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A dissolved oxygen prediction
model based on GRU–N-Beats
Zhenhui Hao*

College of Information and Electrical Engineering, China Agricultural University, Beijing, China
Dissolved oxygen is one of the most important water quality parameters in

aquaculture, and the level determines whether fish can grow healthily. Since

there is a delay in equipment control in the aquaculture environment, dissolved

oxygen prediction is needed to reduce the loss due to low dissolved oxygen. To

solve the problem of insufficient accuracy and poor interpretability of traditional

methods in predicting dissolved oxygen from multivariate water quality

parameters, this paper proposes an improved N-Beats-based prediction

network. First, the maximum expectation algorithm [expectation–maximization

(EM)] was used to fill in the original data by fitting the missing values. Second, the

discrete wavelet transform (DWT) was used to reduce the overall noise of the

sample, then the gated recurrent unit (GRU) feature extraction network was

employed to extract the water quality information from the temporal dimension,

the N-Beats was utilized to predict the preprocessed data, and the residual

operation through Stack was performed to obtain the prediction results. The

improved algorithm overcomes the challenge of insufficient prediction accuracy

of the traditional algorithm. The GRU–N-Beats network proposed in this paper

can extract features frommultivariate time dimensions for prediction. The values

of root mean square error (RMSE), mean absolute error (MAE), mean absolute

percentage error (MAPE), and R2 for the proposed algorithm were 0.171, 0.120,

0.015, and 0.97, respectively. In particular, they were 28.5%, 32.1%, 51.6%, 24.3%,

14.9%, 36.4%, and 19.3% higher than those of long short-term memory (LSTM),

GRU, temporal convolutional network (TCN), LSTM–TCN, PatchTST, back-

propagation neural network (BPNN), and N-Beats on RMSE, respectively.
KEYWORDS
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1 Introduction

In order to provide a cultural environment suitable for fish growth, it is important to

test the water quality. Dissolved oxygen is an important indicator representing the oxygen

content in water, and the amount of dissolved oxygen required varies slightly for different

fish species. In aquaculture, the amount of dissolved oxygen in the water often fluctuates

due to changes in the aquatic environment. The lack of dissolved oxygen often leads to the

floating head of fish or even death. At the same time, high dissolved oxygen levels cause

harm to fish, such as bubble disease, which is caused by the lack of sufficient aeration of
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dissolved oxygen in the water following prolonged direct sunlight

(Zhou et al., 2021). Too high or too low dissolved oxygen leads to

disease or death of fish, which will cause irreversible economic

losses. Due to environmental changes, the amount of dissolved

oxygen in the same pond varies at different times of the day (Cao

et al., 2020), with dissolved oxygen levels often the highest at noon

and the lowest in the evening. In fish ponds, microorganisms,

animals, and plants form a mini-ecosystem, and different

organisms require different dissolved oxygen levels. Influenced by

the environment, climate, aquatic organisms, and human behavior,

dissolved oxygen content often shows a non-linear trend (Ta and

Wei, 2018). Therefore, accurate dissolved oxygen prediction in this

aquaculture environment poses a significant challenge. Accurate

prediction of dissolved oxygen in the water and advanced control of

oxygenators can help increase fishery production, improve

efficiency, and reduce costs (Cao X. et al., 2021).

Due to the complex environment of aquaculture, the data

collected by sensors are often affected by multiple factors, thus

causing noise problems in the collected samples. Ren et al. (2020)

used variational mode decomposition to decompose dissolved oxygen

data to obtain signals of different frequencies, thus reducing noise and

getting higher prediction accuracy. Zhang et al. (2020) used kernel

principal component analysis (KPCA) for feature selection of water

quality data in Australian river data to minimize the effect of water

quality noise on model training. They used recurrent neural network

(RNN) with temporal memory function (Hu et al., 2021) to predict

the water quality parameter with Feedforward Neural Network

(FFNN), Support Vector Regression (SVR), and Generalized

Regression Neural Network (GRNN). These methods were

compared, and it was proved that RNN was more advantageous for

processing time-series data. Li et al (Li et al., 2022). pointed out that

the multivariate and long-term correlation characterizing water

quality time series in traditional methods makes it difficult to

achieve the desired prediction accuracy. To address this issue, they

combined long short-term memory (LSTM) and temporal

convolutional network (TCN) to construct a prediction model and

also investigated the effects of attention mechanisms and historical

time window size on prediction results. Ni et al (Ni et al., 2023).

introduced a deep learning model, Fast Graph Convolutional

Networks (FTGCN), to predict multivariable water quality data,

enhancing prediction accuracy by capturing potential correlations,

temporal dependencies, and hidden associations between indicators.

Liu et al (Liu et al., 2023). proposed a novel prediction framework for

effluent total nitrogen (E-TN) in wastewater treatment plants

(WWTPs), combining a two-stage feature selection model, Golden

Jackal Optimization (GJO) algorithm, and a hybrid deep learning

model convolutional neural network (CNN)–LSTM–TCN (CLT).

The framework effectively captures non-linear relationships in

multivariate time series. Zamani et al (Zamani et al., 2023).

evaluated the predictive capabilities of four deep learning models

in forecasting chlorophyll-a concentrations in Small Prespa

Lake, Greece. The best-performing model, gated recurrent unit

(GRU), is further enhanced through ensemble modeling with

genetic algorithms.

In time-series prediction studies, it is a common practice to

divide the one-dimensional dissolved oxygen data by time steps and
Frontiers in Marine Science 02
use the obtained multiple small time series as training data to

perform the prediction. However, the amount of dissolved oxygen

in recirculating aquaculture is often affected by a variety of

environmental factors, and the mechanism of this action is very

complex. Accurate predictions cannot be made by a single dissolved

oxygen data, such as the electrical conductivity of the water body,

pH, and ammonia nitrogen concentration. Since one-dimensional

time series usually contain only continuous data points for a single

variable and lack diverse sources of information, their forecasting

accuracy is often severely limited. One-dimensional time-series data

is characterized by the fact that it reflects only the pattern of change

in a particular indicator over time and fails to encompass other

factors that may affect the change in that indicator. This data

limitation leads to the limited ability of models to capture

complex patterns, trends, and unexpected events, which in turn

affects the accuracy and reliability of forecasts. Therefore, with the

development of artificial intelligence technology, multidimensional

time-series prediction techniques have been proposed. Many

scholars from China Agricultural University have conducted

multiple in-depth research on multivariate dissolved oxygen

prediction in aquaculture. Liu (2019) proposed a recurrent neural

network based on a self-attentive mechanism. Zhou et al. (2022)

predicted dissolved oxygen in aquaculture by an improved sparrow

search algorithm (Yang et al., 2021).

Early time-series prediction studies mainly used statistical

methods [including Autoregression (AR), Moving Average (MA),

Auto-Regressive Moving Average (ARMA), Autoregressive

Integrated Moving Average (ARIMA), and Seasonal Autoregressive

Integrated Moving Average (SARIMA)], which have the advantages

of simple training, fast speed, and good interpretability. In practical

scenarios, since the trend of dissolved oxygen is often non-linear and

fluctuates along with environmental factors, it is difficult for

traditional mathematical models to describe its change process,

while artificial intelligence methods can better solve problems such

as non-linear prediction. Therefore, artificial intelligence methods are

now the development trend. Currently, an effective method is to

predict the time-series data by neural networks, such as back-

propagation (BP) neural network, extreme learning machine (ELM)

(Kuang et al., 2020), radial basis neural network (RBNN) (Li et al.,

2021), and CNN (Cao S. et al., 2021). Cao et al. (2020) used an

attention mechanism and GRU based on the difference of dissolved

oxygen in a pond on a three-dimensional scale to predict the

dissolved oxygen in the center of the pond. Trained gradient-

boosted regression tree (GBRT) by a stochastic search algorithm

was used to construct a set of deep neural networks capable of

predicting any location in the pond. In addition, they proposed a

GRU model, clustered dissolved oxygen data using the K-means

algorithm, and trained the data similarity around dissolved oxygen. Li

et al. (2022) proposed a causal convolution and jump convolution of

time series using LSTM and TCN to process long time series.

The feature extraction network, GRU, used in this paper is an

improved network based on RNN and LSTM networks. It

overcomes to some extent the problem of memory loss in RNN

when dealing with long sequences and the problem of complex

structure and time overhead of LSTM. GRU can deal with

multidimensional time series and combine various water quality
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information in the water body for prediction, so it is higher in

prediction accuracy than previous one-dimensional prediction

models. This paper used GRU for feature extraction and

combined it with the N-Beats network. Oreshkin et al. (2020)

used it to predict dissolved oxygen. These algorithms provide the

theoretical basis for the research in this paper. There are three main

problems in dissolved oxygen prediction: first, data are missing

issues in water quality sensor data acquisition and transmission;

second, the coupling mechanism between the data is complicated;

and third, the stability and reliability of the traditional methods are

poor. In order to solve these problems, this paper preprocessed the

data and took the feature extraction and N-Beats prediction. First,

N-Beats is based on forward and backward residual networks for

layer-by-layer learning, which makes it possible to train the target

data quickly without complicated changes when facing new

samples. In addition, the N-Beats network is built with a Block

structure, and sequence decomposition can fully explain each part’s

prediction results. Finally, since the learning process of the residual

network is based on one-level operations, the prediction speed is

fast, which is of great significance for the real-time prediction of

dissolved oxygen and immediate control of equipment in complex

aquaculture environments (Sun et al., 2021). The main work of this

paper is as follows.
Fron
(1) To solve the problem of dissolved oxygen prediction in

aquaculture, an improved multidimensional time-series

prediction model based on the N-Beats network was

proposed in this paper to reduce the economic loss due to

the time lag of equipment control in actual production

(Zhang and Wu, 2020).
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(2) Various time-series prediction models were compared and

analyzed, and experiments demonstrated that the algorithm

in this paper has better stability and prediction accuracy.

(3) The problem that N-Beats cannot handle multidimensional

time series was solved. To prevent overfitting, this paper

used the Dropout algorithm to improve the generalization

ability of the model.

(4) The algorithm in this paper has strong explanatory power

and improves the model’s ability to handle data from

different scenes.
2 Materials and methods

2.1 System structure

This paper proposed a multivariate temporal prediction model

for the dissolved oxygen content in ponds in aquaculture (Huang et

al., 2021). The method in this paper consists of three processes:

preprocessing, feature extraction, and dissolved oxygen prediction.

Combined with the N-Beats network, we took the residuals of each

step as input, used multiple blocks for learning, and finally

superimposed the fitting results of each block to get the final

prediction results. The network structure is shown in Figure 1.

The network in this paper contains the following three main

processing processes.
(1) The raw data collected by the farming system include six

sets of data: water temperature, pH, ammonia and nitrogen
FIGURE 1

Overall network architecture diagram.
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concentration, turbidity, electrical conductivity, and

dissolved oxygen. The data were first fed into the noise

reduction module to detect outliers of the original data and

fill in the missing values by fitting them using the

expectation–maximization (EM) algorithm. After that, the

overall sample was noise-reduced by wavelet transform in

the noise reduction network to reduce the errors generated

by the sensor in data acquisition and transmission.

(2) The processed time series in (1) was passed through the

GRU module for feature extraction. The advantages

of GRU are mainly as follows. First, the temporal feature

extraction network can extract the variation characteristics

of the time series in both temporal and spatial dimensions

from multiple dimensions. Second, the feature extraction

network based on the gated recurrent unit is more

advantageous than the LSTM network in handling large

batches of temporal data, which can significantly reduce the

training time of the model while ensuring the accuracy of

the prediction (Feng et al., 2020). The six kinds of water

quality information were passed through the GRU module

to adjust the parameter states between the hidden layers.

After this, a fully connected layer merged the six water

quality information for input to the N-Beats network.

(3) In the third module, the output of the feature extraction

network was used as the input of the prediction network,

and the sequences were divided into forecast and lookback

input Blocks, where the forecast is the prediction sequence

and lookback is the lookback window sequence. In

addition, in order to reflect the interpretability of the

model, the data were decomposed into seasonal and trend

data to explain the final prediction results (seasonal data

explain the model results in terms of periodicity, while

trend data portray the trend of dissolved oxygen changes in

the future period). The results of each Block were output by

calculating the residuals from the output of the previous

Block with itself, and the results of different Blocks were

superimposed to obtain the final prediction results.
2.2 Data preprocessing

In the aquaculture workshop, six water quality sensors were

configured to collect six types of data: dissolved oxygen, ammonia,

nitrogen concentration, water temperature, conductivity, pH, and

turbidity. Sensors used for field data acquisition may be interfered

by a variety of factors, due to the complex site environment, sensor

equipment failure, and even the data transmission process, the

signal interference is produced, so the collected data often face large

deviations, missing data, and other problems. In this subsection,

this paper will accomplish the filling of data vacancy values and the

replacement of outliers for various problems in the original dataset

by using the EM algorithm. In addition, to reduce the problem of

noise in the samples, this paper used the discrete wavelet transform
tiers in Marine Science 04
(DWT) to decompose the original signals and remove the

redundant signals, thus ensuring the prediction accuracy of the

subsequent model.

2.2.1 Expectation–maximization algorithm
In the aquaculture environment, due to uncertainty factors such

as the instability of signal transmission and the field environment,

the anomalous data are first detected and set to null values. Then,

the missing values are estimated using the EM algorithm. This

section describes in detail the principle of the EM algorithm.

Initially proposed in 1977 by Arthur P. Dempster, Nan Laird,

and Donald Rubin (Simone, 2021), the EM algorithm is an

algorithm for parameter optimization through iteration. The basic

idea of the EM algorithm is to predict the missing data by fitting the

estimated parameters and using the predicted results as new data for

re-estimation, after which iterations are repeated until the model

converges and the final result is obtained (Zhao et al., 2020).

‘(q X) = log P(Xj jq)

= log
Yn
i=1

P(xijq)
 !

=o
n

i=1
log P(xijq)

(1)

As shown in Equation (1), L is the joint probability distribution

of X, as shown in Equation (2), where q is the parameter to estimate

the missing water quality data. In order to find the optimal solution,

the derivative of Equation (1) was performed to obtain the

maximum likelihood function (Zhao et al., 2018).

q̂ = argmax
q

log ‘(qjX)

= argmax
q o

n

i=1
log P(xijq)

(2)

As shown in Equation (3), for time series X = (x1, x2,…, xn), its

expectation is E½X� =oxP(x), the sequence of unobserved hidden

variables is z = (z1, z2,…, zn), and the hidden variables satisfy o
Z

q(

Z) = 1, at which point it is obtained that

log P(X j q) = logo
Z
P(X,Z j q)

= log o
Z
P(X q ,Z)P(Zj jq)

 ! (3)

Because the dissolved oxygen data change curve over time is a

concave or convex function, according to Jensen’s inequality, the

mathematical expectation of the convex function must be greater

than or equal to its function value, and the following equation can

be obtained.

E½f (X)� ≥ f (E½X�) (4)

In this equation, X is a random variable. It is a convex function,

and Equation (4) takes an equal sign when and only when it is a

constant (Xiao and Lu, 2020). If it is a concave function, the

inequality sign is reversed. From this, Equation (5) can be obtained.
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EZ log
P(X,Zjq)=q(Z)
P(ZjX, q)=q(Z)

� �
  ≥o

Z

q(Z) log
P(X,Zjq)

q(Z)
(5)

As shown in Equation (6), the maximum likelihood function is

q̂   = argmaxq EZjX,q(i) ½log P(X,Zjq)� (6)

As shown in Equation (7), the expectation of the joint

probability distribution is obtained as

Q q , q(i)
� �

= EZjX,q(i) ½log P(X,Zjq)�
(7)

As shown in Equation (8), bringing the q of step i +1 into step i,

the equation for step M is obtained as

q(i+1) = argmax
q

Q q , q(i)
� �

(8)

After obtaining the formulae for the E and M steps, the model

converges by taking the water quality information as input for N

iterations of E and M. The fitted missing data are obtained when the

absolute value between the parameter qn+1 for the N + 1th iteration

and the parameter qn for the Nth iteration is less than the constant ϵ.

The specific algorithm for missing value filling by the EM

algorithm is shown in Figure 2.

2.2.2 Wavelet transform
After the EM algorithm fills the missing dissolved oxygen data,

although the data have been completely replenished, the noise

problem will still arise during the sensor signal acquisition, which

will influence the prediction results of the subsequent dissolved

oxygen model. Here, we used the wavelet transform method to
Frontiers in Marine Science 05
remove the noise, and the wavelet transform was mainly divided

into two stages: signal decomposition and signal reconstruction.

The wavelet transform (WT) discards the disadvantage of the

Fourier basis function, which does not perceive the frequency change

in the time dimension due to a single variable. In addition, compared

to the short-time Fourier transform (STFT) algorithm with adding a

window, which generates increased redundancy due to the sine wave

in the window during the orthogonalization calculation with the

original signal, the wavelet transform proposes a new basis function a

and t by using these two parameters, a and t , to perceive the changes
of the signal in both frequency and time domains (Sang, 2013). The

discrete wavelet transform is given in Equation (9), and the

continuous wavelet transform formula is given in Equation (10).

Wf (j, l,m) = 2j
Z +∞

−∞
 
Z +∞

−∞
  f (x, y)y *(2jx − l, 2jy −m)dxdy (9)

WT(a, t) =
1ffiffiffi
a

p Z ∞
−∞f (t)*y

t − t
a

� �
dt (10)

The parameter a was used to control the scaling state of the wavelet

function, which is used tomatch the bands of different frequencies, and t
was used to realize the translation function of the bands to ensure that the

wavelet can complete the conversion of the whole frequency band.

To facilitate computer processing and consider the discrete

nature of dissolved oxygen data, the wavelet transform needs to use

its discrete form, as shown in Equation (11).

Wf (j, k) = a−j=20 y (a−j0 t − t0k) (11)

According to the wavelet transform, the energy M(t) of the

wavelet is as shown in Equation (12).
FIGURE 2

EM algorithm. EM, expectation–maximization.
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M(t) =
1
a
Z
Wf (a, t)
		 		2dt (12)

The wavelet transform maps the signal to a new variable space

by changing different bands of the spectrum, but the energy

contained in the same spectrum at the same time before and after

the transform is the same as M(t).
The water quality data are used as the input of the wavelet

transform. The wavelet function is used to transform the original

signal through the discrete form of the wavelet transform formula

and to ensure that the amount of information contained in the

wavelet before and after the transformation is the same. The

transformed abnormal signal is rejected through the threshold.

Finally, the five components after processing are reconstructed to

obtain the noise reduction data as the input of the next network.
2.3 Feature extraction network

Since prediction networks cannot handle multidimensional

variables directly, this paper designed a multivariate feature

extraction network based on gated recurrent units to extract

water quality features. The features were fused through a fully

connected neural network as the input to the N-Beats network.

Traditional neural networks ignore the relationship between

internal nodes in the same layer because they only construct the

information transfer structure between each hidden layer with full

connectivity between layers. This structure lacks the feedback

between neurons and thus is very difficult to capture the temporal

features of long sequences. Based on the characteristics of temporal

data, RNNs can obtain temporal memory by constructing

information associations between internal neurons, but due to the

gradient explosion/disappearance problem of its parameter updates,

it often fails to converge to the global optimal solution.
Frontiers in Marine Science 06
The LSTM has three gates (forgetting gate, memory gate, and

output gate) to control the output of cell states. The forgetting

gate determines how much of the previous layer’s output is

retained by the LSTM, while the memory gate controls how

much new information is deposited into the cell state by the

current gate. The final output gate then determines the current

output value based on the cell state. From the computational

process, the add-and-multiply feature of the LSTM reduces the

gradient problem caused by the continuous use of linear

transformation by RNN.

There are two problems with these methods:
(1) LSTM has three gates, each with a more complex

computational process and a larger number of

parameters, and it has a longer processing time compared

to RNN. This is unacceptable in an actual recirculating

water farming workshop, where dissolved oxygen may not

be accurately predicted for a longer length of time (Rahman

et al., 2020). The complex internal structure of the LSTM

may impact the actual production due to the inherent time

lag of intelligent remote control.

(2) Each cell of LSTM contains four fully connected layers,

which leads to a larger computational volume and requires

more computational resources.
By comparing RNN, LSTM, and GRU, this paper chose a GRU

as the main structure of the feature extraction network. GRU has a

simpler internal structure, smaller computation, and faster

computation speed compared with LSTM, and at the same time,

the difference between prediction accuracy and LSTM is very small.

The internal structure of the GRU is shown in Figure 3.

GRU is another variant of RNN that contains only two gates:

the reset gate and the update gate.
FIGURE 3

The internal structure of the GRU. GRU, gated recurrent unit.
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First, the update gate is used to compute the newly generated

cell state of the current GRU cell. The matrix (donated as W) is

obtained by taking the output of the update gate of the previous

GRU cell as the current input and then combining it with the input

of the current time step. The output is obtained through the

activation function after the fully connected layer, and the

variable represents the amount of memory that the current GRU

cell needs to select from the current calculation result. Equation (13)

gives the calculation process.

Zt = s (Wzxt + Uzht−1 + bz) (13)

The update process for the reset gate is shown in Equation (14).

rt = s (Wrxt + Urht−1 + br) (14)

rt is the output of the update gate, s represents the activation

function,Wr is the fully connected layer designed for the reset gate,

and ht−1 and xt represent the output of the previous time step and

the input of the current time step, respectively. Ur is the transition

matrix of the reset gate at t − 1 time steps, and br is the bias term of

the reset gate.

In the reset gate, the matrix Er is obtained from the output of

the previous layer and the current input, and the Er is passed

through the fully connected layer to obtain the output rt .

In the tth time step, the vectors rt and ht−1 are linearly

transformed and reconstructed with the tth component of the

input sequence, and the features are inner-produced after the

fully connected layer. As shown in Equation (15), the current

memory content ~ht is obtained after the activation function.

~ht = tanh(Wcxt + U(rt  ht−1) + bh) (15)

Finally, the amount of current memory content to be retained is

controlled by the result of the update gate, while the other part

determines the proportion of GRU’s memory content retained in

the past time series by the output of the hidden layer of the previous

time step and the inner product of the vectors. Equation (16)

expresses this calculation process:

ht = (1 − zt) ∗ ht−1 + zt ∗ ~ht (16)

Where ht is the output of the hidden layer at the current time

step, and zt is the result of the update gate, which determines the

amount of past and current memory content to be saved. The vector

ht−1 is the output of the previous time step, and ~ht is the output of

the update gate.

Be fore ca lcu la t ing the d i s so lved oxygen data of

multidimensional variables, since the traditional N-Beats network

cannot process multivariate data at the same time, this paper chose

to use six GRU modules to extract features from water quality data

in turn (Kim et al., 2021). First, the amount of input information

saved was controlled using the gating mechanism of GRU, and the

saved information from the previous time step was calculated. The

update gate added up these two parts of information, after which

the output of the current time step was obtained through the

activation function. Finally, six sets of output vectors were

obtained, and the outputs of the six GRU networks were

concatenated. Before inputting into the prediction network, the
Frontiers in Marine Science 07
method in this paper controlled the output dimension through a

fully connected neural network. The obtained components were

used as the input to the prediction network.
2.4 Prediction network

2.4.1 Residual network
After the feature extraction by the feature network, the six kinds

of water quality information in the time dimension were extracted.

In the prediction network, an N-Beats network based on residual

learning was used in this paper, which can provide a reasonable

interpretation of the prediction results because the N-Beats network

can decompose the series into trend and seasonality in the

time dimension.

Currently, N-Beats is less used in agriculture, but on many publicly

available datasets, N-Beats shows great advantages due to its simple

structure, strong interpretation, and high operational efficiency. N-

Beats mainly consists of a double residual network and a base Block.

The internal structure of each Stack is shown in Figure 4.

As shown in Figure 4, each Stack is composed of K Blocks

inside the residual network. After the input sequence enters the

first layer Stack, each Block will get the predicted value Y1 for the

current input by calculating the current input X1 and will get the

input X2 for the next Block by calculating the residual between the

two. Each Block gets the prediction Y = (y1, y2,…, yk) of the

current input by calculating the current input and will get the

input of the next Block by calculating the residuals of the two. K

sets of predicted values are obtained by learning the residuals K

times. The values of the vectors are accumulated to get the output
FIGURE 4

Internal structure of Stack.
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value of the current Stack: OutPut(Stack1) =o
k

1
Y . Finally, the

prediction results of N Stacks are summed to get the final

prediction result.

In the N-Beats network, each Block is in turn determined by a

multi-layer fully connected neural network and an underlying

function. First, the input of the Block needs to enter a four-layer

fully connected neural network. After each layer of FC, it needs to

be processed by the ReLu activation function and after four

iterations before entering the last fully connected neural network,

at which time two expansion coefficients can be trained, qb and q f ,

which are used to generate Backcast and Forecast sequences.

As shown in Figure 5, the input of Block passes through a four-

layer fully connected neural network, and in each layer of the fully

connected neural network, it needs to be processed by the ReLu

activation function, in which two expansion coefficients, qb and q f ,

can be obtained.

The expansion coefficients qb and q f in the previous step are

removed from the time series after the transformation of the fully

connected neural network when qb = 0 or q f = 0, thus helping the

downstream network to perform the prediction task better.
2.4.2 Sequence decomposition
To better interpret the prediction results and reduce the

discriminative bias of the model, while facilitating subsequent

improvements in the model performance, interpretability is

crucial for forecasting models. In time-series forecasting, one of

the effective measures to improve the interpretability methods is to

decompose the time-series data (Liu et al., 2021). Some of the more

common methods for sequence decomposition include additive

model decomposition algorithms, X11 decomposition, and STL

decompos i t ion (Chen et a l . , 2020 ; Gozuyi lmaz and

Kundakcioglu, 2021).

As shown in Equation (17), the decomposition of sequences is

incorporated in the Block of N-Beats network. Block can

decompose the time-series data into seasonal and trend
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simultaneously. In the original N-Beats network, the trend

decomposition is processed using polynomials, while the seasonal

trend is decomposed using both Fourier functions (i.e., a combined

function of sine and cosine waves).

ŷ trend = q f t0 + q f t1 +… + q f tp (17)

where ŷ trend represents the trend vector after time-series

decomposition, which consists of a set of polynomials: the

expansion coefficients q f and time ti of the fully connected

neural network.

The seasonal decomposition then consists of two wave

functions, as shown in Equation (18).

ŷ Seasonality = o
½H=2−1�

i=0
q f cos (2p it) + q f

½H=2� sin (2p it) (18)

where ŷ Seasonality represents the seasonal component, and the

wave function treats the original sequence as two segments: the first

H=2 as a cosine wave and the second H=2 is decomposed into a

sine wave.

The temporal decomposition algorithm of the N-Beats network

for interpretable prediction is shown in Figure 6.

At this point, the training q f in the upstream task can make a

trend and seasonal decomposition of the interpretability of the

prediction results. The prediction sequence in the result needs the

forward sequence as input, the forward sequence is decomposed by

the same process as above, and the prediction result in the forward

sequence can be decomposed by changing the parameter to qb.
3 Results and discussion

3.1 Data source

The data for this paper were collected at aquaculture sites in

Jiangsu, China, and the water quality data were collected from
FIGURE 5

Training process of expansion coefficients in Block.
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September 2020 until December 2020. The collected water quality

information contains six parameters: water temperature, pH,

dissolved oxygen, ammonia, nitrogen concentration, conductivity,

and water turbidity. The overall data contained 10,625 samples.

Some water quality data from September 28, 2020, are shown

in Table 1.
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3.2 Model evaluation metrics

Prediction models usually contain multiple evaluation criteria,

and this paper used the following evaluation metrics: root mean

square error (RMSE), mean absolute error (MAE), and mean

absolute percentage error (MAPE).
TABLE 1 Water quality data (partial).

Date

Type of water quality data

Temperature
(°C)

pH
Ammonia
(mg/L)

Turbidity (Nephelometric
Turbidity Units)

Conductivity
(ms/cm)

Dissolved oxygen
(mg/L)

2020/9/
28 0:00

25.2 8.3 11.7 360.1 302 10.8

2020/9/
28 0:10

25.15 8.37 11.7 64 302 10.86

2020/9/
28 0:20

25.15 8.27 11.7 184.1 302 10.34

2020/9/
28 0:30

25.14 8.23 11.7 288.6 305 10.29

2020/9/
28 0:40

25.13 8.29 11.7 86.2 300 10.41

2020/9/
28 0:50

25.08 8.25 11.7 75.8 300 9.66

2020/9/
28 1:00

25.08 8.25 11.7 102.8 300 9.79

2020/9/
28 1:10

25.06 8.18 11.7 80.7 300 9.11
FIGURE 6

Sequence decomposition algorithm of N-Beats network for model interpretation.
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The formulas for these four evaluation metrics are shown in

Equations (19–22).

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(ŷ i − yi)

2

s
(19)

MAE =
1
no

n

i=1
ŷ i − yij j (20)

MAPE =
1
no

n

i=1

y∧i − yi
yi

				
				 (21)

R2 =
o
n

i=1
(ŷ i − �yi)

2

o
n

i=1
(yi − �yi)

2
(22)

Where ŷ i denotes the predicted value of the model for the

sample, and yi represents the true value of the ith sample. n

indicates the sample size.
3.3 Noise reduction of water quality data
by wavelet transform

Before feeding the time series into the noise reduction network,

this paper first used Pearson’s coefficients on the sensor data to see

their feature correlation to determine if there was redundancy in the

original data. The correlation heat map between the features is

shown in Figure 7, and the formula for Pearson’s correlation

coefficient is shown in Equation (23).
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r(x, y) =
cov(X,Y)
sxsy

=
X ∗Y
Xj j Yj j (23)

where cov(X,Y) is the covariance between variables, and sx and

sy are the standard deviations of variables X and Y , respectively.

After the original features were filled by fitting the EM algorithm,

this paper used the five-layer wavelet transform for wavelet

decomposition of water quality data. Using dissolved oxygen data

as an example, the noise threshold for different kinds of water quality

information was determined by calculating the confidence interval of

the signal. The noise threshold of the wavelet transformwas set to 0.3.

Figure 8 shows the five components of the dissolved oxygen signal

after wavelet decomposition (Coelho and Brito, 2021).

After that, this paper used wavelet reconstruction to reconstruct

the original signal, and the wavelet transform was performed on six

water quality information in the data. The data of the transformed

samples are described in Table 2.

As shown in Table 2, the standard deviations of water quality

information such as dissolved oxygen, pH, and ammonia nitrogen

concentrations decreased, and after wavelet transform, and compared

with the original data, the standard deviations decreased by

approximately 4.67%, 6.01%, 4.93%, 4.38%, 3.72%, and 2.49%,

respectively. As the overall stability of the sample improves, the

accuracy of the model prediction is significantly enhanced. The

stability of the sample is crucial for model prediction accuracy,

which determines whether the model can maintain consistent

performance in the face of different data. When the stability of the

samples is improved, the model is better able to learn the intrinsic

patterns and features of the data during the training process, thus

fitting the data distribution more accurately. This helps to reduce the

fluctuations and errors in the prediction results and improve the

reliability and stability of the predictions (Kiplangat et al., 2016).
FIGURE 7

Characteristic correlation between water quality data.
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3.4 Dissolved oxygen prediction using
GRU–N-Beats network

In this paper, the features of six kinds of water quality

information were first extracted because GRU modules can

extract water quality features in long series of time dimensions,
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six groups of GRU modules were designed to extract single water

quality variables, and finally the multidimensional water quality

data were processed into a single continuous variable as the input of

the prediction network through a fully connected neural network.

Finally, by feeding these data into the N-Beats network consisting of

three consecutive sets of Stacks for double residual learning, the
TABLE 2 Changes in water quality information before and after wavelet transform.

Data type

Water quality data

Dissolved
oxygen
(mg/L)

pH
Ammonia
(mg/L)

Turbidity (Nephelo-
metric Turbidity Units)

Conductivity
(ms/cm)

Temperature
(°C)

Raw WT Raw WT Raw WT Raw WT Raw WT Raw WT

Exp 7.586 7.576 7.820 7.821 12.322 12.305 164.415 164.372 404.392 404.193 16.967 16.951

Std 2.184 2.082 0.215 0.202 2.494 2.371 84.444 80.744 54.174 52.158 5.190 5.061

Var 4.770 4.335 0.046 0.041 6.220 5.622 7,130.708 6,519.594 2,934.786 2,720.457 26.940 25.614
fron
The bold values represent that our method has better results.
FIGURE 8

Component signals obtained from dissolved oxygen data after five-layer wavelet decomposition (partial).
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FIGURE 9

Loss curves on the training and validation sets.
FIGURE 10

Prediction results of dissolved oxygen using GRU–N-Beats network. GRU, gated recurrent unit.
FIGURE 11

Dissolved oxygen prediction results for December 1–2, 2020.
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components of the residual learning were summed to obtain the

prediction results. In addition, this paper used the Adma optimizer

to optimize the training process and the Dropout algorithm to

reduce the overfitting phenomenon and improve the model’s

generalization ability. Before the model training, the Glorot

algorithm was used to initialize the training parameters, and the

particle swarm algorithm was used to perform a grid search for the

optimal parameters. Finally, 500 epochs were trained on the

training set, and the loss curves of training are shown in Figure 9.

This paper selected 85% of the data for training and validation

and the other 15% for prediction. Figure 9 shows the predicted

versus actual values of 300 samples. The horizontal axis represents

the test samples of dissolved oxygen, and the vertical axis represents

the dissolved oxygen content in mg/L. Figure 10 shows the

processing results of the dissolved oxygen time series prediction

using the proposed method.

In addition, the paper compared the forecasting ability of the

model over different time spans to ensure that the model can make

accurate forecasts over a long length of time period, thus ensuring

production safety in the recirculating water culture plant. The

prediction results of the model for December 1 and 2, 2020, are

illustrated in Figure 11.

In addition, in order to enhance the interpretability of the

model, this paper decomposed the forecast results into trend and
Frontiers in Marine Science 13
seasonality and rationalized the results in terms of cycles and trends,

respectively. First, the prediction results were separated by the

remaining modules of Stack in the prediction network and

decomposed by polynomial decomposition and triangular wave,

and some data of dissolved oxygen prediction were selected for

analysis. The results are shown in Figure 12.
3.5 Comparison of the prediction
performance with other models

In this paper, four deep learning models, LSTM, TCN, back-

propagation neural network (BPNN), and N-Beats, were used to

predict the dissolved oxygen concentration, and the results show

that the method proposed in this paper has good prediction

accuracy. In addition, three evaluation metrics were used, and the

results compared with those of other models are shown in Table 3.

According to the results in Table 3, it can be seen that the

proposed method has a large improvement compared with other

results. Compared with the LSTM model, the proposed method’s

RMSE, MAE, and MAPE increased by 28.5%, 34.1%, and 40.0%,

respectively. Compared with the GRU model, the proposed

method’s RMSE, MAE, and MAPE increased by 32.1%, 38.8%,

and 44.4%, respectively. Compared with the TCN model, the
FIGURE 12

Decomposition of dissolved oxygen prediction results.
TABLE 3 Comparison of prediction results of different algorithms on a dissolved oxygen dataset.

Error evaluation
indicators

Models

LSTM GRU TCN LSTM–TCN PatchTST BPNN N-Beats GRU–N-Beats

RMSE 0.239 0.252 0.313 0.226 0.201 0.269 0.212 0.171

MAE 0.182 0.196 0.257 0.151 0.157 0.197 0.173 0.120

MAPE 0.025 0.027 0.033 0.019 0.017 0.026 0.022 0.015

R2 0.95 0.94 0.88 0.95 0.97 0.93 0.96 0.97
RMSE, root mean square error; MAE, mean absolute error; MAPE, mean absolute percentage error.
The bold values represent that our method has better results.
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proposed algorithm improved the RMSE, MAE, and MAPE by

51.6%, 53.3%, and 54.5%, respectively. Compared with the LSTM–

TCN model, the proposed algorithm’s RMSE, MAE, and MAPE

increased by 24.3%, 20.5%, and 21.1%, respectively. Compared with

the PatchTST neural network, the proposed method’s RMSE, MAE,

and MAPE improved by 14.9%, 23.6%, and 11.8% respectively.

Compared with the BP neural network, the proposed method’s

RMSE, MAE, and MAPE increased by 36.4%, 39.1%, and 42.3%

respectively. Compared with the N-Beats algorithm, the proposed

method’s RMSE, MAE, and MAPE increased by 19.3%, 30.6%, and

31.8% respectively.

Therefore, the GRU–N-Beats algorithm has better stability in

prediction when facing multivariate long-series dissolved oxygen

prediction problems. In terms of model applicability, GRU–N-Beats

overcomes the problem that N-Beats cannot model multivariate

time series at the same time. In addition, it can mine the time-series

features of multi-water quality sensor data in the time series and

extract and interpret the seasonal and trend elements to obtain

better prediction performance.
3.6 Effects of different modules

In order to verify the effectiveness of each module (noise

reduction network, feature extraction network, and prediction

network) in the whole data processing process, this paper

designed the following ablation experiments:
Fron
(1) Remove the noise reduction network and use the feature

extraction network and prediction network structure to

predict the changing trend of dissolved oxygen.

(2) Remove the feature extraction network and use the noise

reduction network and prediction network structure to

predict the changing trend of dissolved oxygen.
In the ablation experiment, the sample partition structure of the

data and the model parameters are consistent. The evaluation
tiers in Marine Science 14
results of different network result pairs on RMSE, MAE, MAPE,

and R2 indicators are shown in Table 4.

As shown in Table 4, the network of this paper is compared with

the structure without noise reduction network, the complete

network structure has the prediction accuracy improved by

12.3%, 15.5%, and 11.8% on the basis of RMSE, MAE and MAPE.

Compared with the structure without a feature network, the

prediction accuracy improved by 19.0%, 26.4%, and 21.1% based

on RMSE, MAE, MAPE, and R2.
4 Conclusions

In summary, for the problems of traditional dissolved oxygen

prediction such as vulnerability to missing data and complex

mechanism of interaction between influencing factors, this paper

proposed a dissolved oxygen prediction method based on N-Beats,

using the EM algorithm and wavelet transform to preprocess the

data, using the gated recurrent unit for feature extraction, and using

N-Beats to achieve dissolved oxygen prediction. The experimental

results show that the method proposed in this paper has a good

prediction effect. First, the water quality data were fed into the noise

reduction network, the sample distribution was observed, and

outliers were detected and removed. In addition, the maximum

expectation algorithm was used to fill the missing data, and the

wavelet transform was used to reduce the effect of noise. Then, by

building a feature extraction network based on gated recursive

units, water quality information was extracted from the temporal

and spatial dimensions respectively, and then the features of the six

water quality information were fused by a fully connected neural

network. Finally, the results were input into the N-Beats network

for prediction. The method in this paper overcame the problem of

insufficient prediction accuracy due to the inability of the traditional

N-Beats network to extract multiple water quality variables

simultaneously. Meanwhile, this paper constructed three kinds of

Stack for residual learning of water quality information and

interpreted the results according to polynomial decomposition

and Fourier decomposition. The results show that the algorithm

in this paper has better prediction results compared with LSTM,

TCN, BPNN, N-Beats, and other algorithms. Therefore, it can

satisfy the intelligent prediction of dissolved oxygen in actual

production so that control decisions can be made reasonably to

ensure production safety and improve farming efficiency

in aquaculture.

In future work, more water quality parameters and

environmental information can be introduced to improve the

prediction accuracy of the model.
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