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Improving data-driven estimation
of significant wave height
through preliminary training on
synthetic X-band radar sea
clutter imagery
Vadim Rezvov1,2*, Mikhail Krinitskiy1,2, Alexander Gavrikov2,
Viktor Golikov1,2, Mikhail Borisov1,2, Alexander Suslov2

and Natalia Tilinina2

1Machine Learning for Earth Sciences Laboratory, Moscow Institute of Physics and Technology,
Dolgoprudny, Russia, 2Shirshov Institute of Oceanology, Russian Academy of Sciences,
Moscow, Russia
X-band marine radar captures the signal reflected from the sea surface.

Theoretical studies indicate that the initial unfiltered signal contains meaningful

information about wind wave parameters. Traditional methods of significant

wave height (SWH) estimation rely on physical laws describing signal reflection

from rough surfaces. However, recent studies suggest the feasibility of

employing artificial neural networks (ANNs) for SWH approximation. Both

classical and ANN based approaches necessitate costly in situ data. In this

study, as a viable alternative, we propose generating synthetic radar images

with specified wave parameters using Fourier-based approach and Pierson–

Moskowitz wave spectrum. We generate synthetic images and use them for

unsupervised learning approach to train a convolutional component of the

reconstruction ANN. After that, we train the regression ANN based on the

previous convolutional part to obtain SWH back from the synthetic images.

Then, we apply preliminary trained weights for the regression model to train SWH

approximation on the dataset of real sea clutter images. In this study, we

demonstrate the increase in SWH estimation accuracy from radar images with

preliminary training on synthetic data.
KEYWORDS

wind waves, X-band marine radar, significant wave height, synthetic radar images,
machine learning, deep learning, convolutional neural networks, unsupervised
preliminary training
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1 Introduction

X-band marine radars play an essential role in ship navigation and

safety through obstacle detection (Huang et al., 2017). Besides their

primary function, raw radar images capturing sea clutter contain

substantive information (Young et al., 1985). Analysis of the spatial

distribution of the reflected signal facilitates the derivation of

parameters associated with wind waves and swell. Additionally, these

radar images allow estimating such vital sea surface characteristics as

significant wave height (SWH). Sea surface examination is strongly

linked to ocean-atmosphere interaction and, consequently, to long-

term climate reconstructions, such as Global Atlas of Ocean Waves
1.

Given that the intensities of sea clutter radar images do not

correspond directly to the ocean surface elevation on a one-to-one

scale, a problem of accurate backscatter signal modeling is of great

scientific interest. Such an elaborated model would give the

opportunity to study sea surface with high temporal and spatial

resolution (Nieto-Borge et al., 2004).

The classical approaches of SWH estimation include Fourier

analysis and a linear dispersion relationship to recognize wave

signals within the temporal series of radar data. One of the examples

is the signal-to-noise ratio (SNR)-analysis-based method proposed by

(Nieto-Borge et al., 2008). The method necessitates the incorporation

of modulation transfer functions and calibration coefficients specific to

individual radar antennas (Nieto-Borge et al., 1999), thereby

constraining its generalizability. Despite this limitation, the classical

methodology remains extensively applied for real-time estimation of

ocean wave parameters, processing the back-scatter spectrum derived

from radar images (Tilinina et al., 2022).

In addition to classical approaches, radar data processing includes

methodologies that are potentially faster and highly independent of

radar antenna specifications. Notably, certain publications show

superior SWH estimation quality through contemporary artificial

intelligence (AI)-based techniques (Vicen-Bueno et al., 2012), in

comparison to classical methodologies. Within machine-learning

paradigm, the functional relationships, such as artificial neural

networks (ANNs), between radar images and corresponding SWH

values are approximated through training on extensive datasets (Park

et al., 2020). For this group of methods, the efficacy of regression

quality can potentially be correlated with the size and the distribution

of the training dataset (Long et al., 2017).

The authors of (Ludeno and Serafino, 2019) address the

challenge of limited data by employing an algorithm for

generating synthetic radar images with arbitrary SWH value. This

methodology uses technique of generating realistic ocean surfaces,

as detailed in (Mastin et al., 1987). While the methodology in

(Ludeno and Serafino, 2019) does not incorporate image synthesis

within a machine-learning framework, the ANN model and

synthetic datasets can potentially enhance the overall SWH

estimation from real X-band radar images.

Convolutional neural networks (CNNs) show their efficacy in

image recognition and feature extraction across various scientific
1 Gulev, S. (2014) Global Atlas of Ocean Waves. Available at: http://

www.sail.msk.ru/atlas/ (Accessed: 21 December 2023).
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domains, including geosciences. The notable instances are

illustrated in (Choi et al., 2020; Kim et al., 2021), where CNNs

are employed for real-time SWH estimation utilizing X-band

radar images. The temporal convolutional network (TCN) is a

variant of CNN architecture proposed in (Bai et al., 2018)

for sequence processing. Based on it, (Huang et al., 2021)

propose a TCN-based model to retrieve SWH from X-band

marine radar images.

In summary, the recent progress in ANN and the emergence of

modern machine-learning techniques have substantially diversified

radar image processing methods. Nonetheless, the findings in this

research domain present conflicting outcomes, and numerous

questions persist. Consequently, evaluating current methodologies

for radar image generation and SWH estimation remains a subject

of ongoing scientific interest.

In this paper, we demonstrate the utilization of a preliminarily

trained CNN for SWH estimation from real marine X-band radar

images of sea clutter. Initially, we elaborate the methodology of

generating a synthetic dataset of radar images. We train a model

that reconstructs synthetic images in unsupervised learning

approach. After that, we use preliminarily trained part of the

reconstruction model to construct and train a regression model

that approximates SWH from the synthetic image. Further, the pre-

trained regression architecture is trained on a dataset of real radar

images. We then compare the results of this pre-trained model with

the quality of the simple SWH regression model.

In this study, we do not aim to develop a model that would

accurately reproduce the radar signal from a given sea surface. Our

goal is to increase the accuracy of the ANN-based model

approximating SWH value from the radar image.

The paper is organized as follows. In Section 2, we provide the

details of the real radar image dataset, the methodology of the artificial

radar image synthesis. and the architectures of the applied ANNs,

quality metrics and training and evaluation procedures. In Section 3,

we provide the results of the elaboratedmodel training. In Section 4, we

analyze how SWH estimation quality increases with pre-training on

synthetic dataset. Concluding remarks are made in Section 5.
2 Materials and methods

2.1 Initial data

For this research, we adopt the data collection methodology

outlined in (Tilinina et al., 2022). Our dataset comprises samples

obtained during four research expeditions conducted in the Atlantic

and Arctic oceans. These expeditions were undertaken by the Shirshov

Institute of Oceanology of the Russian Academy of Sciences within the

governmental program of regular ocean observations.

The routes of the expeditions encompass points with SeaVision

radar images and/or Spotter buoys measurements2. Comprehensive

details about the research expeditions can be found in Table 1.
2 Sofar Ocean (2023) Spotter Buoy by Sofar. Available at: https://

www.sofarocean.com/products/spotter (Accessed: 22 December 2023).
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For clarity, a “station” refers to an instance where the ship is

adrift, thereby creating optimal conditions for data acquisition.

Table 1 outlines the departure and arrival ports, as well as the

number of stations where data from both the Spotter buoy and the

SeaVision radar were collected.

The selection of locations for sea wave observation was based on

local weather conditions and temporal constraints. In total, there

around 95 000 SeaVision images and 62 hours of simultaneous

Spotter buoy in situ measurements were collected. It is noteworthy

(Table 1) that the number of Spotter buoy stations differs from the

number of SeaVision stations. This discrepancy arises because the

engineering support required for operations at the buoy stations is

significantly more complex compared to the SeaVision operations,

resulting in some SeaVision stations lacking corresponding buoy

measurements. In this study, however, we focus exclusively on the

subset of data comprising synchronous observations from both the

Spotter buoy and the SeaVision radar, as summarized in Table 1.

The summary of the station data is in Table 2.

Spotter wave buoy measures vertical and horizontal

displacements of the ocean surface with 2.5 Hz sampling

frequency providing highly accurate measurements of wind wave

characteristics (Raghukumar et al., 2019) and collecting the training

dataset of SWH.

Random sea-surface elevation can be modeled as a stationary

Gaussian process, wherein the statistical properties are defined by

spectral moments. For instance, the surface elevation variance

corresponds to the zeroth moment. To determine the wave

spectrum, Welch’s method is employed, utilizing a 600-second

Hann window. From the zeroth spectral moment, SWH

is calculated.

To compute the current value of SWH, the ten minutes of buoy

data are analyzed, comprising approximately 1546 records, so that

every time interval corresponds in time to the radar image coinciding

with the center of the interval. The spectrum is calculated using a

Hann window of equivalent width. This window is then
Frontiers in Marine Science 03
incrementally shifted forward by one record at a time until the

analysis encompasses the most recent ten minutes of data.

SeaVision radar creates one sea clutter image every two seconds.

Research vessels ASV and AI are equipped with JRC JMA-9110-

6XA and JMA-9122-6XA X-band radars, respectively. These radars

have the same principal characteristics, such as the frequency of

9.41 GHz, a 6-foot antenna with a horizontal directional resolution

of 1.2°, and almost identical shortest pulse lengths of 0.08 µs and

0.07 µs, respectively. Images are stored externally along with the

GPS coordinates, speed over the ground (SOG), and course over the

ground (COG). These files are later combined and converted into

NetCDF format for post-processing. Radar antenna characteristics

with the detailed description of the image collection process can be

found in (Tilinina et al., 2022).

The center of the resulting sea clutter image coincides with the

location of the radar antenna. Raw images with the spatial

resolution of 1.875 m cover >7 km radius around the ship. The

image exhibits a signal with diverse structures and intensities

attributed to local wind direction, vessel rotation, and reflections

of electromagnetic signal from the rough ocean surface (Lyzenga

and Walker, 2015).

There is a “blind” zone near the center due to signal reflection

from the vessel. To mitigate this effect, we exclude the part of the

image within a 300 m radius around the ship. After visual

examination of radar images, we observe that the reflected signal

becomes less distinct with increasing distance from the radar

antenna. As a result, we choose a radius of ≈2000 m to ensure the

highest possible significant variability observed in radar data.

Consequently, first, we restrict our analysis to the 300–2000 m

range for further processing.

The important step of the data pre-processing is a choice of the

optimal 180° sector containing the most informative wave signal. The

technique used in this research extracts the most contrasting area

from the entire radar image to provide the most clearly identified

wind waves. For every station, the sector with the largest temporal
TABLE 1 Summary of undertaken scientific research marine cruises equipped with SeaVision and Spotter buoy for collecting real dataset of this study
and summary of the synthetic dataset.

Expedition Departure Arrival Spotter
buoy stations

SeaVision
stations

Number
of measurements

ASV50 Kaliningrad,
Russia, 7 Aug

2020

Arkhangelsk,
Russia, 13 Sep 2020

24 157 27 468

AI57 Kaliningrad,
Russia, 25 Jun 2021

Arkhangelsk,
Russia, 21 Jul

2021

12 76 15 617

AI58 Kaliningrad,
Russia, 10 Aug 2021

Kaliningrad,
Russia, 9 Sep

2021

16 55 21 978

AI63 Arkhangelsk,
Russia, 29 Sep 2022

Arkhangelsk,
Russia, 7 Dec

2022

30 209 30 304

Real data 82 497 95 367

Synthetic data 60 000
Here, abbreviation ASV stands for the research vessel Akademik Sergey Vavilov, and AI stands for the research vessel Akademik Ioffe.
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TABLE 2 Summary of stations.

Station Number
of

measurements

Expedition

2763 571 ASV50

2771 1336 ASV50

2777 1007 ASV50

2782 733 ASV50

2787 596 ASV50

2792 686 ASV50

2797 711 ASV50

2803 853 ASV50

2809 799 ASV50

2821 866 ASV50

2833 832 ASV50

2841 833 ASV50

2849 859 ASV50

2856 912 ASV50

2863 988 ASV50

2868 1594 ASV50

2881 1691 ASV50

2885 1664 ASV50

2899 1774 ASV50

2901 1753 ASV50

2903 1497 ASV50

2913 1549 ASV50

2928 1632 ASV50

2937 1732 ASV50

Total ASV50 27 468

3831 1095 AI57

3836 829 AI57

3841 3195 AI57

3847 1144 AI57

3853 1045 AI57

3858 1168 AI57

3863 1145 AI57

3870 616 AI57

3875 1271 AI57

3880 1344 AI57

3884 1374 AI57

3899 1391 AI57

Total AI57 15 617

(Continued)
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TABLE 2 Continued

Station Number
of

measurements

Expedition

3911 1362 AI58

3929 1484 AI58

3930 1001 AI58

3939 1335 AI58

3946 1042 AI58

3956 1439 AI58

3972 1463 AI58

3982 1438 AI58

3990 1510 AI58

3997 1267 AI58

4013 1436 AI58

4020 1412 AI58

4025 1442 AI58

4029 1439 AI58

4031 1469 AI58

4040 1439 AI58

Total AI58 21 978

4338 1198 AI63

4339 1100 AI63

4340 1319 AI63

4341 1487 AI63

4342 1441 AI63

4343 1420 AI63

4344 1374 AI63

4345 1387 AI63

4346 1371 AI63

4347 1414 AI63

4348 745 AI63

4349 737 AI63

4350 769 AI63

4351 730 AI63

4352 774 AI63

4353 783 AI63

4354 733 AI63

4355 736 AI63

4356 733 AI63

4357 762 AI63

4358 859 AI63

(Continued)
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standard deviation is the optimal sector. In this study, considering

spatial resolution of 1.875 m, we choose the outer radius of the

meaningful area as ≈1920 m (1024 pixels). Hence, we work with pre-

processed 1024×2048 pixels images in contradistinction to 384×384

pixels images in (Tilinina et al., 2022).

Then, we linearly transform the values of the back-scattered

radar signal image so that for every specific image, the minimum

value is 0 and the maximum is 255. For further purposes, we use

only masked real 1024×2048 pixels images. Namely, we replace the

pixels outside 300–1920 m radius area with zeros. The example of

the pre-processed radar image is shown in Figure 1.
3 National Weather Service (2023) Significant Wave Height. Available at:

https://www.weather.gov/mfl/waves (Accessed: 22 December 2023).

4 National Data Buoy Center (2023) How are significant wave height,

dominant period, average period, and wave steepness calculated? Available

at: https://www.ndbc.noaa.gov/faq/wavecalc.shtml (Accessed: 22

December 2023).
2.2 Synthesis of realistic sea surface

We develop the methodology of generating synthetic radar

images (Ludeno and Serafino, 2019) based on realistic ocean

scenes (Mastin et al., 1987). The authors of (Mastin et al., 1987)

elaborated a technique that presents fully developed sea with an

empirical modified Pierson–Moskowitz sea power spectrum

(Pierson and Moskowitz, 1964).

As proposed in (Mastin et al., 1987), we first generate a

2088×2088 pixels array with the noise values uniformly

distributed from −0.5 to 0.5. We choose the image size that is

bigger than 2048 pixels to further exclude possible edge effects. The

result of this step is a white-noise image (see Figure 2A).

The spatial resolution is 1.875 m, equal to that of the real radar

images. This parameter allows us to perform a two-dimensional

forward Fourier transform of the white-noise image to generate

an array of complex numbers. The magnitude of these complex

Fourier components is shown in Figure 2B. The coordinate axes

in Figure 2B are orthogonal components kx and ky [m
−1] of spatial

frequency vector.

The methodology of creating a synthetic sea surface is based on

the following theory. In this research, we consider a simple case of
Frontiers in Marine Science 05
fully developed wind waves, characterized by a wave power

spectrum constant in time. Under these assumption, W. Pierson

and L. Moskowitz (Pierson and Moskowitz, 1964) empirically

approximated the mathematical form of the downwind power

spectrum FPM(f):

FPM(f ) =
ag2

(2p)4f 5
exp  −

5
4

fm
f

� �4� �
, (1)

where f is the temporal frequency [Hz], fm is the peak temporal

frequency [Hz], a = 0.0081 is the Phillips constant, and g is the

mean gravitational acceleration [m/s2].

The form of the fully-developed wind spectrum (1) depends

solely on a single parameter fm that indicates the frequency of the

spectrum maximum. It was also discovered in (Pierson and

Moskowitz, 1964) that fm is a function of 10 m surface wind

speed U10 with the constant mean gravitational acceleration g:

fm ≈ 0:13
g
U10

: (2)

SWH is usually defined as an average measurement of the largest

33% of waves3: SWH = 1
N=3oN=3

j=1 Hj, where N is the total number of

measured waves, Hj is a height of the j-th wave from the largest 33%.

For a given power spectrum S(w), we can equivalently calculate

significant wave height4: SWH = 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ +∞

0
S(w) dw

r
. Thus, from (2),

for Pierson–Moskowitz spectrum (1), we obtain:

SWH ≈ 0:22
U     2
10

ɡ
: (3)

Hence, we completely determine the shape of the one-

dimensional downwind fully developed wave spectrum (1) with

either U10 or SWH (3).

The two-dimensional wave power spectrum F(f,j) was

proposed in (Hasselmann et al., 1980) as an extension of (1)

taking into account wind direction:

F(f ,j) = FPM(f )D(f ,j), (4)

D(f ,j) =
G 2(p + 1)

21−2ppG (2p + 1)
cos 

j
2

� �h i2p
, (5)

where FPM(f) is one-dimensional Pierson-Moskowitz spectrum

from (1), D(f,j) is a normalized directional multiplier at angle j from

the downwind direction, and G is the gamma function. The empirical

parameters in (5) are defined by (Mastin et al., 1987): p = 9:77 f
fm

� �m

and m is equal to 4.06 for f ≤ fm and –2.34 for f > fm.
TABLE 2 Continued

Station Number
of

measurements

Expedition

4361 937 AI63

4364 832 AI63

4366 744 AI63

4368 762 AI63

4371 774 AI63

4374 755 AI63

4378 730 AI63

4392 2137 AI63

4410 761 AI63

Total AI63 30 304

Total 95 367
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The example of the normalized filter FPM(f)D(f,j) forU10 = 15 m/s

for the frequency domain of Figure 2B is shown in Figure 3A. To

transform the white-noise spectrum into the two-dimensional Pierson–

Moskowitz spectrum (4), we multiply the magnitudes of the Fourier

components of the initial white-noise image by (1) and (5).

The resulting spectrum creates a narrower profile near fm(2) in

the downwind direction, forms a bimodal spectrum shape for j ≈

90° from the downwind direction, and suppresses the long-crested

peak frequency components, while retaining non-peak

frequencies (Mastin et al., 1987). The filtered magnitudes of the

white-noise Fourier components from Figure 2B are shown

in Figure 3B.

Subsequently, we combine the filteredmagnitudes with the original

phase of the white-noise complex Fourier components, and apply

the inverse Fourier transform, as described in (Mastin et al., 1987).

The result of this procedure is a 2088×2088 pixels array of complex

numbers. The desired synthetic sea surface is a real part of this array.

We illustrate the full-domain realistic sea surface and its central

part in Figure 4.
Frontiers in Marine Science 06
2.3 Synthesis of radar images

Here we describe transformation of the synthetic sea surfaces

obtained in 2.2 into synthetic X-band radar images.

As (Nieto-Borge et al., 2004) claim, sea clutter primarily arises

due to backscatter through Bragg resonance with ocean waves that

have wavelengths similar to the transmitted electromagnetic waves.

Longer waves become visible in radar images because they modulate

the sea clutter signals with three effects: hydrodynamic modulation,

tilt modulation, and shadowing (Nieto-Borge et al., 2004).

Hydrodynamic modulation transforms the energy of the smaller

ripples due to their interaction with longer waves. Tilt modulation

results from changes in the effective incidence angle along the slope

of the long waves. Shadowing involves the partial shadowing of the

sea surface by higher waves (Plant and Keller, 1990; Wetzel, 1990;

Lee et al., 1995; Nieto-Borge et al., 2004).

The numerical simulations show that when the wave field is

homogeneous in space and stationary in time, hydrodynamic

modulation is negligible (Nieto-Borge et al., 2004). Moreover,
FIGURE 1

The example of the pre-processed radar image from AI57 marine research mission of Shirshov Institute of Oceanology of Russian Academy of
Sciences. The position of a radar antenna is in (0,0) point.
FIGURE 2

The first stage of the sea surface synthesis. (A) White noise. (B) Fourier-transformed white noise.
frontiersin.org
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local wind velocity modulation is pre-filtered from the received

radar signal (Ludeno and Serafino, 2019).

Although it is proved that geometrical shadowing serves as a

first-order approximation of the backscattering phenomenon, while

tilt modulation have a relatively minor impact on the imaging

mechanism compared to geometric shadowing at grazing incidence

(Nieto-Borge et al., 2004; Wijaya and van Groesen, 2016), in this

study we consider both geometrical effects omitting only

hydrodynamic and local wind velocity modulations.

Thus, for simplification purposes, we propose that two main

effects that influence the X-band signal reflected from the sea

surface are geometrical shadowing (Gangeskar, 2014; Wijaya and

van Groesen, 2016; Ludeno and Serafino, 2019) and simplified tilt

modulation (Ludeno and Serafino, 2019).
Frontiers in Marine Science 07
As in (Wijaya and van Groesen, 2016), we believe it is important

to note that the following algorithm that transforms the synthetic

sea surface into the X-band radar image presented in this paper

pertain to “idealized” scenarios, specifically, linear seas that are not

influenced by local or global wind effects.

Simplifications mentioned above are based mainly on the fact

that we use synthetic radar images solely for pre-training but not

for the final ANN-based regression model. Hence, we do not

claim complete realism for the generated radar images, in

accordance with the elaborated papers (Nieto-Borge et al.,

2004 ; Wi j aya and van Groesen , 2016 ; Ludeno and

Serafino, 2019).

We further follow the transformation technique proposed by

(Nieto-Borge et al., 2004) with the subsequent modifications
FIGURE 4

The synthetic sea surface created by processing the white-noise image from Figure 2A. (A) Full image. (B) 200 m × 200 m area.
FIGURE 3

The second stage of the sea surface synthesis. (A) Two-dimensional spectral filter (U10 = 15 m/s) for white-noise Fourier components. (B) Filtered
magnitudes of white-noise Fourier components.
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(Gangeskar, 2014; Wijaya and van Groesen, 2016; Ludeno and

Serafino, 2019).

Briefly, in this study, the shadowing effect refers to the geometrical

optics approximation. In certain areas, the sea surface obstructs the

reflection of radar rays from adjacent areas, leading to the shadowing

of nearby waves. Consequently, the radar antenna receives no

meaningful signal from the shadowed parts of the sea surface

(Ludeno and Serafino, 2019). Obviously, this phenomenon depends

on the grazing angle that is determined by the relationship between the

radar antenna height Za and the distance x to the antenna (Figure 5).

In the real radar images, the shadowed area is not equal to zero,

so the data in these areas are modelled as Gaussian white noise

(Ludeno and Serafino, 2019).

For tilt modulation, the steepness of the observed surface slope

affects the power amplitude received by the radar antenna (Ludeno

and Serafino, 2019). Thus, for non-shadowed areas, the received back-

scattered signal is proportional to cosq, where q is the angle between

the radar ray~u and the vector~n normal to the wave surface (Figure 5).

Summarizing, we present the following algorithm that transforms

the synthetic sea surface into the X-band radar image. For every

synthetic sea surface:
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1. Distance mask: we determine the masked points – the

points with the distance to the radar more than 1920 m

or less than 300 m.

2. Shadowing: we determine the points that are not available

for a radar ray.

3. Tilt modulation: for every non-shadowed point we

determine the angle q between the radar ray and the

vector normal to the wave surface.

4. For every non-shadowed point the amplitude of the back-

scattered signal is cosq.
5. We compute the minimum and the maximum values of

the back-scattered ampli tude among the non-

shadowed points.

6. Normalization: we linearly transform the amplitude values

so that the new minimum value is 0 and the new maximum

value is 255.

7. Noise: for shadowed and masked points we set the

amplitude values as random numbers distributed

uniformly from 0 to 255.

8. We choose the half of the array that corresponds to the

downwind direction.
FIGURE 6

The synthetic X-band radar image. (A) Without the mask. (B) Masked.
FIGURE 5

Geometrical scheme of shadowing and tilt modulation effects based on (Ludeno and Serafino, 2019).
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The example of the resulting synthetic X-band radar image with

the size of 1024×2048 pixels is shown without the mask in Figure 6A

and with the mask in Figure 6B.
2.4 Dataset of synthetic images

To generate a set of synthetic images, we first generate 60 000

values of U10 speed distributed uniformly in the range from 3 m/s to

20 m/s. We include extremely low and extremely high wind speed

values to provide proper learning quality in comparison with the

real wind wave conditions. For fully-developed sea, SWH value is a

quadratic function of U10 (3) leading to a bigger share of lower

SWH values. The distributions of U10 and SWH are shown

in Figure 7.

After that, for every wind speed value we generate a

corresponding sea surface, as described in 2.2, and then convert it

to a synthetic radar image, according to 2.3. We compute the

grazing angles with the radar antenna height Za= 20 m. This

procedure results in 60 000 samples of synthetic radar

images (Table 1).
2.5 Data pre-processing

In this research, we apply convolutional neural networks

(CNNs). Consistent with standard practice, we linearly normalize

both input data and the target SWH values. Namely, for every pixel

px of the real and synthetic radar images, the normalized radar

image pixel pxnorm = px−127:5
255 . This procedure limits pixel values

between –0.5 and 0.5. We also adjust SWH to approximately have a

zero mean and a variance equal to one: SWHnorm = SWH−4:6
8:8 After

normalization, for the masked areas of the image (white areas in

Figure 6B), we set the zero value.

CNNs lack inherent rotation invariance, necessitating diverse

training data with varied spatial feature orientations (Chidester

et al., 2018). In this study, the orientation of spatial features may not

exhibit high diversity. Consequently, we employ two-dimensional

data augmentation for the real SeaVision and synthetic radar

semicircles, namely, random rotation with an angle ranging from
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−5° to 5°. This approach encourages the CNN-based model to

acquire rotation invariance through training on augmented data,

thereby enhancing the generalization ability of the CNN.
2.6 ANN models

In this study, we apply convolutional neural networks (CNNs),

i.e., parametric mappings where the model parameters are

optimized through sequential application of a fixed-size

convolutional kernel to two-dimensional input data (Rezvov

et al., 2022).

The high depth of CNNs is anticipated to enhance the

predictive output quality. However, the large number of layers

introduces training instability in the back-propagation algorithm,

leading to learning inefficiency due to the vanishing gradients. This

effect results from the accumulation of excessively small gradients

for model parameters. Consequently, the product of the gradient

vector and the learning rate coefficient tends toward zero, causing

the parameters to remain constant during each optimization step.

An effective approach to address the issue of learning instability

involves the incorporation of connections that bypass the

intermediate layers of the model. These skip connections serve to

diminish the likelihood of accumulating small gradients. A notable

example is the implementation of residual connections, wherein the

output of an intermediate layer is added to the output of a

subsequent level.

In this paper, we build two CNN architectures based on the

model for processing SeaVision radar images as it is described in

(Krinitskiy et al., 2023). The basic architecture is the modified

ResNet50 combining the advantages of deep CNNs and

residual connections.

The convolutional core of the modification adheres to the original

ResNet architecture, with the addition of sinusoidal positional

encoding of various wavelengths to enable the CNN to capture the

wavelengths peculiar to real SeaVision images (Krinitskiy et al., 2023).

Two-dimensional positional encoding introduces additional channels

with generated harmonic maps featuring various wavelengths and

directions. Specifically, there are cosine- and sine-based positional

encoding channels that vary in both horizontal and vertical
FIGURE 7

The statistical distribution of the synthetic radar dataset. (A) U10 wind speed. (B) SWH.
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directions. These maps are concatenated with the output of the

ResNet blocks so that the subsequent ResNet block processes

activation maps from the previous layers along with the positional

encoding channels. It is worth noting that for modified ResNet50,

positional encoding maps are injected into the activation maps after

each ResNet building block.

2.6.1 Unsupervised reconstruction model
The first architecture elaborated for this research is the

reconstruction CNN model with the structure similar to U-Net

(Ronneberger et al., 2015). U-Net is based on a typical contracting

network augmented with consecutive upsampling blocks. Hence, U-

Net architecture consists of two parts: the contracting path from the

input to the bottleneck, and the expansive path from the bottleneck

to the output. The upsampling blocks of the model contain a large

number of feature channels to effectively propagate context

information to higher resolution layers.

The main distinction and the principal concept of U-Net is the

presence of the specific skip connections that transmit activation

maps from the intermediate layers of the contracting path to the

intermediate layers of the expansive path. In other words, the high-

resolution features from the contracting path are added to the

upsampled output on the expansive path to facilitate localization.

Subsequently, a consecutive convolution layer is capable of learning

to generate a more precise output based on this information

(Ronneberger et al., 2015).

For this research, we develop a U-Net architecture with the

contracting path based on the convolutional core of modified
Frontiers in Marine Science 10
ResNet50 (the upper half of Figure 8). The input of the model is

supposed to be a two-dimensional array with 1024×2048 size. Four

skip connections and a bottleneck pass the multilevel features into

the expansive path of the model (the lower half of Figure 8). It leads

to the output with the input size. With the equal size of the input

and the output, the model architecture is aimed at unsupervised

reconstruction of the input array.

As Figure 8 shows, the expansive part of the model consists of

upsampling ResNet blocks with the additional upsampling layers if

necessary. On the expansive path, we coordinate the spatial size of

the block outputs with the outputs of the skip connections to

properly concatenate the tensors before the subsequent ResNet

block or layer. The number of channels for the concatenated

activation maps and the output size of the skip connections are

shown in Figure 8.

2.6.2 Regression model
The second architecture built for this study is the regression

CNN model designed to approximate the scalar target SWH value

through processing 1024×2048 radar images. Unlike the regression

model from (Krinitskiy et al., 2023) with the same input and output

objects, we base our model on the reconstruction architecture

described in 2.6.1 including the skip connections (see Figure 9).

As Figure 9 shows, our regression model consists of four

fundamental parts. The first part is the convolutional core of

modified ResNet50. We preserve four contracting paths to pass

the outputs of the intermediate layers to the downsampling blocks.

Every parallel downsampling block consists of a pooling layer, a
FIGURE 8

High-level architecture of the reconstruction CNN model based on modified ResNet50.
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convolutional layer, a pixel unshuffling layer and two consecutive

convolutions. The task of the downscaling part of the model is to

bring four activation maps of the skip connections to the same size.

In the third part of the architecture, the features from the previous

block are aggregated through channel concatenation. The

aggregated activation map is passed to the downsampling block

resulting in vector of size 64. The fully-connected subnet following

the aggregation part contains two sequential fully-connected layers

of the widths 64 and 8. The terminating layer is of the width 1 since

in this study, we approximate SWH scalar.
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2.7 Quality metrics

Various quality metrics are employed to assess and monitor the

learning process of the models. For the unsupervised reconstruction

model, the simplest quality metric utilized is the root mean-squared

error, denoted as RMSErec. This form of reconstruction error

quantifies the disparity between the input data and the data

obtained after the U-Net compresses and decompresses the input.

The RMSErecmetric provides an evaluation of the noise introduced to

the input as it passes through the bottleneck and the skip connections.
FIGURE 9

High-level architecture of the regression CNN model based on modified ResNet50 and feature aggregation.
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If we denote our reconstruction model as R and a batch of input

images as y, then an output batch is y∗ = R(y). We compute RMSErec
summarizing only by unmasked points to exclude non-meaningful

areas of radar images. The number of points in the input batch is N,

and the result is:

RMSErec =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Noi,j,k

(y∗i,j,k − yi,j,k)
2

s
: (6)

In (6),   yi,j,k and y∗i,j,k are the identical elements of the input and

the output tensors. We summarize the difference between the input

and the output point-by-point. The indices i, j and k denote points

in ranges of respective spatial dimensions and a batch size,

respectively, taking into account distance mask.

The inadequacy of RMSE in detecting visually altered defective

regions in images with consistent intensity values has been

demonstrated in (Bergmann et al., 2019). In this research, we adopt

a perceptual quality metric grounded in structural similarity, which

assesses the inter-dependencies among local image regions. Unlike

RMSE, which compares pixel values, structural similarity takes into

account contrast and structural information. The computation of the

structural similarity index measure (SSIM) is outlined as follows:

SSIM(y, y∗) =
(2mm∗ + C1)(2syy∗ + C2)

(m2 + m∗ 2 + C1)(s 2 + s∗ 2 + C2)
,

where µ is the pixel sample mean of y, µ∗ is the pixel sample

mean of y∗, s2 is the variance of y, s∗2 is the variance of y∗, syy∗ is

the cross-correlation of y and y∗. C1 and C2 are constant values

equal to 0.012 and 0.032, respectively.

In this paper, we compute the Structural Similarity Index

(SSIM) between two windows, each sized 128×128 pixels, applied

to both the input and the output images. The SSIM values range

between −1 and 1, where a higher SSIM signifies greater similarity.

In case of the regression model, only root mean-squared error

RMSESWH is utilized since the output of this CNN is a vector

containing significant wave height values with a length equal to the

batch size BS:

RMSESWH =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
BSo

BS

k=1

(SWH∗
k − SWHk)

2

s
:

where SWH is a target value measured by Spotter buoy (see 2.1)

or determined by the synthetic ocean surface (see 2.2), SWH∗ is the

output value of the regression model, and k denotes a dataset

element of a batch with the size BS.
2.8 Training and evaluation

The training process of artificial neural networks is known for

its sensitivity to various details, and the selection of a training

algorithm and hyperparameters plays a critical role in determining

the quality of the resulting model. Currently, the Adam optimizer

(Kingma and Ba, 2017) stands out as the most stable and widely

employed training algorithm, utilizing a momentum approach to

estimate lower-order moments of the loss function gradients. In our

study, we leverage the Adam optimization procedure.
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In the optimization algorithms, the batch size and the learning

rate hold particular significance. Due to the substantial dimensions

of SeaVision radar images, substantial variations in batch size were

impractical. Instead, we selected the largest feasible batch size for

our computer hardware (batch_size = 2) to mitigate noise in CNN

gradient estimates.

Adhering to best practices, we fine-tuned the learning rate

schedule not only to attain high quality in SWH regression but

also to enhance robust generalization skills. Generalization is

evaluated by scrutinizing the disparity between the quality

estimated on the training and validation subsets, where a small

gap signifies good generalization and a large gap indicates

poor generalization.

Aligned with recent research findings, we implemented the

specialized learning rate schedule (Ding, 2021; Loshchilov and

Hutter, 2017). This cyclical schedule encompasses a cosine-

shaped decrease in the learning rate throughout the training

process. We incorporate a multiplicative form of increase in the

simulated annealing period with each cosine cycle. We also employ

exponential decay of the simulated annealing magnitude with each

cosine cycle, utilizing the multiplicative form.

In this research, trainingconsistsof threeprincipal consecutive steps.

For all the steps, we use normalized values as it was described in 2.3.

On Step 1, we train the reconstruction model using the dataset

of synthetic images described in 2.4. The dataset comprising 60 000

synthetic radar images is randomly divided into two segments: a

training dataset (50 000 images) and a validation dataset (10

000 images).

In machine learning, it is customary to assess the performance

of a model by computing quality metrics on a validation subset

obtained through random sampling from the original set of labeled

examples. This methodology presupposes that the examples are

independent and identically distributed (i.i.d.). The random

partition ensures a uniform distribution of modeled surface wind

wave conditions across the datasets. Moreover, the distribution of

SWH values is similar for both datasets.

We train the reconstruction model using the mean-squared error

between an input and an output images summing only over unmasked

points. The length of training is 80 epochs. We change the first cosine

cycle from learning_rate = 7.5×10−5 to learning_rate = 1×10−8.

On Step 2, we train the regression model using the same dataset

of synthetic images described in 2.4. The number of images for

training and evaluation is the same as for Step 1. Nevertheless, we

change the random split of the dataset to prevent overfitting.

Step 2 consists of two stages: 21 and 22. For both stages of Step 2,

the input of the model is the masked radar image. We train the

regression model using the mean-squared error between an output

value and a target SWH.

For Stage 21, we initialize the weights of the convolutional modified

ResNet50 core and the skip connections with the weights from the pre-

trained reconstruction model as described for Step 1. After that, we

train only downsampling block, feature aggregation and fully-

connected layers. The convolutional core weights are frozen.

After 20 epochs, we start Stage 22, training the whole regression

model. Epoch 1 of Stage 22 is inintialized with the weights of the full

regression model after epoch 20 of Stage 21. The length of Stage 22
frontiersin.org

https://doi.org/10.3389/fmars.2024.1363135
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Rezvov et al. 10.3389/fmars.2024.1363135
training is 40 epochs. We change the cosine cycles from

learning_rate = 7.5×10−5 to learning_rate = 1×10−8.

On Step 3, we train the regression model using the dataset of

real SeaVision synthetic images described in 2.1.

In studies concerning the application of statistical models,

particularly ANNs, for the analysis of remote sensing data, it is

crucial to account for the auto-correlation inherent in the

observational time series dataset. Owing to the inherent evolution

of underlying physical phenomena, consecutive observations may

demonstrate substantial auto-correlation, thereby influencing the

accuracy of the model (Krinitskiy et al., 2023).

It is imperative to refrain from systematically incorporating

consecutive examples into the training and testing sets. In this

research, we tackle the challenge of strongly correlated successive

examples by adopting station-wise random sampling, a strategy

from (Krinitskiy et al., 2023). This approach avoids the systematic

sampling of successive examples into the training and validation

subsets, ensuring a reliable assessment of our model’s quality.

In other words, to prevent overfitting and potential data

leakage, we train, validate and test the model distinct stations. If

the station is included in the training dataset, it is excluded from the

validation and testing datasets.

Another significant challenge in statistical modeling is the problem

of covariate shift, which occurs when there is a degradation in model

performance during evaluation due to a discrepancy between the

distribution of the testing data and that of the training data. For an

accurate assessment of model quality, it is crucial that the testing and

validation datasets adhere to the same distribution as the training

dataset. In this study, we use a straightforward sampling strategy

designed to promote, though not ensure, alignment of the target

value distributions across the training, validation, and testing subsets.

This approach involves station-wise sampling that is stratified

according to mean SWH (Krinitskiy et al., 2023).

Step 3 consists of three stages: 31, 32 and 33. The input of the

model is the masked radar image. We train the regression model

using the mean-squared error between an output value and a target

Spotter buoy SWH.

For Stage 31, we initialize the weights of the full model with the

weights from the pre-trained regression model after Stage 22. Then,

we train only fully-connected block for 10 epochs. After that, on

Stage 32 we start training fully-connected block, feature aggregation

and downsampling block while the covolutional core weights are

frozen. After 40 epochs of Stage 32, we start Stage 33, training the

full regression model. The length of Stage 33 training is 20 epochs.

We change the cosine cycles from learning_rate= 7.5 × 10−5 to

learning_rate = 1 × 10−8 for stages 31 and 32, and from

learning_rate = 3.75×10−5 to learning_rate = 2×10−5 for stage 33.
3 Results

In this section, we present the results of training the SWH

estimation model on SeaVision radar imagery including pre-

training steps on synthetic radar images.

First, the unsupervised reconstruction training shows relatively

high (i.e., relatively good) Structural Similarity Index value SSIM =
Frontiers in Marine Science 13
0.503 on validation dataset. This result means that the reconstruction

model is able to extract the multi-level features from the synthetic radar

images. The convolutional core passes the extracted and processed

features through the skip connections. This detail of the architecture

allows subsequent use of Step 1 weights for Step 2.

The regression model trained on the synthetic dataset (Step 2)

demonstrates root mean-squared values RMSESWH= 0.047 m after

Stage 21 and RMSESWH= 0.035 m after Stage 22 on validation

dataset. The monotonous decrease in RMSE value proves the

necessity of gradual unfreezing of pre-trained weights for smooth

transition from the previous step. These values of RMSESWH are too

good to be true in case of real ocean data, however, one may

consider them as the measure of success in case of synthetic dataset.

These low (i.e., good) values of RMSESWH indicate that the neural

network is capable of handling the variety of imagery similar to

radar-captured sea clutter images.

Finally, the regression model trained on the real dataset (Step 3)

shows root mean-squared error values RMSESWH= 0.442 m after

Stage 31, RMSESWH= 0.188 m after Stage 32 and RMSESWH= 0.204

m after Stage 33 on validation dataset.

The results are summarized in Table 3.

We compare the final results in our study with the simple

modified ResNet50 without pre-training (Krinitskiy et al., 2023). As

one may see, pre-training with synthetic data and architecture

modifications proposed in our study significantly improve the

quality of SWH approximation in terms of root mean-squared

error from RMSESWH= 0.48 m reported in (Krinitskiy et al., 2023) to

RMSESWH= 0.204 m.
4 Discussion

This study initially proposes the efficacy of neural-network

regression methods for determining SWH from sea clutter

imagery acquired by a navigation X-band radar. However, in situ

data collection is both costly and limited in its ability to offer a

diverse range of ocean wave conditions.

The synthesis of radar images effectively addresses the issue of

insufficient data. Moreover, the generation of diverse synthetic sea

surface conditions allows for simulating radar images with specific
TABLE 3 Results.

Training stage Quality metric

Step 1 SSIM=0.503

Step 2

Stage 21 RMSE=0.047 m

Stage 22 RMSE=0.035 m

Step 3

Stage 31 RMSE=0.442 m

Stage 32 RMSE=0.188 m

Stage 33 RMSE=0.204 m
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hyperparameters essential for the research. Synthetic images contribute

to the expansion of the dataset, rendering it in a more uniformmanner.

We present an enhanced approach for generating a synthetic

sea surface and synthetic radar images under the condition of a

fully-developed sea. We suppose this method promising as it allows

for the utilization of various power spectra of wind waves. The

resulting images exhibit realism for visual perception.

Recent studies demonstrate proficiency in the task of SWH

approximation, particularly in cases of low wind speed. To enhance

CNN generalization capabilities, we developed two different

architectures capable of proper preliminary training to conduct

experiments involving the unsupervised reconstruction and the

regression model on an elaborated synthetic dataset.

The results of the unsupervised reconstruction illustrate that the

U-Net-like model with skip connections and ResNet blocks is

capable of capturing the harmonic structure of wind waves.

Our findings indicate that the reconstructionmodel reproduces the

fine structure of ocean wind waves. Despite the fact that the MSE

training loss, which is sensitive to point-by-point distortions, tends to

smooth images and eliminate small-scale features, SSIM quality metric

is relatively high. At the same time, the pre-trained regression model

shows good results for both synthetic and real datasets.

It is precisely the small-scale structure of a radar image that

encompasses crucial information about wave lengths and heights.

Consequently, we suppose that the convolutional core of the

reconstruction and regression models does not lose wave

information and successfully extracts multi-scale features from

the radar images. As a result, the pre-trained model shows better

SWH approximation quality than the simple modified ResNet50

without pre-training (Krinitskiy et al., 2023).
5 Conclusions and outlook

In this study, we demonstrate the capability of a convolutional

neural network (CNN) proposed in this paper of approximating

significant wave height (SWH) with the quality superior to the one

reported in recent studies exploiting CNNs for this task (Krinitskiy

et al., 2023). The superiority is achieved through the preliminary

training of our CNN within the subsequent stages of (a)

unsupervised autoencoder-like training and (b) further supervised

pre-training with a synthetic target similar to the real SWH. We

demonstrate significant improvement of the SWH estimation quality

in terms of root mean-squared error, compared to the results reported

recently in a similar CNN-involving setting (Krinitskiy et al., 2023).

Synthetic dataset simulating radar-acquired sea clutter imagery

with corresponding SWH values that we used in our pre-training may

provide additional improvements for an utilized ANN due to the

control over the distribution of both wind speed and corresponding

SWH values.

Nevertheless, the application of synthetic images has a number

of restrictions for SWH regression problem. The synthetic dataset

based on fully developed sea assumption is not able to reproduce a

variety of different real conditions, such as rain or obstacles on sea

surface. Thus, the synthetic images do not exhibit the same

statistical and physics-reflecting properties as those in the real
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dataset. Moreover, the proposed algorithm is not applicable

fundamentally for generating sea surface under low wind

conditions. Such conditions require taking into account additional

physical phenomena that distort the wave spectrum.

In the future, we plan to add more real radar images collected

from different locations into the ANN to further improve the

regression model quality. Different advanced methods of synthetic

dataset generation are also to be explored. Furthermore, we should

examine various ANN architectures for SWH regression problem.
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