the main drawback of NMS is that it only retains the

highest confidence prediction box when objects are highly

overlapped, which may lead to the deletion of similar but

different objects. Therefore, the Soft-NMS is proposed to optimize

the selection of detection boxes:

si =
si, iou  L;  Dið Þ < Nt

si 1� iou  L;  Dið Þð Þ, iou  L;  Dið Þ ≥ Nt

(
(2)

In Equation 2, one can see that the Soft-NMS does not directly

delete the remaining detection boxes with the highest confidence

ratio of the detection box, but it reduces the confidence of the

remaining detection boxes and retains more prediction frames

(Bodla et al., 2017). In this way, the situation of mistakenly

deleting overlapping objects is avoided through great suppression.

Equation 3 is then derived as follows:

si = sie 
−
iou  L; Dið Þ2

ς

h i
;   ∀ Di ∉ P (3)

where P is the final set of anchor frames, and z is the super

parameter of Soft-NMS.

When the threshold of NMS is reached, a sudden penalty will be

taken and the penalty function is continuous. The continuous

penalty function will take a penalty when the anchor frame is

highly overlapped, and it will not take a penalty when there is no

overlap (Bodla et al., 2017). In addition, when the overlap is low, the

penalty will gradually increase. An example of detecting

overlapping boxes is shown in Figure 2.

As shown in Figure 2, there are two detection boxes in this image,

highlighted in red and purple, with respective scores of 0.95 and 0.80.

Notably, the purple detection box exhibits substantial overlap with

the red one. When using NMS, the choice of a threshold is critical.

The threshold determines which bounding boxes are retained and

which are suppressed. If the threshold is too low, too many frames

may be retained, increasing false detections; if the threshold is too

high, correct detections may be suppressed, leading to missed

detections. Therefore, experimentally determining the optimal
Frontiers in Marine Science 04
threshold is the key to balancing false detections and missed

detections. Soft-NMS is an improvement of NMS, which does not

suppress overlapping frames completely but rather reduces their

scores, thus avoiding the problem of hard threshold setting.
2.2 Extraction of the effective feature of
SUS-YOLOv5

In the traditional convolution pooling process, equal

importance is typically assigned to each channel of the feature

map. However, various channels have varying degrees of

importance, and specific problems should be analyzed specifically

in practice. To solve the loss problem stemming from the varying

importance of feature map for different channels during

convolution pooling, SUS-YOLOv5 incorporates SENet. This

addition enhances the model’s capability to capture correlations

of features and improves the representation of feature information.

The SENet introduces attention to the different dimensions of

channels through key operations known as Squeeze and Excitation

(Huang et al., 2022). Through automatic learning, the SENet makes the

neural network focus on some feature channels. SENet can improve the

channels of the feature map that are helpful for the current task, and it

can suppress the unuseful feature channels for the current task. The

SENet can bring a significant improvement in model performance with

a slight increase in computing cost (Hu et al., 2018a, b).

Figure 3 shows the schematic diagram for the SENet module.

Before the feature map from the backbone network is input into the

SENet attention module. Before adding SENet attention, all

channels in the feature map are treated equally despite of

importance. However, after adding the SENet, the importance of

individual feature channels becomes different. Different colors

stands for different weights, which makes the neural network

focus on some channels which have large weight values.

In Figure 4, X is the input feature map, and Fex represents the

transformation of the feature map. U stands for C feature maps with H

×W, and ~X represents the featuremap scaled by the activation function.

Fsq represents the Squeeze operation, that is, as shown in Equation 4:

zc = Fsq(uc) =
1

H �Wo
H

i=1
o
W

j=1
uc(i,  j) (4)

where zc represents the output operated by Fsq, the subscript c

represents the channel. uc stands for the cth two-dimensional

matrix of U. Fex in Figure 4 is the Excitation operation that

corresponds to the two fully connected operations, namely, as

shown in Equation 5:

s = Fex z;  Wð Þ = s W2d W1zð Þð Þ (5)

where s is the output operated by Fex. d and s represent the

activation function of ReLU and Sigmoid, respectively.

After obtaining s, SENet operates Fscale, that is, by the channel

product of sc and uc the output feature can be obtained, as shown in

Equation 6:

Xc = Fscale uc,  scð Þ = scuc (6)
FIGURE 2

An example of detection overlapping box.
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2.3 Optimal feature fusion of SUS-YOLOv5

As the depth of network layers becomes deeper, the feature

information will be lost to some extent. Therefore, multi-scale

feature fusion is widely used in detection networks to improve the

detection performance of networks. At present, the main feature

fusion structures commonly include Feature Pyramid Networks

(FPN) (Lin et al., 2017), Path Aggregation Network (Liu et al.,

2018), and Bidirectional Feature Pyramid Network (Tan et al.,

2020). FPN is a top-down feature pyramid structure, which is

limited by unidirectional feature information transmission

although it combines deep and shallow layers of features as well

as multi-scale features. The Path Aggregation Network adds a

bottom-up secondary fusion path based on FPN (Tan et al.,

2020). BiFPN is a weighted bi-directional feature pyramid

network, which realizes the simple and fast multi-scale feature

fusion. To reduce the loss of feature information and improve the

detection accuracy of objects, this research proposes a SE-BiFPN

network structure, which combines the SENet and BiFPN

structures, whose diagrammatic sketch is shown in Figure 5.

Firstly, multiscale feature maps are derived from the SENet

layer of the backbone network. Secondly, the first feature fusion is

achieved with the lower sampling layer through a transverse

connection, and the second feature fusion is achieved with the

lower sampling layer and the upper sampling layer of the same scale

of feature maps through a skip connection. Then, the feature map is
Frontiers in Marine Science 05
obtained after these multi-scale fusions. Take the example of the

fourth channel, the intermediate feature map and the final feature

map are output as follows.

Otd
4 = ∂

w1 · O
in
4 + w2 · R Oin

5

� �
w1 + w2 + e

� �
(7)

Oout
4 = ∂

w 0
1 · O

in
4 + w 0

2 · O
td
4 + w 0

3 · R Oout
3ð Þ

w 0
1 + w 0

2 + w 0
3 + e

� �
(8)

In Equations 7 and 8, ∂ gð Þ denotes the convolution operation

on g. R(g) stands for an up-sampling or down-sampling operation

on g. Otd
4 represents the intermediate feature map between Oin

4 and

Oout
4 . w and e respectively represent the learnable weight and a

preset small positive value to avoid numerical instability, which

usually are set to 0.0001. The weights w are dynamically adjusted by

the optimization algorithm during the training process, and their

initial values are usually randomly generated and updated by back-

propagation of the loss function. The purpose of presetting a small

positive value e is to prevent numerical instability caused by

manipulating 0 or infinity during numerical calculations. We

choose 0.0001 as the value of e, which is an empirical value

widely used in numerous experiments and is sufficient to cope

with the need for numerical stability in most cases, without

significantly affecting the performance of the model.

The SE-BiFPN network enhances the fusion ability of image

shallow feature information and deep feature information. Each
FIGURE 4

Schematic diagram of the SENet module.
FIGURE 3

Schematic diagram of the bacterial liquid preparation process.
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new feature layer of information is processed by SENet, so the SE-

BiFPN can play a core role in the fusion of global and local

information between the deep layers and shallow layers. In

conclusion, the SE-BiFPN network structure enhances the

expression ability of the feature pyramid and enables the model

to achieve optimal feature fusion. After the SENet processing, the

feature map in the backbone network of SUS-YOLOv5 is input into

the SE-BiFPN structure multiple times to realize bidirectional

multi-scale feature fusion, which improves the learning ability of

the model on the whole feature and reduces the missing rate.
2.4 Object tracking algorithm

The SUS-YOLOv5 integrates the DeepSORT algorithm to

achieve multi-object behavior tracking of sea cucumbers, and the

schematic diagram of MO-Tracking is shown in Figure 6.

In Figure 7, the DeepSORT algorithm is on the basis of the

SORT algorithm (Bewley et al., 2016) and introduces a re-

identification model, which reduces the frequency of identity

document (ID) switching by the appearance information and the

movement information. In addition, DeepSORT combines the

Kalman filter for movement prediction and the Hungarian
Frontiers in Marine Science 06
algorithm for data association to solve the multi-object

tracking problems.

The video of sea cucumbers is input into SUS-YOLOv5. After

the object detector detects the sea cucumber objects, the DeepSORT

algorithm can match the sea cucumber objects between the front

and back frames based on the Kalman filter and the Hungarian

algorithm, and it can also continuously track the object. When

tracking the object, the movement model established by DeepSORT

will calculate the Mahalanobis distance between the detection box

and the filter prediction box, the distance is expressed as:

d 1ð Þ i, jð Þ = dj − yi
� �TS−1i dj − yi

� �
(9)

where dj stands for the distance of the jth detection box, yi is the

predicted position of the i tracking object, and si stands for the

covariance matrix between the detection position and the predicted

position. d(1)(i,j) denotes the Mahalanobis distance between the

Kalman prediction result and the detection result of the motion

state of the existing moving object.

When the uncertainty of the object motion is very low, the

Mahalanobis distance represented by Equation 9 is a suitable

correlation measure method. However, when the camera is

moving, the correlation method of the Mahalanobis distance will

fail, which results in the phenomenon of ID switch. For solving this
FIGURE 6

Schematic diagram of the multi-object tracking process.
FIGURE 5

Schematic diagram of SE-BiFPN.
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problem, we propose to use the following second kind of correlation

method to identify a feature vector for each detection block dj,

which is appointed by the DeepSORT.

d 2ð Þ i,  jð Þ = min 1 − rTj r
ið Þ
k jr ið Þ

k ∈ ∂i
n o

(10)

where rj is an appearance descriptor with the restriction

condition ||rj||=1. For each track frame k, the algorithm preserves

the set ∂k of the last Lk=100 related to appearance descriptors,

namely ∂k = r ið Þ
k

n oLk

k=1
. d(2)(i,j) is the minimal cosine distance of the

ith track and jth detection.

The above two kinds of metrics between motion features and

appearance features can complement each other inmatching problems.

On one hand, the metric of the Mahalanobis distance to motion

characteristics is helpful for short-term predictions. On the other hand,

the cosine distance considering appearance features is a very useful

metric for ID recovery after prolonged occlusion. To describe the

correlation problem, the above two kinds of metrics from Equations 9

and 10 are weighted and summed as shown in Equation 11:

ci, j = ld 1ð Þ i,  jð Þ + 1 − lð Þd 2ð Þ i,  jð Þ (11)

where ci,j stands for the weighted sum of the Mahalanobis

distance and the cosine distance. l is the hyperparameter that

affects the association effect.
3 Experiment and result analysis

3.1 Experimental materials

3.1.1 Preparation of pathogenic bacteria
Vibrio alginolyticus is a marine bacterium that is widely present

in the seawater environment and it can cause lesions in sea

cucumbers. Higher concentrations of Vibrio alginolyticus may

increase the chances of infection in sea cucumbers, especially in

aquaculture environments where confined spaces and high-density

culture conditions may accelerate the spread of the pathogen. As the

concentration of Vibrio alginolyticus increases, its pathogenicity to

sea cucumbers usually intensifies. In this research, we use Vibrio

alginolyticus to infect sea cucumbers. Both the adult sea cucumbers

and the Vibrio alginolyticus strain are obtained from the laboratory

of the School of Marine Science and Engineering at Qingdao
Frontiers in Marine Science 07
Agricultural University. To prepare the bacterial suspension,

Vibrio alginolyticus is first inoculated into Luria Bertani broth

and incubated until the logarithmic growth phase of Vibrio

alginolyticus in a constant temperature shaker at 30 °C and 200

rpm. Two distinct bacterial suspension concentrations are prepared,

with values of 1 × 1011 CFU/mL and 1 ×109 CFU/mL, respectively.

These bacterial suspensions are respectively added to two fish tanks

containing 10 L of water, then the final dilutions are obtained with

1 × 106 CFU/mL and 1 × 109 CFU/mL, respectively. The research is

conducted in three experimental environments: normal

environment, low concentration, and high concentration. Figure 3

shows the preparation process of the bacterial solution.

3.1.2 Sample collection
The water temperature for experimental sea cucumbers is kept

at 18°C. The weight and size specifications of sea cucumbers are

14.40 ± 4.20 g/each and 6.65 ± 1.15 cm/each, respectively. In this

research, twelve adult sea cucumber samples are collected. Table 1

shows the parameter specifications for each sea cucumber.

3.1.3 Experimental platform construction
Sea cucumbers are infected by the immersion infection in this

experiment. A total of three sets of experiments were set up in three

cubic aquarium with all side lengths of 40 cm. Every cubic aquarium

has four sea cucumbers. To realistically simulate the living

environment of sea cucumbers without additional effects on their

behavior, the experiments were conducted during daytime without

light compensation. The camera platform is set to record the

behaviors of sea cucumbers. The platform consisted of three

cameras, a digital video recorder, a switch, a display, and three

fish tanks. The actual experimental scenario is shown in Figure 8.

3.1.4 Image data acquisition and annotation
In this study, the dataset used for object detection is obtained by

taking frames from the video recorded in the experiment with an

image resolution of 618 × 618 pixels. The experimental platform

captured video data, but the model training requires image data. In

addition, due to the slow movement of the sea cucumber, the

original video was edited at 20 frames per second. After the manual

screening, a total of 1,000 sea cucumber images are taken, where an

example image is shown in Figure 7A. This study takes into account

that light and noise variations in sea cucumber aquaculture
B CA

FIGURE 7

Image processing and annotation. (A) Original image (B) Image after processing. (C) Label fabrication.
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environments can reduce the quality of image quality and decrease

the detection of sea cucumber objects. Therefore, to simulate the

real sea cucumber aquaculture environment to improve the

robustness of sea cucumber detection models, some image

processing methods are used to enhance the generalization ability,

such as increasing noise, reducing brightness, and reducing contrast

on the original image, and an example of the processing effect is

shown in Figure 7B. This research uses the LabelImg annotation

tool to annotate images. When labeling, the rectangle closest to the

sea cucumber is used as the real box, and the coordinates of the

center point are obtained. The effect of labeling is shown in

Figure 7C. The input size of the model is set to 640 × 640 pixels

which can be set in multiples of 32.
3.2 Experimental platform

The experiment is conducted on an experimental platform

equipped with Intel (R) Core (TM) i7-6800K CPU @ 3.40GHz (64G

RAM) and NVIDIA GeForce RTX 2080Ti 48G. We use CUDA 11.1.0,

CUDNN 11.1, and Python 3.8.8 as the configuration environment of

software. Table 2 shows the detail training parameters.
3.3 Evaluation indexes of
model performance

The loss function in YOLOv5s is employed to measure the

discrepancy between the model’s predictions and the actual ground
Frontiers in Marine Science 08
truth, and it comprises three losses: object loss, detection box loss and

classification loss. To avoid overfitting and underfitting during the

training process, the loss values are monitored for the training and

validation sets and the best model is selected based on these values.

The Intersection over Union (IoU) metric is often employed to

appraise the accuracy of the model’s prediction. IoU gives the overlap

ratio between the predicted detection boxes and the ground truth

detection boxes. Using this metric, the values of precision (P) and

recall (R) can be computed based on the model’s predictions. The

expressions for R, P, and loss are shown in Equations 12–14.

P =
TP

TP + FP
(12)

R =
TP

TP + FN
(13)

loss = lbbox + lobject + lclassification (14)

where lbbox, lobject and lclassification represent detection box loss,

object loss, and classification loss, respectively. TP presents the

number of positive samples correctly predicted as positive samples,

FP is the number of negative samples incorrectly predicted as

positive samples, and FN stands for the number of positive

samples incorrectly predicted as negative samples.

The Average Precision (AP) serves as an evaluative metric for

assessing the accuracy of an detection model for object. AP is

determined by calculating the area under the Precision-Recall (P-R)

curve, which is generated by plotting precision and recall values

across various threshold levels of the model’s confidence scores. AP

is the average value of precision at different recall levels, and it

represents the ability of the model to correctly detect objects and

avoid false positives. The mAP is the average of the AP values

calculated for each category in the dataset. the mAP is a commonly

used evaluation metric for object detection models, as it provides a

single performance score that takes into account the detection

accuracy for all object categories in the dataset. A higher mAP

value indicates better performance of the model. In summary, AP

and mAP are important evaluation metrics for object detection

models, and they are computed based on the P-R curve. They are

defined as shown in Equations 15 and 16:
FIGURE 8

Actual experimental scenario.
TABLE 1 Sample specifications of sea cucumbers.

Groups
Specifications

Normal
environment

Low
concentration

High
concentration

No. 1 Sample
Length (cm) 6.00 7.90 5.50

Weight (g) 14.80 18.40 10.20

No. 2 Sample
Length (cm) 5.60 6.50 6.50

Weight (g) 13.60 7.10 18.60

No. 3 Sample
Length (cm) 5.70 7.10 6.10

Weight (g) 16.00 14.20 13.10

No. 4 Sample
Length (cm) 5.90 8.10 7.80

Weight (g) 16.40 12.30 14.70
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AP = ∫10P Rð ÞdR (15)

mAP =
1
QR

o
q=QR

AP qð Þ (16)

where QR stands for the number of categories.
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3.4 Experimental results of
object detection

The training results of the model is shown in Figure 9, including

the training loss curve, verification loss curve, mAP@0.5:0.95 curve

and mAP@0.5 curve. From Figures 9A, B, one can see that the loss

function value of training and verification of SUS-YOLOv5

gradually decreases with the increase of the number of iterations

and finally stabilizes at a value close to 0. In this process, no obvious

overfitting phenomenon occurs in the model. From Figures 9C, D,

one can see that the mAP@0.5 and mAP@0.5:0.95 indicators of

SUS-YOLOv5 have obvious advantages over other models, and the

detection performance of object has been improved.

In the experimental process, several methods for improving

detection performance are tested and their results are compared

in Table 3.

From Table 3, the proposed SUS-YOLOv5 has the highest

accuracy whose mAP@0.5 is 0.954 and the mAP@0.5:0.95 is

0.838, which are 3.3% and 4.1% higher than the original

YOLOv5s, respectively. Although the SUS-YOLOv5 model is

more relatively complex than the original YOLOv5s, the size of
frontiersin.o
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FIGURE 9

Training results of different models. (A) Training loss for the training set; (B) Verification loss for the validation set; (C) mAP@0.5; (D) mAP@0.5:0.95.
TABLE 2 Setting of training parameter.

Parameter Value

Weight decay 0.0005

Momentum 0.95

Epochs 300

Initial learning rate 0.01

Image size 640 × 640 pixels

Thresh 0.5

Batch size 8

Optimizer SGD
rg
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the SUS-YOLOv5 model only increases by 0.4 MB compared with

14.1 MB of the YOLOv5s. The above results demonstrate that that

SUS-YOLOv5 achieves a favorable balance between model size and

detection accuracy.

The detection results are shown in Figure 10 by using YOLOv5s

and SUS-YOLOv5 on the sea cucumber dataset, respectively. To

facilitate an understanding of the detection performance of the

models, this research visualizes the 80 × 80 detection layer of the

models by using heatmaps. Heatmaps are usually used to highlight

key areas with colors of different depths in object detection.

Generally, the brighter the color of the heatmap, the more

confident the model is in detecting the object.
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From Figure 10A, it can be seen that the YOLOv5s misses an

object in the upper right corner, whose anchor box has a lower

score. In contrast, from Figure 10B, it can be seen that SUS-

YOLOv5 successfully detects all sea cucumber objects and obtains

higher confidence scores. In addition, the SUS-YOLOv5 has higher

brightness than YOLOv5s in the object area, which indicates that

SUS-YOLOv5 has a higher focus on the object area.

To further compare the performances of YOLOv5s and SUS-

YOLOv5, the P-R curves are given in the training process of the sea

cucumber object detection, shown in Figure 11.

From Figure 11, it can be observed that the SUS-YOLOv5

appears higher detection accuracy for sea cucumbers infected with
TABLE 3 Ablation experiments.

Results
Models

GFLOPS
(G)

Size of the
model (MB)

mAP@0.5
(%)

mAP@0.5:0.95
(%)

YOLOv5s+SENet 15.8 13.8 94.00 81.10

YOLOv5s+SE-BiFPN 16.4 14.0 94.70 81.40

YOLOv5s+Soft-NMS 15.8 13.7 95.00 83.10

YOLOv5s+SENet+Soft-NMS 16.5 14.1 94.60 81.30

YOLOv5s+Soft-NMS+SE 15.8 13.8 94.60 82.90

YOLOv5s+Soft-NMS+SE-BiFPN 16.4 14.0 95.00 83.00

YOLOv5s 15.8 13.7 92.10 79.70

SUS-YOLOv5 16.5 14.1 95.40 83.80
B

A

FIGURE 10

Comparison of the detection results. (A) Detection result of YOLOv5s; (B) Detection result of SUS-YOLOv5.
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Vibrio alginolyticus compared to YOLOv5s. Additionally, the

improvements made on YOLOv5s are effective because the SENet

attention mechanism, optimized Non-Maximum Suppression

algorithm, and enhanced feature fusion capability improve the

overall performance of the model.
3.5 Comparison with other object
detection models

To access the performance of SUS-YOLOv5, this research

compares it with traditional object detection models, including

YOLOv3, YOLOv4, SSD, Faster-RCNN, EfficientDet, and

YOLOv5s. The results of the comparison are shown in Table 4.

From Table 4, one can see that the mAP@0.5 of SUS-YOLOv5

achieves 95.40% among the one-stage object detection algorithms,

which is not only higher than other YOLO series algorithms but

also 6.30% and 10.94% higher than mAP@0.5 of SSD and

EfficientDet, respectively. The accuracy of SUS-YOLOv5 can meet

the requirements of sea cucumber detection.

To make the performances of different detection algorithms

more visual and clear, Figure 12 shows the comparison results of
Frontiers in Marine Science 11
performance for different detection algorithms in the form of

a histogram.

As seen in the above figure, themAP@0.5 of Faster-RCNN is the

highest in the seven models and it is 0.06% higher than that of SUS-

YOLOv5, but the model size of SUS-YOLOv5 reduces 86.94% than

that of Faster-RCNN. As we all know, the large size of the model

makes it difficult to deploy the model in embedded devices. As

shown in Figure 12, the processing time of SUS-YOLOv5 is only

0.016s for a single image, satisfying the real-time detection

requirement for sea cucumber objects. On the other hand, the P

and R of SUS-YOLOv5 both increase by 1.80% compared with those

before the improvement. In summary, the SUS-YOLOv5 achieves a

good balance among detection accuracy, detection speed, and

model size, which can lay a good foundation for the following sea

cucumber object tracking task.
3.6 Object tracking and behavior analysis

This research analyzes the behavioral changes of sea cucumbers

in the early stage of suffering from SUS disease to observe their

behavior within one hour after immersion by setting different
BA

FIGURE 11

P-R curves of YOLOv5 and SUS-YOLOv5. (A) YOLOv5s; (B) SUS-YOLOv5.
TABLE 4 Comparison of the performances of the seven models.

Models
P
(%)

R
(%)

mAP@0.5
(%)

Detection time
(s)

Size of the model
(MB)

SSD 90.28 86.10 89.91 0.020 90.60

Faster-RCNN 63.73 98.70 95.46 0.100 108.00

EfficientDet 99.91 77.83 84.46 0.197 15.00

YOLOv3 97.69 59.93 93.83 0.382 235.00

YOLOv4 93.51 61.25 91.64 0.236 244.00

YOLOv5s 94.20 94.20 92.10 0.014 13.70

SUS-YOLOv5 96.00 96.00 95.40 0.016 14.10
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experiment groups (normal environment, the low concentration of

Vibrio alginolyticus, and the high concentration of Vibrio

alginolyticus). In the sea cucumber object tracking experiment,

the MO-Tracking algorithm combines the ideas of cascade

matching and object re-identification to effectively avoid the

object ID loss problem and the ID switching problem caused by

object occlusion. The ID identification results of the MO-Tracking

algorithm are shown in Figure 13.

From Figure 13, one can see that the MO-Tracking algorithm

assigns an ID to each sea cucumber and accurately locks the identity

of each sea cucumber based on the object’s ID, while the

corresponding coordinate information is continuously output.
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After obtaining the coordinate information of sea cucumber

objects by using the MO-Tracking algorithm, the pixel coordinates

are transformed proportionally to obtain the actual coordinates of

sea cucumbers in the 40 ×40 ×40 cm3
fish tank. Table 5 shows the

detailed statistical results of sea cucumber movement quantity in

the three experiments.

To more intuitively reflect the movement status of sea

cucumbers, the trajectories of movement for sea cucumbers are

plotted based on the obtained coordinates of the objects in the three

groups. Figure 14 shows the results.

Combining Table 5 and Figure 14, we can conduct a detailed

analysis of the movement status of sea cucumbers within one hour
FIGURE 12

Comparative evaluation of various detection algorithms’ performance.
FIGURE 13

ID identification results of the MO-Tracking algorithm.
TABLE 5 Movement quantity statistics of sea cucumbers during the
first hour.

Groups No.
Movement

quantity (cm)
Mean movement
quantity (cm)

Group 1
(Normal

environment)

ID 1 19.28

33.17
ID 2 32.98

ID 3 63.67

ID 4 16.74

Group 2
(Low

concentration)

ID 1 15.95

56.48
ID 2 77.38

ID 3 81.21

ID 4 51.37

Group 3
(High

concentration)

ID 1 135.44

94.36
ID 2 55.14

ID 3 122.04

ID 4 64.80
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after the experiment. Figure 14A shows the trajectories of the sea

cucumbers in group 1 (normal environment). From Figure 14A, it

can be seen that: besides ID 3 which shows obvious movement, the

other three sea cucumbers stay stationary near their original

locations in the normal environment. According to Table 6, the

movement quantity of ID 3 is 63.67 cm, the mean movement

quantity of the other three sea cucumbers is 22.99 cm, and the

overall mean movement quantity is 33.17 cm. Figure 14B shows the

trajectories of sea cucumbers in group 2 (low concentration of

Vibrio alginolyticus). ID 3 and ID 2 are the ones with the stronger

reaction, and the movement quantity reaches 81.21 cm and 77.38

cm, respectively, while ID 1 has the least strong reaction. The overall

mean movement quantity is 56.48 cm in group 2, which has an

increase of 23.31 cm compared to that in the normal environment.

Figure 14C shows the behavior trajectories of sea cucumbers in

group 3 (high concentration of Vibrio alginolyticus). It can be seen

that the movement quantity of sea cucumbers increases significantly

and the movement quantity of ID 1 is the largest which reaches

135.44 cm. The movement quantity of ID 3 increases by 40.83 cm

and 58.37 cm compared with that in group 2 and group 1,

respectively. The mean movement quantity of sea cucumbers
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reaches 94.36 cm in group 3, which is obviously higher than

those of the other two groups.

In the whole experiment, sea cucumbers do not appear a strong

reaction or death in low concentrations of Vibrio alginolyticus, and

they only appear with some symptoms such as shaking their heads

and spitting out their guts. To further explore infection in the

situation of sea cucumbers in different concentrations of Vibrio

alginolyticus, the mean movement quantity of sea cucumbers is

calculated in the first three hours of each experiment, as shown

in Table 6.

In Table 6, A, B, and C represent the movement quantity in the

first, second, and third hours, respectively, and D represents the

mean movement quantity in the first three hours. From Table 6, it

can be seen that ID 1 and ID 4 in group 2 do not appear significant

differences in mean movement quantity compared to sea

cucumbers in group 1. The occurrence of this phenomenon may

be because of the concentration of Vibrio alginolyticus is low and

the bacterial inoculation adopts the immersion infection method in

the experiment, so that the sea cucumbers may be incompletely

infected with Vibrio alginolyticus. When sea cucumbers are exposed

to high concentrations of Vibrio alginolyticus, their reactions
B CA

FIGURE 14

Movement trajectories of sea cucumbers. (A) Normal environment; (B) Low concentration of Vibrio alginolyticus; (C) High concentration of
Vibrio alginolyticus.
TABLE 6 Movement quantity statistics of sea cucumbers during the first three hours of experiments.

Groups No. Movement quantity (cm)

A B C D

Group 1
(Normal environment)

ID 1 19.28 8.35 8.59 12.07

ID 2 32.98 8.05 7.08 16.04

ID 3 63.67 25.67 17.39 35.58

ID 4 16.74 9.46 8.70 11.63

Group 2
(Low concentration)

ID 1 15.95 3.50 11.84 10.43

ID 2 77.38 6.81 7.35 30.51

ID 3 81.21 59.08 94.14 78.14

ID 4 51.37 4.88 5.08 20.44

Group 3
(High concentration)

ID 1 135.44 57.52 61.68 84.88

ID 2 55.14 9.04 12.93 25.70

ID 3 122.04 126.52 100.05 116.20

ID 4 64.80 26.59 56.48 49.29
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become more fidgety, and more symptoms occur, such as shaking

their heads, blackening their tentacles, spitting out their guts, fully

extending their trunk, and floating their heads. On the 5th day of

these experiments, the high-concentration group of sea cucumbers

begins to appear dead.

According to the analysis for the experimental results, sea

cucumbers become irritable in the early stage of infection with

Vibrio alginolyticus, and the movement quantity increases

significantly compared with the normal environment. Therefore,

in the early infection stages of sea cucumbers with Vibrio

alginolyticus, the increase in the movement quantity of sea

cucumbers can be used as one of the characteristics to determine

whether the sea cucumber is diseased.

According to the experimental results of sea cucumbers

infection with Vibrio alginolyticus, one can classify the infection

level into three categories: low infection level (mean movement

quantity ranging from 25 cm/h to 45 cm/h, but not including 45

cm/h), moderate infection level (mean movement quantity ranging

from 45 cm/h to 85 cm/h, but not including 85 cm/h), and severe

infection level (mean movement quantity greater than 85 cm/h).

We can judge the infection level by the movement quantity of sea

cucumber, then a alarm of the infection level can be provided to

facilitate the appropriate measures to be taken.
4 Discussions and future work

Since the body of sea cucumbers is very flexible (Ru et al., 2021),

even if sea cucumbers appear to be stationary from the trajectory

perspective, they still have a certain movement quantity. From the

perspective of the entire movement process, the movement quantity

is almost negligible (Sun et al., 2018).

We also observe that sea cucumbers suffering from SUS appear

ulceration on their body surfaces in the experiments. These affected

areas often appear white or yellow and often emit a foul odor by

SUS. If this problem is not solved promptly, the bacteria may

continue to multiply and spread to the other parts of sea cucumbers,

which will cause the condition to further worsen. Therefore, We will

use the above phenomenon as a level of discrimination for infecting

Vibrio alginolyticus and give a timely warning in future work.

During the sample collection process, sea cucumbers for

experiments are in the same specifications as much as possible to

eliminate interference factors. Whereas, the expansion and

contraction of the sea cucumber’s body make it difficult to obtain

accurate trunk length and mass information because the trunk of

sea cucumbers can shrink or extend. To ensure the measurement

accuracy of sea cucumbers, this research measured their length after

they are kept stationary for a while. Additionally, the sea cucumber

can absorb water, which causes its weight to fluctuate, but these

fluctuations hardly affect the results of the experiments.

To deploy the model to embedded devices in the future, the next

step is to further optimize the SUS-YOLOv5 model and implement

compression of the model using lightweight techniques, such as

pruning and knowledge distillation (Poyatos et al., 2022). Based on
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the detection objects, the genetic algorithm (Wang et al., 2022),

Bayesian optimization algorithm (Lan et al., 2022), and particle

swarm optimization algorithm (Liu et al., 2021) may be used to

determine hyperparameters of SUS-YOLOv5.

On the other hand, generative adversarial networks (Zhao et al.,

2021; Zheng et al., 2022) can be used to expand the dataset, increase

sample diversity, and improve the generalization ability of model.

Furthermore, the movement quantity of sea cucumbers in real-time

can be monitored long-term as an early warning system for sea

cucumber diseases. When the movement quantity of sea cucumbers

is abnormal, a timely warning will be given.

In fact, the proposed SUS-YOLOv5 can directly detect the sea

cucumber and the other some marine organisms in this paper.

Whereas, our proposed algorithm cannot be directly applied to all

image processing and object detection scenarios, such as synthetic

aperture sonar (SAS) (Yang, 2023; Zhang, 2023) and radar (SAR)

(Pinheiro et al., 2015). We believe that our algorithm can be

indirectly applied to these fields or the further improved

algorithms on the basis of our algorithm can be extended to

apply to these fields.
5 Conclusions

This research proposes a two-stage algorithm MO-Tracking for

sea cucumbers’ multi-object detection and tracking, which

optimizes the NMS algorithm and designs a new feature fusion

structure. These improvements enhance the non-maximum

suppression and feature fusion abilities. According to the

proposed SUS-YOLOv5 object detection algorithm, the mAP@0.5

and mAP@0.5:0.95 reach 95.40% and 83.8%, respectively. In

addition, this research finds through object tracking experiments

that the behavior of sea cucumbers shows obvious abnormalities

after being infected with Vibrio alginolyticus, i.e., a significant

increase in the mean movement quantity. The results obtained by

the proposed method can be used as an important criterion for

determining whether sea cucumbers suffer from disease. This

research provides a method for health monitoring of intensively

cultivated sea cucumbers, which has practical significance for

promoting the development of smart fisheries.
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