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Coastal areas face escalating storm surge disasters due to rising sea levels and

urban growth, posing greater risks to lives and property. Comprehensive storm

surge risk assessment and sensitivity analysis in coastal areas are crucial for

effective disaster prevention and mitigation. This research focuses on Huizhou,

China, conducting a comparative study of storm surge risk assessment and

sensitivity analysis based on an integrated approach, which includes the storm

surge inundation numerical model (FVCOM-SWAN), Geographic Information

System (GIS) and Remote Sensing (RS) techniques, and Multiple Criteria

Decision-Making (MCDM) methods. Ten flood-related risk indicators are

selected from the hazard, exposure and vulnerability, the weights of which are

evaluated through a comprehensive comparison among Analytic Hierarchy

Process (AHP), Fuzzy Analytic Hierarchy Process (FAHP), Entropy Weight (EW),

AHP-EW, and FAHP-EW methods. High-precision risk level maps are generated

subsequently utilizing GIS and RS techniques. Sensitivities of the indicators are

analyzed using One-At-A-Time (OAT) and Fourier Amplitude Sensitivity Test

(FAST) methods. The proposed storm surge risk assessment framework, the

MCDM comparative study and the sensitivity analysis can offer insights for better

understanding and management of storm surge risks, and contribute to the

standardization and application of storm surge risk assessment.
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1 Introduction

With the increase of global population and the acceleration of

urbanization, the economy and population of the coastal regions are

mostly growing gradually, owing to their unique geographical

advantages (Magnan et al., 2022). However, the Intergovernmental

Panel on Climate Change (IPCC) predicted that in the coming

decades, the intensity of extreme weather events, including surges,

heavy rainfall, and sea-level rise, will intensify even further (Tangney,

2020). This implies that the coastal areas, characterized by high urban

population density and greater susceptibility to extreme weather, will

face significantly increased risks (Lu et al., 2022). Therefore, accurate

prediction of storm surge tide processes, assessment of disaster risk

levels, and sensitivity analysis play crucial roles in efficiently

deploying defensive measures and risk mitigation strategies for

storm surge disasters in coastal regions. According to existing

literature, research on storm surge risk assessment mainly involves

two aspects: the computation of storm surge flooding processes and

the selection of risk assessment methods.

In addressing the issue of the computation of storm surge

flooding processes, current scholars primarily utilize ocean

numerical models to simulate and predict the tidal variations in

seawater during typhoon events. Since the beginning of the 21st

century, various models for storm surge inundation prediction have

emerged (Chaumillon et al., 2017), including dynamic-based

numerical simulation models and machine learning models

primarily. Dynamic-based numerical simulation models have

been widely applied for their accuracy and the ability of

simulating real physical process. For instance, models based on

WRF-FVCOM, the Coupled Ocean-Atmosphere-Wave-Sediment

Transport (COAWST) modeling system, models based on SWAN-

FVCOM, and the ADCIRC-SWANmodel are commonly employed

(Sian et al., 2020; Yang et al., 2020; Li and Chen, 2022). The use of

numerical models for simulating and predicting storm surges has

reached a mature stage, allowing researchers to choose appropriate

models based on the study area and objectives. In recent years,

machine learning models have gained considerable research

attention due to their high prediction efficiency, especially the

artificial neural network-based storm surge models (Chi and

Rong, 2021). For instance, artificial neural network models, deep

reinforcement learning-based approaches, Convolutional Neural

Networks (CNN), and Long Short-Term Memory (LSTM) have

also been applied in storm surge research (Wang et al., 2020; Adeli

et al., 2023; Davila Hernandez et al., 2023).

Regarding the selection of methods for storm surge risk

assessment, there are three main research methods for risk

assessment of meteorological disasters: statistical analysis based

on historical data, Multiple Criteria Decision-Making (MCDM)

methods and machine learning techniques (Lyu and Yin, 2023). In

methods based on historical data, Rilo et al. (2022) established a

database derived from historical data on estuarine flood events and

applied a framework using multiple correspondence analysis to

process qualitative past flood information for flood disaster analysis.

In MCDM methods, the most commonly employed methods

include AHP, FAHP, and EW (Lyu et al., 2018; Sepehri et al.,

2019; Ramkar and Yadav, 2021; Aslan, 2023). MCDM methods
Frontiers in Marine Science 02
inherently involve subjective and objective aspects in the assessment

process. Hence, some researchers nowadays focus on refining

existing methods. For instance, Lyu and Yin (2023) proposed the

use of Interval-FAHP to assess various disasters in Hong Kong.

Alternatively, researchers employ a combination of methods to

assess risk. For example, Azizi et al. (2023) utilized COPRAS-

Entropy, COPRAS-AHP, DFID-Entropy, and DFID-AHP to

determine a suitable approach for assessing flood risk in the

Iranian region. In recent years, some researchers have employed

machine learning models such as gradient boosting decision tree

(GBDT), extreme gradient boosting (XGBoost), convolutional

neural network (CNN), logistic regression, and random forest for

risk assessment (Li et al., 2019; Chen et al., 2021). However, both the

utilization of statistical analysis based on historical data and the

application of machine learning methods requires a sufficient

amount of literature data and observational data to establish an

adequate risk database. In underdeveloped regions, where historical

data is lacking or insufficient, research based on historical data and

machine learning methods can be challenging to pursue. Despite

the diversity of existing risk assessment methods, literature on

storm surge risk assessment still predominantly employs

conventional approaches. Current research on storm surge risk

assessment often relies on only two indicators, namely, land use and

land cover (LULC) data and inundation data, failing to capture the

comprehensiveness of the disaster assessment process (De Scally,

2014; Zhang et al., 2016; Xianwu et al., 2020; Wang Y et al., 2021).

In summarizing the above research literature, although there

were researches on both the storm surge flooding simulation and

disaster risk assessment, there was a lack of full-chain framework for

storm surge risk assessment. As a result, when evaluating the

potential risk of impending storm surges, the scientific

community and decision-makers do not know which path to

follow. At the same time, for the disaster risk assessment, there

have been various MCDM methods proposed by previous

literatures. However, the applicability of these methods on the

storm surge risk assessment of undeveloped coastal areas has

never been studied. As a result, it is hard for us to know which

method is better at describing the storm surge risks. Furthermore,

there has been many assessment indicators suggested by the

previous literatures to be used in disaster risk assessment, and yet

there is no exploration of the sensitivity of these indicators for storm

surge risk assessment. In storm surge risk assessments, it is crucial

to give due consideration to which assessment indicators play a

predominant role in the process.

Considering the above three issues, this research proposes a

comprehensive framework for storm surge risk assessment, which

includes the storm surge flooding simulation, the risk assessment

and the sensitivity analysis. The analysis and discussions thereafter

validate the practicability of the framework using a case study of

Huizhou City of China. For the selection of storm surge assessment

methods, this study employs the MCDM method, which involves

the consideration of relevant evaluation criteria, and the

requirement for historical risk data is not stringent. This research

conducts a comparative study of 5 commonly used MCDM

methods to identify their differences for the storm surge risk

assessment, so that the scientific community and decision-makers
frontiersin.org
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can select the most suitable method when managing storm surge

risks. The selecting five MCDM methods, namely: Analytic

Hierarchy Process (AHP), Fuzzy Analytic Hierarchy Process

(FAHP), Entropy Weight (EW), AHP-EW, and FAHP-EW

methods. These five MCDM methods encompass not only

commonly used subjective and objective assessment approaches

in research but also comprehensive methods that refine individual

techniques. Regarding the issue concerning the sensitivity analysis

of risk assessment indicators, there is limited research in this area.

This paper employs commonly used methods such as the One-At-

A-Time (OAT) and the Fourier Amplitude Sensitivity Test (FAST)

methods to evaluate the sensitivities of these indicators (Chen et al.,

2010; Dano et al., 2019; de Brito et al., 2019). The comparative

sensitivity results between the OAT and FAST methods are

intended to assist in validating the accuracy of sensitivity analysis.

The sensitivity of risk indicators helps decision-makers gain a

clearer understanding of the sensitivity level associated with each

evaluation indicator. The proposed framework, the MCDM

comparative study and the sensitivity analysis can offer insights

for better understanding and management of storm surge risks, and

contribute to the standardization and application of storm surge

risk assessment.
2 Study area and datasets

2.1 Study area

Huizhou city is situated in the southeastern coastal area of

Guangdong Province, at the northeastern end of the Pearl River

Delta and in the middle-lower reaches of the Dongjiang River. It is

located between 113°51’ to 115°28’ east longitude and 22°4’ to 23°

57’ north latitude. As a major coastal city, Huizhou has a marine

area of 4,520 square kilometers and a coastline approximately 281.4

kilometers long. Among this coastline, 135.8 kilometers are natural

coastlines, while 145.6 kilometers are artificial coastlines,

accounting for 48% of the total. The coastal areas are home to an

airport, key ports, large residential areas, nuclear power plants, and

other major enterprises. In 2020, Huizhou city had a permanent

population of 6.0429 million people, with a very high population

density in the urban areas. Figure 1 depicts the zoning map of

coastal towns in Huizhou City.

Storm surge is one of the most significant oceanic hazards in

Huizhou city. On average, there are 2.5 storm surge events with a

water level rise of more than 50 cm each year. Storm surges,

accompanied by strong winds and high waves, can lead to tidal

surges, dyke breaches, shipwrecks, flooding of farmland, and

destruction of houses, resulting in substantial economic and

human losses.

Table 1 illustrates the recent years’ losses in Huizhou City due to

typhoon disasters, these data are sourced from the Department of

Natural Resources of Huizhou Bureau. The process of assessing the

risk level of storm surge disasters in Huizhou city and simulating

potential storm surge disasters aims to facilitate the efficient

deployment of disaster prevention measures before the onset of

storm surge disasters. Meanwhile, the results of marine disaster risk
Frontiers in Marine Science 03
zoning can serve as a reference for effectively avoiding high-risk

areas in the subsequent layout of marine economic industries.
2.2 Data description

The data utilized in the storm surge inundation model and their

respective sources are outlined below:
(1) ERA-5: the 10-meter wind field reanalysis data is obtained

from the European Centre for Medium-Range Weather

Forecasts (ECMWF). In this study, it is integrated with the

Holland wind field model to construct the typhoon

wind field.

(2) Historical typhoon data: obtained from the China

Meteorological Administration, and this data is employed

to assess establish of the storm surge model.

(3) Water Level Records: obtained from the Huizhou tidal

station measured by Department of Natural Resources of

Huizhou Bureau. This data is applied to verify the

simulation results of typhoon storm surge.
The selection of assessment indicators is crucial for the

assessment of natural disaster risk levels. In this study, a

summary of indicator selection for flood disaster risk assessment

from recent literature is conducted. This study primarily choses a

total of ten assessment indicators representing hazard, exposure,

and vulnerability for the study area. Figures 2 and 3 depict the map

data of these assessment indicators in the coastal areas of Huizhou
FIGURE 1

The zoning map of coastal towns in Huizhou City.
TABLE 1 The recent years have witnessed Huizhou City experiencing
losses due to typhoon disasters.

Typhoon Name
Economic
losses

Affected
population

No. 1319 Usagi 1.25 billion RMB 260,000

No. 1713 Hato 16.99 million RMB

No. 1822 Mangkhut
577.39

million RMB
236,464
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city. The following provides a detailed introduction to the selected

indicators and data sources. Exposure refers to the risk elements

influenced by flood hazard and serves as the bridge connecting

hazard and vulnerability (Yin et al., 2015). Regarding vulnerability,

there is no unified concept (Kablan et al., 2017). This

study considers the accessibility of indicator data and selects

flood disaster assessment indicators for Huizhou City based

on the causative factors, disaster-prone environment, and

vulnerable bodies.

(1) Inundation depth

The FVCOM-SWAN model is utilized to calculate the storm

surge data by considering factors such as typhoon center pressure,

path, and wind speed. The resulting storm surge inundation depth,

obtained through GIS processing, represents the scale of storm

surge hazards in the coastal region.

(2) DEM

In the context of flood hazards, the danger associated with such

disasters tends to decrease inversely with increasing elevation

(Aslan, 2023). When water descends from higher to lower

elevations, it tends to accumulate. Additionally, due to the

accumulation of rainfall in low-altitude areas, these regions are

considered to be most susceptible to the impacts of flooding (Abd-

el-Kader et al., 2023; Sahraei et al., 2023). This data obtained from

the Department of Natural Resources of Huizhou Bureau. The

elevation data with an accuracy of 0.3m is captured by UAV

photogrammetry in Huizhou City.

(3) Slope

In the field of flood hazard research, it is widely recognized that

the steepness of the terrain represents the magnitude and intensity

of flood runoff (Franci et al., 2016). Additionally, it increases the

likelihood of secondary disasters such as mudslides. The steeper

slopes exacerbate the risk of disasters in the region (Lyu and Yin,
Frontiers in Marine Science 04
2023; Mitra and Das, 2023). Slope data is obtained by processing

DEM data in ARCGIS software.

(4) Aspect

Slope aspect represents the orientation of the land and

simultaneously affects aspects such as precipitation, hydrology,

and sunlight exposure. Regions with a southern aspect often

experience greater disaster losses compared to those with a

northern aspect. Aspect, as a topographic parameter, influences

the likelihood of flood hazards. It indicates the direction of the land

and affects precipitation, hydrological processes, erosion, and solar

exposure levels (Mitra and Das, 2023). Aspect data is obtained by

processing DEM data in ARCGIS software.

(5) Curvature

Curvature is one of the fundamental indicators used to study the

terrain characteristics of a research area. It represents the surface

roughness, reflecting the accumulation and drainage conditions during

flood disasters (Mousavi et al., 2022; Mitra and Das, 2023). Curvature

data is obtained by processing DEM data in ARCGIS software.

(6) Normalized difference vegetation index (NDVI)

NDVI is commonly used to detect areas with vegetation cover

and areas without vegetation cover (Mitra and Das, 2023). Flood

events are partially related to vegetation, as vegetation possesses a

certain water retention capacity. The greater the vegetation

coverage, the lower the likelihood of flood disasters occurring

(Wu et al., 2022). Landsat 8 satellite remote sensing data is

imported into the ArcGIS platform to create NDVI.

(7) River system density

A higher river density indicates a larger runoff volume, faster

flow velocity, and a higher degree of environmental exposure in the

area (Sahmutoglu et al., 2023). This data is obtained from the

Department of Natural Resources of Huizhou Bureau.

(8) Population density
A B

DC

FIGURE 2

Maps depicting the indicator data used for storm surge risk assessment. (A) inundation depth; (B) DEM; (C) slope; (D) aspect.
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Population is an essential factor that cannot be overlooked when

studying the vulnerability of storm surge disasters (Sahmutoglu et al.,

2023). In areas experiencing the same level of flood hazards, regions

with higher population density tend to incur greater losses. The 100-

meter precision population grid data used in this study is obtained

from the WorldPop Project website (https://hub.worldpop.org/).

(9) LULC

LULC has an impact on various processes in disaster-affected

areas, such as precipitation, runoff, and infiltration (Costache et al.,

2020). Land types such as residential areas, hospitals, schools, and

similar areas have lower surface infiltration capacity, making them

more prone to surface runoff. Additionally, due to their social and

economic attributes, these areas are associated with higher hazard

levels and economic losses. Li et al. (2023) have developed a

national-level land cover map. In this study, the combination of

this data along with Points of Interest (POI) data is used to create a

LULCmap for Huizhou city. Residential areas and commercial land

are categorized as Level 1 hazard zones, industrial parks as Level 2

hazard zones, and agricultural land and aquaculture areas as Level 3

hazard zones. Other land types such as forests and grasslands are

classified as Level 4 hazard zones. Different values are assigned to

grid cells based on their respective hazard levels, and these values

are subsequently incorporated into the calculation of risk levels.

(10) Nighttime lights
Frontiers in Marine Science 05
Nighttime lights data is frequently utilized in the study to reflect

the economic level and degree of urbanization in the research area

(Feng, 2020). Economically developed regions with high population

density and valuable assets tend to experience greater economic

losses due to disasters. The nighttime lights data is sourced from the

Luojia 1-01 Satellite (LJ1-01) data.
3 Methodology and procedure

3.1 Description of numerical models

3.1.1 Hybrid wind field
In 1980, building upon the Schloemer exponential pressure

distribution model, Holland introduced the Holland B parameter to

formulate the Holland typhoon wind field model (Holland, 1980). The

holland wind field is calculated by Equation 3.1 and 3.2:

~VH =
B
ra

RMW
r

� �B

(P − P0) exp −
RMW

r

� �B� �
+

rf
2

� �2� �0:5
−
rf
2

(3:1)

B = 1:881 − 0:00557 •RMW − 0:01097 •j (3:2)
A B

D

E F

C

FIGURE 3

Maps depicting the indicator data used for storm surge risk assessment. (A) curvature; (B) NDVI; (C) River system density; (D) Population density;
(E) LULC; (F) Nighttime lights.
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In the equation: P0 represents the central pressure hPa · RMW

of the typhoon. P stands for the external pressure, set at 1010 hPa ·

RMW denotes the radius of maximum wind speed in the typhoon.

ra represents air density, taken as 1:2kg ·m−3. f signifies the

Coriolis parameter. r represents the distance from the center of

the typhoon. j represents the latitude of the typhoon’s center.

B is the fitting parameter in Holland’s formulation. The

Equation (3.3) for the radius of maximum wind speed (RMW) in

the typhoon wind field model of this study is as follows:

RMW = 28:52tanh½0:0873(j� 28)� + 12:22exp
Pc − Pn
33:86

� �

+ 0:2Vf + 37:2 (3:3)

j is the latitude of the typhoon’s center. Vf stands for the

translation speed of the typhoon’s center.

According to the definition of the Holland wind field model,

the typhoon wind field constructed by the model is circular

and symmetric. However, actual typhoon wind field often

exhibit asymmetry, which is inconsistent with this idealized

symmetry. Therefore, in this study, the Holland-ERA-5 fused

wind field is introduced. The fusion wind field is calculated by

Equation (3.4):

~VNew = ~VH(1 − e) + e~VE (3:4)

In the equation: ~VH is the empirical wind field from the

Holland model. ~VE stands for the background wind field from ERA-

5. e is the weight coefficient, e = C4=(1 + C4). C is a coefficient that

considers the extent of the typhoon’s influence, C = r=(n� RMW),

where n = 9.

3.1.2 FVCOM and SWAN
The FVCOM (Finite-Volume Community Ocean Model) is a

model developed by Chen et al. (2003) specifically designed for

forecasting nearshore hydrodynamic environments. The Equations

(3.5), (3.6), (3.7), (3.8), (3.9) and (3.10) are the governing equations

of FVCOM, comprising momentum, continuity, temperature,

salinity, and density equations:

∂ u
∂ t

+ u
∂ u
∂ x

+ v
∂ u
∂ y

+ wfv = −
1
ro

∂ P
∂ x

+
∂

∂ z
Km

∂ u
∂ z

� �
+ Fu (3:5)

∂ v
∂ t

+ u
∂ v
∂ x

+ v
∂ v
∂ y

+ w
∂ v
∂ z

+ fu

= −
1
ro

∂ P
∂ y

+
∂

∂ z
Km

∂ v
∂ z

� �
+ Fv (3:6)

∂ P
∂ z

= −r(T , S)g (3:7)

∂ u
∂ x

+
∂ v
∂ y

+
∂ v
∂ z

= 0 (3:8)

∂T
∂ t

+ u
∂T
∂ x

+ v
∂T
∂ y

+ w
∂T
∂ z

=
∂

∂ z
Kh

∂T
∂ z

� �
+ FT (3:9)
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∂ S
∂ t

+ u
∂ S
∂ x

+ v
∂ S
∂ y

+ w
∂ S
∂ z

=
∂

∂ z
Kh

∂ S
∂ z

� �
+ Fs (3:10)

In the Cartesian coordinate system, x, y, and z respectively

denote the east, north, and vertical coordinate axes. u, v and w

represent the velocity components in the x, y, and z directions. T , S

and r respectively stand for temperature, salinity and density. P is

pressure. f denotes the Coriolis parameter. g represents

gravitational acceleration. Km is the vertical eddy viscosity

coefficient. Kh is the vertical eddy diffusivity coefficient for heat.

The symbols Fu, Fv , FT , and Fs represent the diffusion terms for

horizontal momentum, temperature, and salinity.

Wave numerical forecasting employs the third-generation

nearshore wave model, SWAN, developed by Delft University of

Technology in the Netherlands (Booij et al., 1996). The Equation

(3.11) is the governing equation in SWAN, accounting for the

influence of ambient currents, are determined through the

evolution of the wave spectrum:

∂N
∂ t

+ D · Cg + V
� �

N
� 	

+
∂CwN
∂w

+
∂CqN
∂ q

=
St
w

(3:11)

In the equation: N is the wave action density spectrum. t

represents time. w represents wave frequency. q is the wave

propagation direction. Cw and Cq respectively represent the wave

celerity represented in the spectrum space for w and q. Cg is the

group velocity vector. V stands for the sea surface current vector. D
is the Hamiltonian divergence operator. The term encompasses

input and dissipation source terms, expressed in Equation (3.12):

St + Sin + Sbot + Snl + Stq + Sdb (3:12)

Where: Sin is the atmospheric-wave interaction term associated

with wind-induced wave growth function. Sbot is the friction

induced by wave-bottom interaction. Snl represents the nonlinear

wave-wave interaction term. Stq is the three-wave and four-wave

components of wave-wave interactions. Sdb represents the wave

attenuation due to white capping and depth-induced breaking.

Both the SWAN and FVCOM models employ unstructured

triangular grids to discretize the South China Sea region. The spatial

extent covers the area between 13° - 29°N and 109° - 122°E. The

model employs an unstructured triangular mesh to solve the

dynamics of complex terrain, making it particularly suitable for

the irregular and intricate coastal lines in the research area of

Huizhou City.

Since the 1990s, entities such as the National Oceanic and

Atmospheric Administration (NOAA), National Hurricane Center,

and other industry departments in the USA have proposed maps

depicting potential maximum storm surge inundation under

various typhoon intensity scenarios (Glahn et al., 2009). These

maps serve decision-making entities at the local government,

insurance companies, and community levels. In the literature on

storm surge risk assessment, the predominant approach involves

utilizing storm surge simulation models to obtain the worst-case

scenario of typhoon-induced sea level rise in the study area

(Watson, 1995; Xianwu et al., 2020).

Wang S et al. (2021) conducted a statistical analysis of historical

typhoon data in Huizhou, revealing the recurrence periods for
frontiersin.org
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typhoons with different atmospheric pressures. Among them, the

typhoon with the lowest atmospheric pressure of 880 hPa has the

longest recurrence period (1000 years) and is also the most severe

typhoon that could occur in Huizhou.

Typhoon Mangkhut (Typhoon No. 1822) is a representative

typhoon in the South China Sea region in recent years. In this

study, to obtain the most unfavorable typhoon event for Huizhou

City, the path of Typhoon Mangkhut is shifted to pass through the

tidal station in Huizhou. Additionally, the typhoon’s atmospheric

pressure is adjusted to the potential maximum central atmospheric

pressure for the Huizhou region, set at 880 hPa, with a return period

of 1000 years. The approach of assuming local maximum storm surge

caused by the strongest typhoon, as studied, to provide insights for

future storm surge disaster reduction processes is a universally

accepted method internationally. By utilizing the modified typhoon

path and atmospheric pressure, the model input parameters are

configured, ultimately yielding the most unfavorable typhoon-

induced sea level rise data for Huizhou City. This data is ultimately

applied in the process of creating risk level maps.

The input for the model’s wind forcing is derived from the

amalgamation of the ERA-5 wind field and the Holland wind field,

as obtained from Formula 3.4. The SWAN model parameter set

encompass: Wind input growth term (Komen scheme),

Whitecapping dissipation term (Komen scheme), Bottom friction

dissipation (Madsen eddy viscosity model), Nonlinear interactions

(three-wave and four-wave nonlinear interactions). The FVCOM

model utilizes open boundary tidal elevations computed from the

harmonics of 11 major astronomical tides (M2, N2, S2, K2, K1, O1,

P1, Q1, MS4, M4, M6). The input forcing fields include fused wind

field data and wave data obtained from the SWAN model. The

model uses a time step of 0.75 seconds for the outer model and 7

seconds for the inner model calculations.
3.2 Methodology of MCDM

To address the challenge of obtaining actual disaster data for

Huizhou City, the MCDM method is employed to assess storm surge

danger levels. Meanwhile, various MCDM methods, including AHP,

FAHP, EW, AHP-EW, and FAHP-EW, are compared in this study to

determine the most suitable method for storm surge risk assessment in

the coastal areas of Huizhou. These five selected MCDM methods

encompass not only commonly used subjective and objective

assessment approaches in disaster evaluation studies but also

comprehensive methodologies that refine individual techniques. The

significance of assessment indicators in storm surge disaster risk

assessment forms the foundation for determining the weights of

these indicators. The weights of different indicators in different

methods are obtained by subjective, objective or combination of

subjective and objective methods.

(1) AHP

The AHP is a multi-level weight analysis decision-making

method proposed by American operations researcher in the 1970s

(Saaty, 1970). It is a systematic analysis method that combines

qualitative and quantitative aspects. The AHP method is widely

applied in various studies on disaster risk assessment. The core
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essence of the AHP method is computing the relative importance

matrix to determine the weights of various assessment indicators

(Roy et al., 2021). By evaluating the relative significance of different

assessment indicators, constructing a relative importance matrix,

and conducting a consistency check on the judgment matrix

(Tokgozlu and Ozkan, 2018). When the Consistency Ratio is less

than or equal to 0.1, the system is considered to have acceptable

consistency. Subsequently, the relative weights of decision criteria

are calculated using the eigenvalue method.

(2) FAHP

The AHP effectively combines subjective judgment, analysis,

and rigorous computational reasoning. On the other hand, the

FAHP, developed by (Chang, 1996) based on fuzzy set theory,

recognizes that subjective judgments in complex decision

environments are inherently fuzzy. By fuzzifying the scales of

evaluation criteria, the FAHP theory assists evaluators in better

selecting the scale values of the criteria, resulting in more precise

and reasonable evaluation results (Wang et al., 2011). The FAHP

method calculates the weight ratios of various decision criteria by

constructing a fuzzy judgment matrix for the criterion system.

(3) EW

Shannon combined entropy with information and proposed the

Entropy Weight (EW) method, which determines objective weights

based on the variability of indicators (Sepehri et al., 2019). The

smaller the entropy value of an evaluation indicator, the greater the

variability in the indicator values, indicating a higher information

content, and consequently, a higher weight for the indicator. The

EW method determines the indicator weight according to the

variation degree of the indicator value of each indicator, which is

an objective weighting method to avoid the deviation brought by

human factors.

(4) AHP-EW and FAHP-EW

AHP and FAHP rely on expert ratings to determine the

importance of criteria, which can be influenced by cognitive

biases and subjectivity. The EW method determines weights

based on the entropy of information between different evaluation

indicators and is a commonly used objective weighting method.

Currently, researchers often adopt a combination of subjective and

objective methods to obtain weights, aiming to complement

subjectivity with objectivity and obtain more intuitive and

accurate criterion weights (Zhang et al., 2011).

The distance function between the subjective weights obtained

from AHP (or FAHP) and the objective weights obtained from the

EW method can be defined as Equation (3.13):

d(wai,wei) =
1
2o

n

i=1
(wai − wei)

2

" #1
2

(3:13)

c1 and c2 represents the criterion weights obtained from AHP

(or FAHP), and wei denotes the criterion weights obtained from the

EW method. The weight combination can be calculated by

Equation (3.14):

wi = c1*wai + c2*wei (3:14)

c1 and c2 are the weight combination coefficients, which are

determined by the Equation (3.15):
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d(wai,wei)
2 = (c1 − c2)

2

c1 + c2 = 1

( )
(3:15)
3.3 Methodology of sensitivity analysis

(1) OAT

To implement the OAT method, two parameters need to be set:

the range of specific weight changes and the step size. Drawing upon

de Brito et al. (2019), the weight change step size is specified as a

percentage change increment (IPC) of ±4%, with a percentage

change range (RPC) of ±100%. This would result in a total of 500

evaluation runs (50 weight changes * 10 evaluation criteria).

In order to ensure that the sum of the weights for each

evaluation criterion is equal to 1, the Equation (3.16) is used to

normalize the criterion weights:

Wi = (1 −Wcm)�
Wci

1 −Wci
i ≠ m, 1 ≤ i ≤ n (3:16)

In the formula,Wcm represents the adjusted weight of the m-th

criterion, Wci represents the weight of the other i-th criterion, and

Wi represents the normalized weight of the criterion

after normalization.

Based on the 500 evaluation results obtained, the sensitivity of

the criteria can be calculated using standardized regression

coefficients in a linear regression model.

(2) FAST

In this study, the FAST method is also employed to assess the

influence of input indicators on the variability of model outputs

across different grid calculation units. The FAST is a global

sensitivity analysis technique based on variance. Unlike local

sensitivity analysis methods, which aim to estimate the partial

derivatives of parameters under fixed conditions, global sensitivity

methods allow for the exploration of the entire range of possibilities

for varying all parameters and assessing the combined impact of

simultaneous variations in input factors when computing sensitivity

indices (Schaibly and Shuler, 1973). The sensitivity of parameter X

can be represented using the Equation (3.17):

Sensitivityx =
varx½E(Y jX)�

var(Y)
(3:17)

Where Y is the output value of the model, x is the input

parameter, E(Y jX) is the expectation of Y when x takes a certain

value, and varx is the variance of X as it traverses its range of values.
3.4 Procedure

Figure 4 illustrates the specific steps of the integrated approach

in assessing storm surge disaster risks in Huizhou city’s coastal area.

The following steps provide details on Figure 4.

Step 1. The coupled FVCOM-SWAN model is employed to

calculate the storm surge inundation along the coastal area of

Huizhou, the results of which are validated by official tidal

measurements. The trajectory of Typhoon Mangkhut, which has
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caused the most significant losses along the coast of the South China

Sea in recent years, is shifted to pass through the Huizhou station.

The minimum atmospheric pressure is then adjusted to 880 hPa,

corresponding to a return period of 1000 years. The modified path

and pressure data are input into the FVCOM-SWAN model to

calculate the storm surge. The inundation depth for the coastal

region of Huizhou is computed by processing the model results

from FVCOM-SWAN in GIS software.

Step 2. A geographic information database is created using

various technologies such as GIS, RS, and digital map data. This

database encompasses hazard data: inundation depth in Huizhou

city; exposure data: DEM, slope, aspect, curvature, NDVI, river

system density; and vulnerability data: population density, LULC,

nighttime lights.

Step 3. The data within the geographic information database is

subjected to a process of normalization. And the weights of

indicators are evaluated through a comprehensive comparison

among AHP, FAHP, EW, AHP-EW and FAHP-EW methods. In

contrast to the more common approach in storm surge risk

assessment that combines LULC data with inundation data, this

study utilizes MCDM methods to better elucidate the complexity

and comprehensiveness of the storm surge disaster process through

the comprehensive selection of assessment indicators.

Step 4. By incorporating the weights of each risk factor into GIS,

a series of risk level maps for storm surge inundation can be

obtained. By comparing the risk level maps obtained through

various methods, a more suitable approach for risk assessment in

the Huizhou city area can be selected.

Step 5. By applying a series of adjustment to the weights of each

risk factor, the risk level data is updated. Subsequently, the OAT

analysis method and the FASTmethod for global sensitivity analysis

are employed to determine the sensitivity of each risk factor.
4 Results and discussions

4.1 Numerical model validation

Comparison between observed tidal data from tidal stations and

predicted tidal level derived from harmonic constants is conducted.

Figure 5 illustrates the comparative curve between the observed and

predicted tidal levels of Huizhou tidal station in August 2018, the

horizontal axis represents hours, while the vertical axis denotes tidal

levels in units of meters. The primary discrepancies during the

evaluation period are observed during the secondary high and low

tides, with an average absolute error of 14 cm.

The validation of storm surge tidal levels is performed for four

significant typhoons that have a substantial impact on the Huizhou

city. These typhoons include Typhoon No. 1208, Typhoon No.

1713, Typhoon No. 1720, and Typhoon No. 1822. Figure 6 depicts

the comparative chart of storm surge tidal levels at the Huizhou

tidal station, the horizontal axis represents the months and dates,

while the vertical axis denotes the tidal level, measured in meters.

The relative error for the maximum storm surge water level ranges

from 2.1% to 19.8%. The validation results demonstrate a close

alignment between the simulation and actual measurements,
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indicating the applicability of this model for simulating storm surge

events in the Huizhou city.

In the realm of storm surge risk assessment studies, the

difficulty in data measurement and its restricted availability often

leads to a scarcity of measured inundation data for the research

area. Concurrently, the construction of storm surge models has
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reached a relatively mature stage technologically. Consequently,

scholars commonly rely on water level data obtained from

numerical models to compute submerged areas (De Scally, 2014).

The FVCOM-SWAN model utilized in this paper undergoes

validation through astronomical tide level comparison and

verification of storm surge water levels during different typhoon
A B

FIGURE 5

Tidal level verification at the Huizhou tidal station during non-typhoon periods. (A) from August 1st to August 15th, 2018; (B) from August 16st to
August 30th, 2018.
FIGURE 4

The procedure for storm surge risk assessment and sensitivity experiments on indicators.
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periods. This process substantiates the applicability of this model

for simulating storm surge inundation in the Huizhou City. This

study utilizes Typhoon Mangkhut, which caused the most

significant destruction to coastal areas in recent years in China, as

the foundation for the storm surge risk zoning and inundation

simulation in Huizhou city. Through the FVCOM-SWAN ocean

model, the storm surge inundation process for this extreme scenario

in Huizhou city is simulated, and a map depicting the maximum

extent of storm surge flooding is generated. This map served as a

valuable tool for comparative analysis in the risk assessment of

storm surge disasters.
4.2 Comparison of MCDM methods

4.2.1 Comparison of indicator weights
Table 2 and Figure 7 present the weights of the ten indicators

used in constructing the assessment of storm surge disaster risk

levels, Table 2 elucidates the evaluation indicators represented by
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F1-F10. In the AHP, the judgment matrix is derived based on the

relative importance of indicators representing the hazard, exposure,

and social vulnerability of storm surge disaster. The consistency test

result of the judgment matrix is 0.0420, indicating a relatively

consistent judgment matrix. The AHP results indicate that

inundation depth, representing hazard, has the highest weight

(0.3555). Additionally, social vulnerability, measured by

population density, holds a weight of 0.180, while exposure,

represented by DEM, has a weight of 0.157. Other indicators

exhibit the following weights: LULC (0.074), river system density

(0.069), slope (0.062), nighttime lights (0.035), aspect (0.033),

curvature (0.018), and NDVI (0.018). While AHP remains one of

the most classical methods in MCDM methods widely employed in

disaster management research, an inevitable aspect is that expert

judgments regarding the relative importance of criteria inherently

carry subjectivity. Moreover, traditional AHP employs precise

values to convey perceptions, lacking the ability to capture the

inherent fuzziness in human thinking. Hence, the FAHP, as an

extension of AHP with a fuzzy framework, is better suited to
TABLE 2 The weights of various indicators.

AHP FAHP EW EW-AHP EW-FAHP

F1 Inundation depth 0.355 0.156 0.263 0.318 0.198

F2 DEM 0.157 0.126 0.041 0.111 0.092

F3 Slope 0.062 0.100 0.015 0.043 0.066

F4 Aspect 0.033 0.079 0.028 0.031 0.059

F5 Curvature 0.018 0.061 0.035 0.025 0.051

F6 NDVI 0.018 0.061 0.003 0.012 0.038

F7 River system density 0.069 0.100 0.165 0.107 0.126

F8 Population density 0.180 0.131 0.224 0.197 0.168

F9 LULC 0.074 0.104 0.043 0.062 0.080

F10 Nighttime lights 0.035 0.081 0.183 0.094 0.122
A B

DC

FIGURE 6

Model-predicted water level and observed water level curves at the Huizhou tidal station during different typhoon periods. (A) Typhoon No. 1208;
(B) Typhoon No. 1713; (C) Typhoon No. 1720; (D) Typhoon No. 1822.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1364929
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wei et al. 10.3389/fmars.2024.1364929
address the inherent vagueness in complex multi-criteria decision

problems. Unlike traditional AHP, which employs precise values to

convey perceptions, FAHP has the capability to capture the

inherent fuzziness in human thinking.

The weights of indicators obtained through the FAHP method

align in the same order of weights as those derived from the AHP

approach. However, with the use of the FAHP method, the

differences between the weights of individual indicators are

reduced. The variance of indicator weights obtained by the AHP

method is 0.0111, while the FAHP method reduces the variance

to 0.0009.

In the realm of MCDM methods, in addition to subjective

judgment based on expert knowledge, objective weighting methods

are also extensively employed in the field of disaster risk assessment.

The EW method assesses the weight of indicators by calculating the

information entropy of indicator values, thus determining the

amount of information contained in each indicator. The EW

method yields weights for the indicators, with the highest weight

assigned to the inundation depth indicator at 0.263, followed by the

population density indicator at 0.224. Notably, the weight of the

nighttime light indicator significantly increases to 0.183. The water

system density indicator also sees an increase in weight to 0.165.

This implies that these four indicators carry a greater amount

of information.

The assessment of storm surge disaster risk is a complex multi-

criteria decision problem. To comprehensively consider both raw

data and expert experience, AHP-EW and FAHP-EW methods are

employed to determine the indicator weights. Utilizing the

differences between the weight vectors obtained by AHP (or

FAHP) and the EW method, calculate the allocation coefficients

for the composite weights. The indicator weights obtained by

FAHP-EW method are smoother than those obtained by AHP-

EW method, and the variances are 0.003 and 0.009 respectively.

Upon comparing the weight information of various methods, it

is evident that although the FAHP method still assigns the highest

weight to the inundation depth indicator, considering that flooding

is the primary cause of storm surge disaster losses, this weight

appears relatively smaller in relation to the actual impact. Similarly,

the weight of inundation depth indicator obtained by FAHP-EW

method is also too small. Therefore, AHP, EW and AHP-EW can be

selected in the selection of the most suitable risk assessment
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methods for Huizhou. In addition, the main difference in weight

ranking between the AHP-EWmethod and the AHP method lies in

the increased weight proportion of nighttime lights indicator. Based

on the comparison of weight information from other methods, it’s

challenging to determine the most suitable method from AHP, EW

and AHP-EW. However, considering the principle, the

combination of subjective and objective methods avoids the issues

present in purely subjective or purely objective methods and is more

likely to provide weight allocations that align with the

actual situation.

4.2.2 Comparison of risk level maps
Moreira et al. (2021) used methods such as natural breaks, equal

intervals, quantiles, and standard deviation to categorize the final

output. The conclusion drawn was that the natural breaks method is

most suitable. The results obtained can assist decision-makers in

reducing uncertainty and improving the quality of flood risk

assessments. The natural breaks method is also widely employed

in risk assessment studies (H. et al., 2016; He et al., 2022; Lyu and

Yin, 2023). Therefore, based on the natural break classification

method, this paper categorizes the data obtained by multiplying

these indicator values with their respective weights into “low,”

“medium,” “high,” and “very high” storm surge risk levels.

Firstly, numerical transformation of all data is carried out, such

as LULC grid data, assigning distinct scores based on the specific

land application direction for each grid cell. For areas with higher

social vulnerability, such as schools and hospitals, the assigned score

for the respective grid cell is higher. Conversely, for areas with lower

social vulnerability like grasslands and forests, the assigned score is

lower. Following the numerical transformation, the indicator data

undergo positive transformation, standardization, and other

processing steps to yield standardized indicator data. Multiply the

standardized and normalized indicator data by their corresponding

weights. Finally, summing up all the indicator data yields the risk

data. Applying the natural breaks classification method, the data is

divided into several classes based on natural groupings within the

distribution of risk data. Natural breaks occur at the valleys’ low

points in the histogram of risk data. Breakpoints are assigned in the

order of the valleys’ sizes, and then this paper categorizes the risk

data into “low risk,” “medium risk,” “high risk,” and “very high risk

“ storm surge risk levels. When imported into the GIS platform and

processed, they give rise to the storm surge risk level maps. In the

literature, there is no unified consensus on flood risk classification

methods. Figure 8 illustrates the storm surge disaster risk level maps

for Huizhou city, as derived from various methodologies.

Among these methods, the AHP method indicates that high-risk

areas account for a higher proportion in the risk level map,

approximately 53%. In contrast, the FAHP and FAHP-EW methods

yield a higher proportion of low-risk areas in the risk level map.

Therefore, in terms of the effectiveness of the risk level maps, the EW

method and the AHP-EWmethod produce risk level maps with more

clearly defined gradations and a more reasonable range. In practical

applications, risk level maps with clearly defined gradations provide

essential information for the distribution of disaster prevention and

mitigation resources and personnel, making them more valuable.
FIGURE 7

Statistical charts illustrating the weights of various indicators
obtained through five different methods.
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Figure 9 illustrates the risk level areas obtained from different

MCDM methods. The hazard area determined using the subjective

methods of AHP is 94.58 km², and FAHP results in 96.48 km²,

notably smaller than the objective method of EW, which yields an

area of 124.55 km². Figure 8C illustrates the hazard area delineated

by the EW method. It is evident that despite certain areas

experiencing a smaller impact from storm surge, they still fall

within the hazard zone. These areas generally exhibit higher

population density or economic vulnerability. The increase in

weights for population density and nighttime light in the

indicator weights obtained by the EW method aligns with the

mentioned situation.

The comparative analysis of indicator weights reveals that

subjective methods tend to emphasize hazard and exposure, with

social vulnerability mainly focused on the population density

indicator. On the other hand, objective methods primarily

emphasize hazard and social vulnerability, while exposure

indicators (such as DEM) have relatively lower weight
A B
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FIGURE 8

Maps displaying the coastal risk levels in Huizhou City assessed using different methods. (A) AHP: (B) FAHP; (C) EW; (D) FAHP-EW; (E) AHP-EW;
(F) the traditional method used by Wang et al. (2021).
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FIGURE 9

The areas of different storm surge risk levels along the coastal
regions of Huizhou city assessed using various methods.
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proportions. After integrating subjective and objective methods, the

AHP-EW and FAHP-EW methods yielded hazard areas of 110.04

km² and 113.41 km². Furthermore, from Figure 8D and Figure 8E, it

can be observed that the hazard level map (AHP-EW) exhibits a

more distinct classification of storm surge risk levels compared to

the hazard level map (FAHP-EW). This pattern also corresponds to

the comparison of weight variances. In the hazard level map

(FAHP-EW), areas with low risk occupy a larger proportion,

whereas regions with very high hazard levels are relatively small.

In this storm surge inundation simulation, the obtained scenario

represents the most unfavorable storm surge event under the

conditions of a 1000-year return period typhoon. Therefore, the

proportion of moderate to high-risk levels should not be negligible

in the classification of storm surge risk levels. The risk level maps

produced by the FAHP and FAHP-EW methods do not align with

the situation. In the AHP method, there is a low proportion of low-

risk areas, and the results are not as effective as those obtained from

the EW and AHP-EW methods. Furthermore, based on the

principles of this method, the AHP-EW method, which combines

subjective and objective approaches, not only relieves the inherent

shortcomings of purely objective or subjective methods but also

better aligns with practical requirements. Therefore, through the

comparison of five MCDM methods, this study chooses AHP-EW

as the most appropriate method for storm surge risk assessment in

Huizhou. Then the sensitivity of each indicator is analyzed based on

the weight results obtained by AHP-EW method.
4.3 Comparison of the traditional method

4.3.1 Comparative analysis of risk level maps
Due to the difficulty in obtaining or collating detailed storm

surge disaster data for Huizhou City, refined in accordance with

actual storm surge events, this study did not compare its results with

real risk classification data. Therefore, to further validate the

rationality of the MCDM methods, we selected methods from the

literature that studied storm surge risk levels in the same region and

compared them as the traditional method (Wang et al., 2021; De

Scally, 2014). Wang et al. (2021) combined inundation depth data

with LULC data to classify storm surge hazard levels. Figure 8F

depicts a map of risk levels created using the method used by Wang

et al. (2021), using the inundation depth and LULC data from this

study. The map produced using the method mentioned by

traditional method indicates a hazard area of 77.42 km², which is

significantly lower in comparison to other methods, serving as a

clear contrast in terms of hazardous area coverage.

Through the comparison of Figures 8E, F, it is evident that there

is no significant change in the location and area of high-risk and

very high-risk areas. The main difference lies in the categorization

of medium to low-risk areas. The AHP-EW method encompasses a

larger number of medium to low-risk areas. Furthermore, as seen in

Figure 8F, the area of low-risk regions obtained using the traditional

method is relatively smaller compared to other risk level areas. The

MCDM methods, with their comprehensive indicator selection and

assessment approach, effectively compensate for the relatively one-
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more interpretable.

4.3.2 Comparative analysis of indicators
Figure 10 illustrates a comparison between the risk level maps of

the Aotou Street and Huangbu Town areas in Huizhou city

obtained through the traditional method and the AHP-EW

method. The difference is significant as the risk area obtained by

the AHP-EW method is larger than that of traditional methods,

with the main distinction in the low-risk area identified by the

AHP-EW method, specifically in Donglian village and Aotou

township in Huizhou City. Figure 11 depicts a map illustrating

the indicators for the regions of Aotou Township and Tiechong

Township. It can be observed from Figures 10A, B and 11A, B that

the primary factor contributing to disparities in the risk level maps

obtained through two distinct approaches is the incorporation of

indicators related to societal vulnerability, such as population

density and nocturnal luminosity, in the AHP-EW method.

Although the inundation extent caused by the storm surge in

Donglian village and Aotou Street areas is relatively limited, these

areas exhibit higher population density and nighttime luminosity.

Consequently, these areas may incur higher levels of property and

life safety losses during storm surge disasters.

Furthermore, upon juxtaposing Figures 10C, D and 11C, D, it

becomes evident that the broader scope of hazardous regions

derived through the utilization of the AHP-EW approach is

primarily attributed to the selection of NDVI and population

density indicators. As depicted in Figure 11C, regions

characterized by lower NDVI values on the map correspond to

higher risk levels in the risk level map generated through the AHP-

EW methodology. This correlation is mainly attributed to areas

with lower NDVI values often indicating regions with frequent

human economic activities. Therefore, during storm surge disasters,

these areas tend to experience greater economic losses. Similarly, in

regions characterized by elevated population density indicators, the

risk level proportionally escalates, following the same rationale.

Hence, the risk level map obtained through comprehensive

exposure indicators (such as DEM and NDVI) and social

vulnerability indicators (population density, nighttime light, etc.)

is superior to maps obtained through the traditional method of

overlaying inundation depth on LULC data. Although the result

from AHP-EW exhibits a broader range of hazardous regions, it

stands as a more rational and accurate representation.
4.4 Sensitivity analysis of factors

4.4.1 Statistical analysis of sensitivities
After proportionally adjusting the indicator weights obtained

through the AHP-EW method, the risk level is calculated for each

grid cell within the study area, and 500 distinct RPC risk level maps

are generated. Subsequently, the generated 500 matrices

representing the risk levels of pixels are individually input into

the OAT and FAST methodologies to compute the sensitivity of

each indicator within every pixel. Figure 12 illustrates the statistical
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FIGURE 11

Maps depicting the assessment indicators that have a significant impact on the results. (A) Donglian Village and Aotou Street regions (Nighttime
lights); (B) Donglian Village and Aotou Street regions (population density); (C) Huangbu Town (NDVI); (D) Huangbu Town (population density).
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FIGURE 10

Comparison of risk level maps obtained through the AHP-EW method and the traditional method used by Wang et al. (2021). (A) Donglian Village
and Aotou Street regions (traditional method); (B) Donglian Village and Aotou Street regions (AHP-EW); (C) Huangbu Town (traditional method);
(D) Huangbu Town (AHP-EW).
Frontiers in Marine Science frontiersin.org14

https://doi.org/10.3389/fmars.2024.1364929
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wei et al. 10.3389/fmars.2024.1364929
data regarding indicator sensitivities obtained through various

methods. Calculate the average and maximum sensitivity for all

study areas and regions with risk levels above the low-risk category.

The results reveal a substantial alignment in sensitivity rankings

between the two methods. Indicator F1 (inundation depth)

demonstrates the highest sensitivity, signifying that alterations in

the weight of the F1 indicator exhibit the most pronounced impact

on risk level variations within the study area. The second tier of

sensitivities includes indicators F2, F7, F8, F9, and F10. Risk levels

display relatively low sensitivity towards alterations in the weights

of indicators F3, F4, F5, and F6.

In the process of management, decision-makers need judiciously

utilize this information and thoroughly assess the influence of

indicators with higher sensitivities on the evaluation of disaster risk

levels. The AHP-EW method employed in this study for indicator

selection is comprehensive, combining both subjective and objective

aspects. The risk classification results are distinct. However, given the

temporal and spatial heterogeneity of storm surge disasters,

adjustments should be made in the application process based on

the actual circumstances. Therefore, in the context of storm surge

disaster warning and management, decision-makers should rely on

actual circumstances and take into account the sensitivity of different

indicator data to storm surge classification results. This will aid in

determining the weights for locally chosen indicators, thus leading to

a more rational storm surge risk level map.

4.4.2 Sensitivity maps
Figure 13 illustrates indicator sensitivity maps for different

regions and indicators. By observing these maps, the spatial

heterogeneity of selected indicator sensitivities becomes evident.

While the focus of this study is on the coastal areas of Huizhou City,

decision-makers can obtain information from the map regarding

the sensitivity range of various indicators at the village and town
Frontiers in Marine Science 15
scales. The quantified sensitivity of indicators at different scales can

provide crucial guidance for decision-makers in selecting

indicator weights.

As depicted in Figures 13A, B, the southeastern region of the

Danglin Village exhibits heightened sensitivity towards the

inundation depth indicator (with a sensitivity index of 150), while

demonstrating minimal sensitivity towards nighttime light.

Additionally, the northwest region of Xuanlin Village exhibits a

sensitivity exceeding 200 to the nighttime light indicator, while

having extremely low sensitivity to the inundation depth indicator.

The reverse pattern is observed in the southeast region of Xuanlin

Village. Similarly, upon analyzing Figures 13C, D, it becomes evident

that the coastal region of Leafing Village displays a notable disparity

in sensitivity towards river system density indicators, with a

sensitivity surpassing 200, as compared to the sensitivity towards

inundation depth indicators, which ranges between 70 and 95. Hence,

the metrics that demand particular attention within this region are

the indicators related to river system density. Figures 13E, F illustrate

a comparative analysis of sensitivity between land utilization and

inundation depth indicators within the Huangbu Township area. The

sensitivity towards inundation depth indicators (exceeding 200)

significantly surpasses the sensitivity towards land utilization

indicators (with a maximum of 99). Through comparative analysis

of sensitivity maps, decision-makers can accurately assess the impact

of different indicators on disaster assessment at various scales within

their management areas. This provides a clearer understanding of the

selection and prioritization of indicators.
5 Conclusions

This study addresses the issue of storm surge disaster impact on

the Huizhou city and proposes a framework for assessing the risk
A B

DC

FIGURE 12

Sensitivity statistical charts for different assessment indicators. (A) the maximum sensitivity indices (FAST); (B) the maximum sensitivity indices (OAT);
(C) the average sensitivity indices (FAST): (D) the average sensitivity indices (OAT).
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levels of coastal storm surge disasters. The system integrates

FVCOM-SWAN, GIS, RS, MCDM, and sensitivity analysis

methods. Literature on risk assessment is diverse, but research on

storm surge risk assessment is relatively traditional, and a

standardized process has not yet been established. Currently,

most research on storm surge risk assessment involves overlaying

inundation data obtained from LULC data with vulnerability data.

This study assesses storm surge risk levels using MCDMmethods to

evaluate selected indicators. This method not only addresses the

issue of limited historical risk data in storm surge risk assessment

for Huizhou city but also enhances the ability to explain the

complexity and comprehensiveness of risk assessment.

Considering the subjectivity of indicator weight selection and the

objective attributes of data, this study uses AHP, FAHP, EW, AHP-

EW and FAHP-EW to evaluate the storm surge risk level in the

coastal area of Huizhou. Through comparative analysis, the most

suitable method of storm surge risk level evaluation in Huizhou city

is selected. The evaluation indicators utilized in this study including:
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the inundation depth, DEM, slope, aspect, curvature, NDVI, river

system density, population density, LULC, and nighttime lights

data. These indicators encompass hazard, exposure, and

vulnerability aspects, enabling a comprehensive and scientific

assessment of storm surge risk. In addition, there are few studies

on the sensitivity test of the indicators for risk assessment.

Analyzing the sensitivity of each assessment indicator to the risk

assessment results is a crucial aspect of the risk management

process. In this study, OAT analysis and FAST are used to

calculate the sensitivity of each indicator and analyze the

indicators with a significant impact on risk assessment. Main

findings of the present study are the followings:
(1) The selection of storm surge disaster assessment indicators

takes into account the disaster hazard, exposure and

vulnerability indicators specific to the Huizhou city. The

risk level map obtained through this approach, with a

hazardous area of 110 km², surpasses the traditional
A B

D

E F

C

FIGURE 13

Sensitivity maps for different assessment indicators. (A) Donglian Village and Aotou Street regions (F1); (B) Donglian Village and Aotou Street regions
(F10); (C) Jilong Town (F1); (D) Jilong Town (F7); (E) Huangbu Town (F1); (F) Huangbu Town (F9).
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Fron
method (Wang et al., 2021). The traditional method, which

overlays inundation depth with land utilization to create a

map, results in a hazardous area of 77 km². In addition to

LULC, assessment indicators are supplemented in areas

such as economics, population, and agriculture. By

comprehensively considering various indicators for risk

assessment, such as nighttime lights, population density,

NDVI, etc., it becomes possible to detect risk areas that may

not be captured through the evaluation of individual

indicators alone. Not only does the new approach

encompass a larger hazardous region, but it is also

notably more reasonable and accurate.

(2) The comparison among five MCDM methods, namely

AHP, FAHP, EW, AHP-EW, and FAHP-EW, result in

hazardous area sizes ranging from 94 km² to 113 km².

The comparative results indicate that AHP-EW and FAHP-

EW methods can reduce the subjectivity in expert

evaluation of indicators. Additionally, the AHP-EW

method demonstrates clearer differentiation of risk levels

for the most unfavorable storm surge disaster simulated in

this study, facilitating the identification of high-risk areas

for storm surge disasters. The AHP-EW method provides a

more scientifically determined weight for each indicator,

resulting in a risk level map that is better suited for storm

surge risk classification.

(3) The sensitivity of standard layer indicators is calculated

using the OAT analysis method and FAST method. The

results indicate that the OAT method yielded an average

sensitivity of 102 for the inundation depth indicator in the

disaster area, exerting the greatest influence on the risk

assessment outcome. Furthermore, in the second tier of

sensitivity, river system density (67), population density

(69), land utilization (49), DEM (78), and nighttime light

(57) exhibit notable influences. In order to establish risk

level divisions for different scales, reference should be made

to sensitivity maps of indicators corresponding to various

regional scales. This process aids in defining the weighting

criteria between indicators, with the aim of obtaining a

more accurate risk level map.
With global climate change, extreme typhoon disasters are

expected to occur more frequently in the future. Typhoons with a

minimum atmospheric pressure of 910 hPa (recurrence period of

100 years) occurred in the South China Sea in 2014 (Typhoon

Rammasun) and 2016 (Typhoon Meranti), causing significant

losses to coastal cities in China. This study employs Typhoon

Mangkhut as a prototype, modifying its path to make landfall at

the Huizhou station and adjusting the minimum atmospheric

pressure to 880 hPa, corresponding to a return period of 1000

years. The modified typhoon is not a historical storm surge but an

assuming situation of the most severe typhoon that could occur in

the study area in the future. The assessment of risk level maps is

conducted by envisioning the potential occurrence of the most

severe storm surge in the future. Hence, risk maps can assist

decision-makers in formulating risk response plans and
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evacuation strategies for densely populated coastal communities,

minimizing civilian casualties. They can also be utilized to identify

risk zones with a high concentration of hazardous materials,

preventing potential environmental damage and secondary

disasters that may be affected by storm surge.

This study aims to comprehensively assess the risk levels of the

coastal areas in Huizhou city. It calculates the sensitivity of each

criterion layer to provide strategic information for local

administrative managers in storm surge disaster prevention. As a

future research direction, storm surges often occur in conjunction

with rainfall, leading to compound disasters. Simultaneously, the

limitation of this study lies in focusing solely on the disasters caused

by storm surge. Factors like heavy rainfall, strong winds, etc., which

are also hazardous during typhoon landfall, have not been

considered. Investigating compound disasters involving multiple

factors can offer more comprehensive and accurate information for

local disaster prevention and control efforts.
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Rilo, A., Tavares, A. O., Freire, P., Zêzere, J. L., and Haigh, I. D. (2022). Improving
estuarine flood risk knowledge through documentary data using multiple
correspondence analysis. Water 14, 3161. doi: 10.3390/w14193161

Roy, S., Bose, A., and Chowdhury, I. R. (2021). Flood risk assessment using geospatial
data and multi-criteria decision approach: a study from historically active flood-prone
region of Himalayan foothill, India. Arabian J. Geosciences 14, 999. doi: 10.1007/
s12517-021-07324-8

Saaty, T. L. (1970). Optimization in integers and related extremal problems. Am.
Math. Mon. 78 (8), 921–923. doi: 10.2307/2316512

Sahmutoglu, I., Taskin, A., and Ayyildiz, E. (2023). Assembly area risk assessment
methodology for post-flood evacuation by integrated neutrosophic AHP-CODAS.
Natural Hazards 116, 1071–1103. doi: 10.1007/s11069-022-05712-1

Sahraei, R., Kanani Sadat, Y., Homayouni, S., Safari, A., Oubennaceur, K., and
Chokmani, K. (2023). A novel hybrid GIS-based multi-criteria decision-making
approach for flood susceptibility analysis in large ungauged watersheds. J. Flood Risk
Manage. 16. doi: 10.1111/jfr3.12879

Schaibly, J. H., and Shuler, K. E. (1973). Study of the sensitivity of coupled reaction
systems to uncertainties in rate coefficients. II Applications. J. Chem. Phys. 59, 3879–
3888. doi: 10.1063/1.1680572

Sepehri, M., Malekinezhad, H., Hosseini, S. Z., and Ildoromi, A. R. (2019).
Assessment of flood hazard mapping in urban areas using entropy weighting
method: a case study in Hamadan city, Iran. Acta Geophysica 67, 1435–1449.
doi: 10.1007/s11600-019-00342-x
frontiersin.org

https://doi.org/10.1007/s11269-022-03416-6
https://doi.org/10.1007/s00521-023-08719-2
https://doi.org/10.1007/s12205-023-1271-x
https://doi.org/10.1016/j.ijdrr.2023.103680
https://doi.org/10.1016/j.ijdrr.2023.103680
https://doi.org/10.1061/9780784402429.053
https://doi.org/10.1016/0377-2217(95)00300-2
https://doi.org/10.1016/j.earscirev.2016.12.005
https://doi.org/10.1175/1520-0426(2003)020%3C0159:AUGFVT%3E2.0.CO;2
https://doi.org/10.1175/1520-0426(2003)020%3C0159:AUGFVT%3E2.0.CO;2
https://doi.org/10.1016/j.envsoft.2010.06.001
https://doi.org/10.1016/j.jenvman.2021.112810
https://doi.org/10.3390/jmse9111222
https://doi.org/10.1016/j.jhydrol.2020.124808
https://doi.org/10.3390/w11030615
https://doi.org/10.3390/a16050232
https://doi.org/10.1080/13658816.2019.1599125
https://doi.org/10.1016/j.ijdrr.2013.12.002
https://doi.org/10.1088/1755-1315/446/3/032042
https://doi.org/10.1007/s11069-016-2504-9
https://doi.org/10.1080/10106049.2022.2076919
https://doi.org/10.1175/1520-0493(1980)108%3C1212:AAMOTW%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1980)108%3C1212:AAMOTW%3E2.0.CO;2
https://doi.org/10.3390/w9040292
https://doi.org/10.1016/j.pocean.2022.102855
https://doi.org/10.5194/essd-2023-87
https://doi.org/10.3390/w11081654
https://doi.org/10.1016/j.jenvman.2022.115991
https://doi.org/10.1016/j.jenvman.2022.115991
https://doi.org/10.1016/j.scitotenv.2018.01.138
https://doi.org/10.1016/j.scs.2023.104427
https://doi.org/10.1038/s41598-022-14303-w
https://doi.org/10.1007/s11356-022-23168-5
https://doi.org/10.3390/w13010098
https://doi.org/10.1016/j.jhydrol.2022.128072
https://doi.org/10.1007/s11069-021-04871-x
https://doi.org/10.1007/s11069-021-04871-x
https://doi.org/10.3390/w14193161
https://doi.org/10.1007/s12517-021-07324-8
https://doi.org/10.1007/s12517-021-07324-8
https://doi.org/10.2307/2316512
https://doi.org/10.1007/s11069-022-05712-1
https://doi.org/10.1111/jfr3.12879
https://doi.org/10.1063/1.1680572
https://doi.org/10.1007/s11600-019-00342-x
https://doi.org/10.3389/fmars.2024.1364929
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wei et al. 10.3389/fmars.2024.1364929
Sian, K. T. L. K., Dong, C., Liu, H., Wu, R., and Zhang, H. (2020). Effects of model
coupling on typhoon kalmaegi, (2014) simulation in the south China sea. Atmosphere
11, 432. doi: 10.3390/atmos11040432

Tangney, P. (2020). Understanding climate change as risk: a review of IPCC guidance
for decision-making. J. Risk Res. 23, 1424–1439. doi: 10.1080/13669877.2019.1673801

Tokgozlu, A., and Ozkan, E. (2018). Application of AHP method in flood risk maps:
aksu river basin example. SDU Faculty Arts Sci. J. Soc. Sci. 44, 151–176. doi: 10.1007/
s40996-023-01055-4

Wang, Y., Chen, X., Wang, L., and Min, G. (2020). Effective ioT-facilitated storm
surge flood modeling based on deep reinforcement learning. IEEE Internet Things J. 7,
6338–6347. doi: 10.1109/JIoT.6488907

Wang, Y., Guo, Z., Zheng, S., Zhang, M., Shu, X., Luo, J., et al. (2021). Risk assessment
for typhoon-induced storm surges in Wenchang, Hainan Island of China. Geomatics
Natural Hazards Risk 12, 880–899. doi: 10.1080/19475705.2021.1899060

Wang, Y., Li, Z., Tang, Z., and Zeng, G. (2011). A GIS-based spatial multi-criteria
approach for flood risk assessment in the dongting lake region, hunan, central China.
Water Resour. Manage. 25, 3465–3484. doi: 10.1007/s11269-011-9866-2

Watson, C. C. (1995). The Arbiter of Storms: a high resolution, GIS-based system for
integrated storm hazard modeling. Natl. Weather Digest 20, 2–9.
Frontiers in Marine Science 19
Wu, J., Chen, X., and Lu, J. (2022). Assessment of long and short-term flood risk
using the multi-criteria analysis model with the AHP-Entropy method in Poyang Lake
basin. Int. J. Disaster Risk Reduction 75, 102968. doi: 10.1016/j.ijdrr.2022.102968

Xianwu, S., Jufei, Q., Bingrui, C., Xiaojie, Z., Haoshuang, G., Jun, W., et al. (2020).
Storm surge risk assessment method for a coastal county in China: case study of Jinshan
District, Shanghai. Stochastic Environ. Res. Risk Assess. 34, 627–640. doi: 10.1007/
s00477-020-01791-3

Yang, Z., Shao, W., Ding, Y., Shi, J., and Ji, Q. (2020). Wave simulation by the SWAN
model and FVCOM considering the sea-water level around the zhoushan islands. J.
Mar. Sci. Eng. 8, 783. doi: 10.3390/jmse8100783

Yin, J., Ye, M., Yin, Z., and Xu, S. (2015). A review of advances in urban flood risk
analysis over China. Stochastic Environ. Res. Risk Assess. 29, 1063–1070. doi: 10.1007/
s00477-014-0939-7

Zhang, Y., Li, T., Wang, H., and Guo, J. (2016). Storm surge risk assessment for
Yuhuan County in Taizhou City. Natural Hazards 84, 1–16. doi: 10.1007/s11069-016-
2328-7

Zhang, C., Wang, Q., Chen, J. P., Gu, F. G., and Zhang, W. (2011). Evaluation of
debris flow risk in Jinsha River based on combined weight process. Rock Soil Mechanics
32, 831–836.
frontiersin.org

https://doi.org/10.3390/atmos11040432
https://doi.org/10.1080/13669877.2019.1673801
https://doi.org/10.1007/s40996-023-01055-4
https://doi.org/10.1007/s40996-023-01055-4
https://doi.org/10.1109/JIoT.6488907
https://doi.org/10.1080/19475705.2021.1899060
https://doi.org/10.1007/s11269-011-9866-2
https://doi.org/10.1016/j.ijdrr.2022.102968
https://doi.org/10.1007/s00477-020-01791-3
https://doi.org/10.1007/s00477-020-01791-3
https://doi.org/10.3390/jmse8100783
https://doi.org/10.1007/s00477-014-0939-7
https://doi.org/10.1007/s00477-014-0939-7
https://doi.org/10.1007/s11069-016-2328-7
https://doi.org/10.1007/s11069-016-2328-7
https://doi.org/10.3389/fmars.2024.1364929
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

	Storm surge risk assessment and sensitivity analysis based on multiple criteria decision-making methods: a case study of Huizhou City
	1 Introduction
	2 Study area and datasets
	2.1 Study area
	2.2 Data description

	3 Methodology and procedure
	3.1 Description of numerical models
	3.1.1 Hybrid wind field
	3.1.2 FVCOM and SWAN

	3.2 Methodology of MCDM
	3.3 Methodology of sensitivity analysis
	3.4 Procedure

	4 Results and discussions
	4.1 Numerical model validation
	4.2 Comparison of MCDM methods
	4.2.1 Comparison of indicator weights
	4.2.2 Comparison of risk level maps

	4.3 Comparison of the traditional method
	4.3.1 Comparative analysis of risk level maps
	4.3.2 Comparative analysis of indicators

	4.4 Sensitivity analysis of factors
	4.4.1 Statistical analysis of sensitivities
	4.4.2 Sensitivity maps


	5 Conclusions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


