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The shallow sea underwater acoustic channel exhibits a significant sparse

multipath structure. The temporally multiple sparse Bayesian learning (TMSBL)

algorithm can effectively estimate this sparse multipath channel. However, the

complexity of the algorithm is high, the signal-to-noise ratio (SNR) of shallow-

sea underwater acoustic communication is low, and the estimation performance

of the TMSBL algorithm is greatly affected by noise. To address this problem, an

improved TMSBL underwater acoustic channel estimation method based on a

dictionary learning noise reduction algorithm is proposed. Firstly, the K-Singular

Value Decomposition (K-SVD) dictionary learning method is used to reduce the

noise of the received pilot matrix, reducing the influence of noise on the signal.

Then, the Generalized Orthogonal Matching Pursuit (GOMP) channel estimation

method is combined to obtain a priori information such as the perceptual matrix

and hyperparameter matrix for TMSBL channel estimation; and the noise

variance is obtained by using the null subcarrier calculation instead of

iteratively updating the noise variance in the TMSBL, to improve the estimation

accuracy and reduce the algorithmic complexity. Finally, the TMSBL channel

estimation method is used to estimate the underwater acoustic channels of

different symbols jointly. The simulation results show that the normalized mean

square error of the channel estimation of the improved TMSBL method is

reduced by about 92.2% compared with the TMSBL algorithm, obtaining higher

estimation accuracy; running time is reduced by about 45.6%, and there is also

better performance in terms of the running speed, which provides a reference for

underwater acoustic channel estimation.
KEYWORDS

underwater acoustic channel estimation, temporally multiple sparse Bayesian learning,
K-SVD dictionary learning, underwater sparse channel estimation, orthogonal
frequency division multiplexing
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1 Introduction

Underwater acoustic communication is a crucial means of

transmitting information in the ocean due to its high reliability

and data transmission rates (Xu et al., 2016; Xing et al., 2021b;

Zhang et al., 2021; Zhang et al., 2024). The use of Orthogonal

Frequency Division Multiplexing (OFDM) technology is

widespread in high-speed underwater acoustic communication

due to its effectiveness against frequency-selective fading, efficient

band utilization, robust resistance to multipath propagation, and

straightforward implementation of channel equalization (Jia et al.,

2022). The underwater acoustic channel is considered one of the

most complex channels due to its multipath, time-varying,

frequency-varying, and null-varying characteristics (Xing et al.,

2022; Xing et al., 2023). In the underwater acoustic channel of

shallow seas, reflections and scattering from the seafloor and sea

surface cause significant delay extension and multipath effects.

These effects result in a sparse multipath structure at the

receiving end (Tong et al., 2022; Yang, 2023; Zhang, 2023). The

multipath structure is formed at the receiving end. The shallow sea

underwater acoustic channel’s complex and variable nature

significantly impacts the OFDM communication system (Yin

et al., 2021). To ensure communication quality, it is necessary to

estimate the channel state at the receiving end. The key

characteristic parameters obtained through channel estimation are

used to adjust the signal processing method, which serves as a

crucial basis for achieving channel matching and improving the

quality of signal recovery. This is of great importance in improving

the performance of underwater acoustic OFDM communications in

shallow sea environments.

The underwater acoustic channel exhibits significant sparse

characteristics. However, traditional channel estimation algorithms,

such as Least Square (LS) and Minimum Mean Square Error

(MMSE), fail to leverage the sparsity of the underwater acoustic

channel, necessitating a large number of pilot signals for accurate

channel estimation, resulting in serious occupation of spectral

resources (Meng and Liu, 2023). To achieve accurate channel

estimation that exploits the sparsity of the channel, compressed

sensing techniques are employed for sparse channel estimation

with a large number of zero taps in the time domain response (Wu

and Tong, 2017; Jiang et al., 2021; Meng and Liu, 2023). Matching

Pursuit (MP) is a greedy iterative algorithm widely employed in

compressed sensing for sparse channel estimation. It exhibits higher

estimation accuracy compared to methods such as LS and MMSE

(Cotter and Rao, 2002). Another category of compressed sensing

reconstruction algorithms, including Least Absolute Shrinkage And

Selection Operator (LASSO) (Tibshirani, 1996) and Basis Pursuit

(BP) (Chen et al., 2001), constitutes convex optimization tracking

algorithms grounded in paradigm constraints. They seek the

approximation of sparse signals by converting a non-convex

problem into a solvable convex problem. These algorithms, in

comparison with traditional methods, harness the sparse

characteristics of the underwater acoustic channel, leading to

higher estimation accuracy. However, their performance is

significantly influenced by sparsity selection, and their

computational complexity is high, rendering practical applications
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challenging. To enhance the channel estimation technique, we

leverage the priori knowledge of the sparse signal. Introducing the

sparse Bayesian learning class algorithm, based on the Bayesian

criterion, into the sparse channel estimation problem (Chen et al.,

2020; Lyu et al., 2021) yields improved estimation performance and

has been extensively researched.

Algorithms for sparse signal reconstruction using sparse

Bayesian learning have been extensively researched in recent

years (Wipf and Rao, 2004; Wipf and Rao, 2007; Zhang and Rao,

2011). Wipf and Rao, 2004 (Wipf and Rao, 2004) introduced the

Sparse Bayesian Learning (SBL) algorithm for sparse signal

reconstruction in single-measurement models; Subsequently, in

2007 (Wipf and Rao, 2007), they extended it to multi-

measurement models and derived the Multiple Sparse Bayesian

Learning (MSBL) algorithm for sparse signal reconstruction. In

(Zhang and Rao, 2011) the Temporal Sparse Bayesian Learning

(TSBL) algorithm and its extension, the TMSBL algorithm based on

the MSBL algorithm, are derived. Among these algorithms, the

TMSBL algorithm not only leverages the channel sparsity property

but also explores the correlation between channels. It considers the

priori distribution of the channel and incorporates space-time

information, resulting in high channel estimation accuracy.

Consequently, the TMSBL algorithm has found widespread use in

underwater channel estimation (Qiao et al., 2018; Hong et al., 2022).

Consequently, the TMSBL algorithm finds extensive application in

underwater channel estimation. In (Qiao et al., 2018), the TMSBL

algorithm is incorporated into the channel estimation of slow time-

varying underwater acoustic OFDM communication systems.

Correlation is utilized to jointly estimate the channels of several

consecutive blocks. This approach achieves optimal performance in

strongly time-correlated channels and maintains robustness in

weakly time-correlated channels. However, it is more sensitive to

noise, which leads to degraded estimation accuracy and increased

computational complexity in low signal-to-noise ratio scenarios. In

(Hong et al., 2022), singular value decomposition noise reduction is

performed to address the above challenges. Using LS channel

estimation to obtain a priori information such as perception

matrix and hyperparameter matrix of TMSBL for high-precision

and low-complexity underwater acoustic OFDM communication.

However, due to the increased noise sensitivity of the LS channel

estimation method and the limited effectiveness of the singular

value decomposition for noise reduction, the accuracy of the

channel estimation is reduced under low signal-to-noise

ratio conditions.

Dictionary learning algorithms provide effective noise reduction

and are widely used in image denoising, active sonar target

classification, and weak signal detection in underwater acoustic

(Wang et al., [[NoYear]]; Zhu et al., 2020; Xing et al., 2021a). It is

common for existing channel estimation methods to incorrectly

identify noise as channel tap coefficients in environments with a low

signal-to-noise ratio (SNR). This reduces the accuracy of channel

estimation and increases the computational complexity. To address

the limitations of the previously mentioned channel estimation

methods and to account for the sparse multipath structure of the

signal in the shallow sea underwater acoustic channel, we utilize the

dictionary learning algorithm for TMSBL underwater acoustic
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channel estimation. As a result, we propose an enhanced TMSBL

underwater acoustic channel estimation method based on the

dictionary learning noise reduction algorithm. Initially, the

enhanced K-SVD dictionary learning algorithm is employed to

reduce the noise of the received pilot matrix, thereby enhancing the

accuracy of channel estimation under low signal-to-noise ratio

conditions. Subsequently, the initialization parameter matrix and

perception matrix of TMSBL are acquired by integrating the GOMP

channel estimation method. This integration alleviates the

limitation of the TMSBL method, where noise is erroneously

estimated as a channel tapping coefficient. Lastly, the null

subcarrier of the OFDM system is utilized to obtain a more

precise noise variance, replacing the step of updating the noise

variance in TMSBL. This modification reduces the complexity of

the TMSBL algorithm and enhances estimation accuracy. The

paper’s contributions can be summarized as follows.
Fron
1. The K-SVD dictionary learning algorithm is employed in

the domain of underwater acoustic communication to

denoise the received signal pilot matrix, thereby

mitigating the impact of noise on channel estimation

accuracy and enhancing the performance of underwater

acoustic OFDM communication systems.

2. The GOMP channel estimation method is employed to

derive the time-domain underwater acoustic channel

impulse response and the initialization and perception

matrices for the TMSBL algorithm, thereby reducing the

number of iterations and the computational complexity of

the TMSBL algorithm. Furthermore, the incorporation of

the priori knowledge addresses the limitation of the TMSBL

method, which is prone to misestimating noise as a channel

tap coefficient. This enhances the overall performance of

channel estimation.
The rest of the article is organized as follows. In Section 2, the

received signal model and the TMSBL channel estimation method

are introduced. Section 3 presents enhanced TMSBL channel

estimation methodologies, including a K-SVD dictionary

learning-based noise reduction technique and a method for

obtaining TMSBL priori knowledge using the GOMP algorithm.

The efficacy of the proposed algorithm is substantiated through

simulations in Section 4. Further validation of the algorithm using

sea trial experimental data is provided in Section 5, demonstrating

its effectiveness in real marine environments. The paper concludes

in Section 6.
2 TMSBL-based underwater acoustic
channel estimation method

2.1 Received signal model

In underwater acoustic communications in shallow seas, signal

propagation is significantly affected by reflections, diffraction, and

scattering from both the sea surface and seafloor. This results in a
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complex multipath structure of the underwater acoustic channel.

The underwater acoustic channel exhibits a significant sparse

characteristic due to signal energy absorption by seawater during

most of the multipath propagation. The mathematical expression

for the channel impact response of the underwater acoustic time-

varying channel is given by (Cheng and Wang, 2022).

h(t, t) =o
L

i=1
hi(t)d

�
t − ti(t)

�
(1)

where h(t) is the channel impulse response at time t, and L is the

multipath number, the hi(t) and ti(t) are denoted as the gain and

delay of the ith path at time t, respectively.

Consider an OFDM system with N subcarriers, L pilots, and

channel coherence time significantly exceeding the OFDM symbol

period. If the impulse response of the channel remains time-

invariant within one OFDM symbol period, (Equation 1) can be

expressed as follows:

h(t) =o
L

i=1
hid (t − ti) (2)

Assuming the cyclic prefix of OFDM symbols exceeds the

maximum multipath delay of the channel, the frequency domain

expression for the OFDM communication system is:

y = XFh + v (3)

where y ∈ CN�1 is the received signal, X ∈ CN�N is the

diagonalization matrix with diagonal elements representing the

transmitted signals. F ∈ CN�M is the DFT matrix, and h ∈ CM�1

is the time domain channel impulse response. The v follows CN
(0, lΙN ) of Gaussian white noise. From the received signal y out of
the pilot signal, the received model of the pilot signal is:

yp = XpFph + vp (4)

where yp ∈ Cp�1 is the received pilot signal, Xp ∈ Cp�p is the

diagonalization matrix with diagonal elements representing the

known pilot signals. Fp ∈ Cp�M is the corresponding DFT matrix

at the pilot position. The system model described in (Equation 4) is

a single-measurement model. A multi-measurement model is

considered: several different OFDM symbols are modeled with

the following expressions:

Yp = XpFpH + Vp = FpH + Vp (5)

Among them. Yp = ½yp,1, yp,2,…, yp,L� ∈ Cp�L represents the

received pilot matrix of L OFDM symbols, and Fp ∈ Cp�M is the

perception matrix, H = ½h1, h2,…, hL� ∈ CM�L.
2.2 TMSBL underwater acoustic
channel estimation

The article uses the TMSBL algorithm (Qiao et al., 2018), using

temporal correlation to jointly estimate (Equation 5) of H the

estimation reconstruction problem. Firstly, the priori probability

of each Hi is modeled as:
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p(H i; gi,Bi) eN(0, giBi),       i = 1,…,M (6)

where Hi is the ith row of H, i.e., the number of channels

tapping coefficients for different OFDM symbols at the same

moment; gi is the nonnegative hyperparameter matrix that controls

the sparsity of each row in H. When gi = 0, H i = 0; Bi is a positive

definite matrix, which represents the temporal correlation structure

among the elements within Hi and can be estimated using the

TMSBL algorithm for the positive definite matrix B. (Equation 6)

can be written as:

p(H i;G ,Bi) =
YM
i=1

p(H i; gi,Bi) (7)

where G is the hyperparameter matrix G = diag(g ) = diag(½g1,
g2,…, gM�T ).

Hi, Obeying the mean Gaussian probability distribution, its

posterior probability can be written as:

p
�
hljyp,l ;G

�
∼ N(ml ,S),       l = 1, 2,…, L (8)

where the mean and covariance can be expressed as:

∑ = s−2FH
p Fp + G (r)−1

� �−1 (9)

M = ½m1,m2,…, mL� = s−2SFH
p Yp (10)

Of these, ml and M are respectively the estimated values of Hi

andH. G (r) is the estimated value of the G update matrix for the first

r iteration of the Expectation Maximization (EM) algorithm. The

hyperparameters are estimated using the EM algorithm. The E-step

update rule of the EM algorithm is given in (Equations 9, 10). The

M-step update rule is given in:

g i =
1
L MiB

−1MH
i + ∑(i, i) (11)

B = 1
Mo

M

i=1

S(i,i)
g i

 !
B + 1

Mo
M

i=1

HH
i Hi

g i
(12)

s 2 = 1
pL ‖Yp −FpH ‖2F + s 2

p Tr
�
FpGFH

p (s 2I +FpGFH
p )

−1
�
(13)

where ‖ � ‖2F denotes the quadratic of the F-parameter of the

vector Tr( � ) is the trace of the matrix. The joint estimation of the

channel impulse response after the iteration of the EM algorithm is

completed Ĥ = M.

(Equation 13) is the updated formula for the noise variance,

which is calculated using the null subcarriers of the OFDM system:

s 2 = E½ Ynj j2� (14)

where Yn is the frequency domain null subcarrier. Using

(Equation 14) to obtain a more accurate noise variance, a more

accurate channel estimation can be obtained. This reduces the

influence of the noise variance by the TMSBL input parameters

such as the number of iterations, the threshold, and the received

frequency-conducting matrix. At the same time, it can reduce the
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TMSBL algorithm for the s2 update step in the TMSBL algorithm,

reducing the complexity of the algorithm.
3 Improved TMSBL channel
estimation method

The conventional TMSBL channel estimation method is

susceptible to misidentifying noise as channel tapping coefficients

in low SNR conditions of underwater acoustic channels, resulting in

reduced channel estimation accuracy. Simultaneously, the increase

in channel length leads to heightened computational complexity.

Furthermore, the TMSBL algorithm inadequately utilizes the

characteristics of the underwater acoustic channel for selecting

the initial parameters of the EM algorithm, leading to excessive

iterations and slower convergence in computation.

Aiming at the limitations of the traditional TMSBL algorithm,

the K-SVD dictionary learning algorithm is used on the receiver

side to perform noise reduction and reconstruction of the received

pilot matrix Yp, and obtains the noise-reduced receiver pilot matrix

Y
0
p, enhancing channel estimation accuracy under low SNR

conditions. Following this, the GOMP algorithm is utilized to

estimate the underwater acoustic channel, acquiring a priori

knowledge for the TMSBL algorithm. This knowledge involves

removing invalid atoms and smaller hyperparameters from the

dictionary. Finally, the TMSBL algorithm, combined with the a

priori knowledge from the GOMP algorithm, conducts joint

channel estimation for different OFDM symbols. The block

diagram of the receiver system based on the improved TMSBL

channel estimation method is depicted in Figure 1.
3.1 K-SVD-based noise reduction of the
received pilot matrix

According to the theory of sparse decomposition, Yp can be

decomposed into Yp = XpFpH + Vp = A(Xs + Xn). Where A ∈
Cp�J is the redundant dictionary matrix, Xs and Xn are the sparse

coefficient matrices corresponding to XpFpH and Vp, respectively.

As the signal is sparse, whereas the noise is not sparse, and the

coefficient values are generally very small, existing only in a finite

number of non-zero coefficients, the approximated signal obtained

by the linear combination of these sparse counterparts of the

atoms contains the vast majority of the information about the

signal, while the vast majority of the noise is discarded, thus

realizing the purpose of noise cancellation. Let X = Xs + Xn, then

Yp = AX. Where X ∈ CJ�L is the sparse coefficient matrix. To

achieve the sparse decomposition of the signal, a suitable dictionary

needs to be constructed. The dictionary learning algorithm is

employed to construct a suitable redundant dictionary to enhance

signal reconstruction.

The K-SVD dictionary learning algorithm is a new dictionary

learning algorithm proposed by Aharon and Elad et al (Aharon

et al., 2006). The primary concept behind the K-SVD algorithm

involves updating a set of atoms in the dictionary along with their
frontiersin.org
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sparse coefficients simultaneously. Through iterations of updating a

set of atoms within the dictionary, if, when updating any atom, the

remaining atoms remain unchanged, the dictionary is then updated

with the sparse coefficients. ai with no change in the remaining

atoms, the ai new sparse coefficients will be obtained after the

update Xi. When the error reaches the threshold, the whole

dictionary post-sparse matrix is updated. Its solution model is:

   min
A, xif gJi=1o

J

i=1
‖Yp − AX ‖2F   s : t :  ‖ xi ‖  0 ≤ k,   1 ≤ i ≤ J (15)

where ‖Yp − AX ‖2F = ‖Yp −oJ
i=1aix

i
T ‖2F = ‖ (Yp −oi≠Kaix

i
T ) − aKx

K
T ‖2F .

ai denotes the ith atom in the redundant dictionary A, and xiT
denotes the ith row vector of the sparse coefficient matrix X. aK is

the updated atom, and xKT is the sparse solution corresponding to

the updated atom. Then the error matrix of the signal is:

EK = Yp −o
i≠K

aix
i
T (16)

where EK is the error matrix of the signal. At this point the

solution model can be described as:

o
aK ,xKT

‖EK − aKx
K
T‖2

F (17)

To avoid the loss of sparsity in the sparse solution, the EK in the

corresponding xKT non-zero positions is extracted to obtain a new

E
0
K , the corresponding sparse coefficient vector is x

K
T
0, then (17) can

be converted to:

o
aK ,xKT

‖E
0

K − aKx
K
T
0 ‖2F (18)

Then the singular value decomposition algorithm is used to E
0
K

solving:

E
0
K = U∑VT (19)

where U is the left singular matrices, take its first column as the

update atom, i.e., aK = U(�, 1). V is the right singular matrix, take its

first row with the first singular value as the xKT } = S(1, 1)VT (1, �).
Then the corresponding update is obtained as xKT , i.e., by updating
each atom of the redundant dictionary in turn, the optimal sparse
Frontiers in Marine Science 05
solution corresponding to each atom can be obtained. When all the

atoms are updated, the updated dictionary and the optimal sparse

coefficient matrix are obtained.

The GOMP algorithm is employed to achieve a sparse

representation of the received pilot matrix, yielding the sparse

coefficient matrix. Following this, the K-SVD dictionary learning

algorithm is applied to mitigate the noise present in the received

signal, resulting in the acquisition of the noise-reduced received

pilot matrix Y
0

p . The specific noise reduction process is shown

in Figure 2.
3.2 A priori knowledge acquisition based
on GOMP channel estimation

Obtaining the time-domain shock response of the underwater

acoustic channel using GOMP channel estimation algorithm

hGOMP. To obtain the a priori knowledge of the TMSBL, the

initial parameters of the EM algorithm are chosen based on the

characteristics of the underwater acoustic channel, effectively

reducing the algorithm’s complexity.

Time-domain impact response of underwater acoustic channel

obtained using GOMP channel estimation algorithm.

hGOMP =  argmin
 h  ‖Y ′

p −Fp,Li
hi ‖ (20)

where Fp,Li
is the perceptual matrix corresponding to the set of

indexes after the ith update of atoms, and hi is the channel estimate

after the ith iteration.

Set the average energy superposition function Q of the channel

to be (Hong et al., 2022):

Q = 1
Lo

L

i=1
hGOMPi (21)

Among them. hGOMPi is the ith column of hGOMP, i.e., the

channel time-domain impulse response of the ith OFDM symbol.

Set the threshold as TQ = amax(Q) where a is the energy

coefficient, determined based on the characteristics of the

underwater acoustic channel and considering the computational

complexity. Compare the channel average energy superposition

function Q and the threshold TQ of the channel:
FIGURE 1

Block diagram of the receiver system based on the improved TMSBL channel estimation method.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1362416
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Xing et al. 10.3389/fmars.2024.1362416
WGOMP(i) =
1,          Q(i) ≥ TQ

0,          Q(i) < TQ

      i = 1, 2,…,M :

(
(22)

whereWGOMP is the hyperparameter vector of TMSBL. When the

channel average energy superposition function Q is greater than the

threshold, indicating that, at this time, the hyperparameter control

channel impulse response is the channel tapping coefficient, WGOMP

= 1; on the contrary, it is considered that the hyperparameter is too

small and its control channel impulse response probability is the

noise, the WGOMP = 0.

Define the initial hyperparameter matrix as G = diag(WGOMP),

whose diagonal elements are hyperparameter vectors WGOMP. Take

the positions G whose diagonal elements are equal to zero as the

indexed set s and eliminate the atoms corresponding to s in the

dictionary matrixFp to obtain the initialized dictionary matrix F
0

p

of the improved TMSBL algorithm.

Finally, the noise-canceled pilot receiver matrix Y
0

p , the initial

hyperparameter matrix G, and the initialized dictionary matrix F
0

p

are substituted into the TMSBL channel estimation method for

underwater acoustic channel estimation.
4 Simulation results and analysis

The simulation to validate the performance of the proposed

algorithm is conducted using the implementation of an underwater

acoustic OFDM communication system. An OFDM symbol

comprises 1024 subcarriers, with 256 designated as frequency-
Frontiers in Marine Science 06
conducting subcarriers (utilizing a comb-conducting structure), 30

as null subcarriers, and 738 as data subcarriers. Sixty-five OFDM

symbols are transmitted in each frame, and the signal is modulated

using 16QAM. The specific OFDM parameters are configured as

presented in Table 1.

The simulated channel is generated using the BELLHOP

underwater acoustic channel model to obtain the underwater

acoustic channel impulse response. The sound velocity profile of

the real marine environment, as experimented in the Yellow Sea in

2013, is depicted in Figure 3. This sound velocity profile is imported

into BELLHOP, setting the sound source depth to 10m, the

hydrophone depth to 9m, and the distance between the two to

be 2000m. The seafloor is modeled as an elastic seafloor with

seawater density of 1.5g/cm³, seafloor absorption of 0.5dB, and

the resulting channel impulse response is shown in Figure 4 as

obtained through simulation. The seabed absorption is 0.5dB,

and the sound line grazing angle is [-35°, 35°], leading to

the channel impulse response displayed in Figure 4, obtained

through simulation.

In order to measure the estimation accuracy of the proposed

algorithm, the normalised mean square error (NMSE) of the

channel estimation is defined as:

NMSE = (o
L−1

i=0
‖ bhi − h ‖2F = ‖ h ‖2F )=L (23)

where ĥi denotes the channel estimate of the ith OFDM symbol,

h is the true OFDM underwater acoustic channel impulse response,

and L is the number of OFDM symbols.
FIGURE 2

Flowchart of KSVD dictionary learning algorithm for noise reduction.
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The primary simulated comparison algorithms include LS,

GOMP, TMSBL, and the enhanced TMSBL with the LS priori

knowledge acquisition (LS-TMSBL) (Hong et al., 2022). The

simulation is divided into two main aspects: firstly, the comparison

of the normalized mean square error of the channel estimation to

verify the performance of the channel estimation method; secondly,

the comparison of the time used for the channel estimation to verify

the complexity of the channel estimation method.
4.1 Simulation results and
performance analysis

The proposed algorithm is described as KSVD-GOMP-TMSBL

algorithm for simplicity of expression. The main comparison

algorithms for the simulation are LS, GOMP, TMSBL, and LS-

TMSBL methods, setting the maximum number of iterations rmax =

5000 and the error threshold is thresh = 1� 10−6.
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Figure 5 displays the normalized mean square error plots for

channel estimation using LS, GOMP, TMSBL, LS-TMSBL, and

KSVD-GOMP-TMSBL algorithms. The received pilot matrix was

denoised using the K-SVD dictionary learning method. The energy

coefficient a is set to 0.05, and GOMP sparsity is fixed at 30. It can

be observed from Figure 5 that the LS algorithm, devoid of channel

sparsity utilization, exhibits poor estimation performance. The

GOMP algorithm slightly outperforms the LS algorithm.

The TMSBL algorithm, capitalizing on both the sparse nature of

the channel and the temporal correlation between different symbols,

demonstrates superior performance in channel estimation. The LS-

TMSBL algorithm, incorporating the LS algorithm to acquire a

priori knowledge of the TMSBL algorithm and influenced by the

energy coefficient, exhibits performance slightly lower than the

TMSBL algorithm. The KSVD-GOMP-TMSBL algorithm,

leveraging the K-SVD dictionary learning algorithm for noise

reduction, GOMP to obtain a priori knowledge of the TMSBL,

and null subcarriers to determine noise variance, demonstrates

improved performance compared to the comparison algorithms.

Figure 6 displays the normalized mean square error plots for

channel estimation using LS, GOMP, TMSBL, LS-TMSBL, and

KSVD-GOMP-TMSBL algorithms. No denoising was applied to

the received pilot matrix. The energy coefficient a is set to 0.05,

and GOMP sparsity is fixed at 30. It is evident from Figure 6

that, without noise reduction, the LS algorithm is more

susceptible to noise, leading to a degradation in the performance

of the LS-TMSBL algorithm. In contrast, the TMSBL algorithm

and the KSVD-GOMP-TMSBL algorithm are relatively less

affected by noise. The KSVD-GOMP-TMSBL algorithm improve

its performance by obtaining the null subcarrier through

noise variance.

Overall, the KSVD-GOMP-TMSBL algorithm exhibits

improved channel estimation performance. The use of the K-SVD

dictionary learning algorithm for noise reduction on the received

pilot matrix enables the algorithm to achieve accurate estimation
TABLE 1 OFDM system parameter settings.

parameters numerical

No. of subcarriers (number) 1024

Sampling frequency (kHz) 10

Number of comb pilots 256

Number of empty
subcarriers (number)

30

OFDM symbol duration (ms) 102.4

Cyclic prefix duration (ms) 25.6

Number of symbols 65

mapping method 16QAM

Training symbolic numbers 1
FIGURE 3

Velocity of acoustic profile.
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results even at low SNR. The algorithm’s performance is further

enhanced by obtaining precise noise variance through null

subcarriers instead of iteratively updating the noise variance.

Additionally, the algorithm demonstrates some improvement in

estimation performance even without noise reduction processing,

showcasing its ability to mitigate certain noise interferences. The

factors influencing the KSVD-GOMP-TMSBL algorithm are

subsequently analyzed from various perspectives.

First, discuss the impact of the dictionary learning noise

reduction method on the algorithm’s performance. Figure 7

shows the lofar plot (left) of the received pilot matrix at an SNR

of -10dB and the lofar plot (right) of the received pilot matrix after

noise reduction using dictionary learning. It is clear that the lofar

plots are significantly clearer after noise reduction. The SNR of the

received pilot matrix before noise reduction is -10.28dB, and after
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noise reduction, it improves to 2.36dB. This demonstrates the

superior noise reduction effect of the dictionary learning

algorithm on the received matrix.

In Figure 8, compare the effectiveness of noise reduction

between the dictionary learning algorithm and the singular value

decomposition (SVD) noise reduction method. The figure

demonstrates the impact of two noise reduction methods on the

performance of both the TMSBL and GOMP-TMSBL algorithms.

From Figure 8, the dictionary learning noise reduction method

significantly improves channel estimation in both algorithms

compared to the singular value decomposition method. For the

GOMP-TMSBL algorithm, the NMSE of channel estimation under

the dictionary learning noise reduction method is 0.0566,

representing an almost tenfold decrease compared to the singular

value decomposition noise reduction method. This demonstrates
FIGURE 5

Channel estimation error with K-SVD dictionary learning noise reduction.
FIGURE 4

Channel impulse response.
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that the dictionary learning noise reduction method is highly

effective in noise reduction.

Figure 9 compares the channel estimation error of the KSVD-

GOMP-TMSBL algorithm with other comparison algorithms,

without noise reduction processing, to investigate the impact of

dictionary learning noise reduction algorithms on the performance

of channel estimation methods. As shown in Figure 9, the

estimation error of the GOMP-TMSBL algorithm is 6.616, while

the estimation error of the KSVD-GOMP-TMSBL algorithm is
Frontiers in Marine Science 09
0.5973 at a signal-to-noise ratio of -10 dB. The estimation error of

the KSVD-GOMP-TMSBL algorithm is reduced by approximately

91.1% compared to the GOMP-TMSBL algorithm. This indicates

that the performance of the channel estimation algorithm is

improved by performing noise reduction on the received pilot

matrix using the dictionary learning algorithm.

Next, discuss the impact of the energy coefficient (a) on the

KSVD-GOMP-TMSBL algorithm. The KSVD-GOMP-TMSBL

algorithm in the a value will affect the size of the threshold and,
FIGURE 6

Channel estimation error without noise reduction processing.
FIGURE 7

Lofar comparison figure of receive pilot matrix before(left) and after(right) noise reduction.
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consequently, the hyperparameter matrix. When the a value is too

small, the threshold becomes insufficient, leading to noise being

misestimated as channel tapping coefficients, thereby affecting the

accuracy of channel estimation. Conversely, when the a value is too

large, the threshold becomes excessive, causing real but smaller

channel tapping coefficients to be mistaken as noise, thus affecting

the algorithm’s performance. The chosen value of a significantly

impacts the performance of the KSVD-GOMP-TMSBL algorithm.

Figure 10 shows the energy coefficient a channel estimation error

when different values are taken, where the GOMP algorithm

sparsity is taken to be 30. From the figure, it can be observed that

when the 0:01 ≤ a ≤ 0:10 the estimation errors of the KSVD-

GOMP-TMSBL algorithms are relatively close, both achieve a

better performance. When a = 0:15, the estimation performance

of the KSVD-GOMP-TMSBL algorithm is closer to that when a
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takes the value in the range [0:01 e 0:10]. However, as the threshold

is critical at a = 0.15, confusion between channel tapping

coefficients and noise can arise, which affects the algorithm’s

stability, exhibiting significant fluctuations when the signal-to-

noise ratio is 11dB. For a > 0:15, the estimation performance of

the KSVD-GOMP-TMSBL algorithm is poorer, and it is slightly

inferior to the TMSBL algorithm when the signal-to-noise ratio

reaches a certain value. Therefore, to ensure optimal channel

estimation performance and algorithm stability, the value of a
should be in the range of [0:01e 0:10].

The performance of the conventional GOMP algorithm is

notably influenced by sparsity. Figure 11 illustrates the channel

estimation error of the GOMP algorithm with varying sparsity

values, with the energy coefficient (a) set to 0.05. It is evident from

the figure that the subpar channel estimation performance when the
FIGURE 8

Channel estimation error with different noise reduction methods.
FIGURE 9

Channel estimation error with and without noise reduction.
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sparsity is 5 is attributed to the multipath complexity of the shallow

sea environment. In such an environment, where the number of

propagated multipaths is higher, opting for a small sparsity value

may erroneously set the channel’s tapping coefficient to 0 when

deriving hyperparameters from the a priori knowledge of the

TMSBL. This leads to a biased channel estimation. The

performance of the KSVD-GOMP-TMSBL algorithm is more

consistent when the sparsity is set to the other five values, all of

which surpass the TMSBL algorithm, enabling superior estimation

performance. Thus, the KSVD-GOMP-TMSBL algorithm only

needs to adopt a larger sparsity value, as the algorithm is

minimally affected by the specific value of sparsity. Consequently,

the performance of the KSVD-GOMP-TMSBL algorithm is not

influenced by the sparsity chosen by the GOMP algorithm.
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The influence of noise variance calculation methods on the

performance of the TMSBL algorithm and the KSVD-GOMP-

TMSBL algorithm is discussed below. Figure 12 illustrates the

channel estimation errors of the KSVD-GOMP-TMSBL algorithm

employing two noise variance calculation methods. At an SNR of

-10 dB, the NMSE of the channel estimation for the KSVD-GOMP-

TMSBL algorithm is 1.058 when the noise variance is computed

through iterative updating using (Equation 13). Conversely, the

NMSE is reduced to 0.5579 when the noise variance is determined

using the null subcarrier in conjunction with (Equation 14).

Compared to the previous method, employing null subcarriers to

acquire the noise variance diminishes the NMSE of the channel

estimation of the KSVD-GOMP-TMSBL algorithm by

approximately 47.27%. It is evident that utilizing the null
FIGURE 10

Channel estimation error for different energy coefficients.
FIGURE 11

NMSE for different sparsities.
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subcarrier to determine noise variance in the OFDM system can

enhance the performance of the KSVD-GOMP-TMSBL algorithm

and improve the accuracy of channel estimation.

In the following sections, the proposed algorithm is compared

with other methods. Figure 13 illustrates the NMSE of various

channel estimation methods. The SBL method (Wipf and Rao,

2004) addresses the multi-measurement model by sequentially

processing columns to estimate the channel. The TMSBL method

(Qiao et al., 2018) leverages temporal correlation between channels

to address the multi-measurement model. The SVD-LS-TMSBL

method (Hong et al., 2022) utilizes SVD to reduce noise, LS to

acquire a priori knowledge for the TMSBL algorithm, and TMSBL

to achieve joint channel estimation. The figure illustrates that the

SBL method exhibits the highest NMSE, which can be attributed to

its failure to leverage the correlation between the channels. In
Frontiers in Marine Science 12
contrast, TMSBL demonstrates superior channel estimation

accuracy compared to the SBL algorithm due to its ability to

capitalize on the temporal correlation between the underwater

acoustic channels. The SVD-LS-TMSBL algorithm achieves lower

NMSE in channel estimation than the TMSBL algorithm because it

integrates singular value decomposition for noise reduction and

employs the LS method to acquire the priori knowledge for the

TMSBL algorithm. The KSVD-GOMP-TMSBL algorithm employs

K-SVD dictionary learning for noise reduction, with a priori

knowledge for the TMSBL algorithm obtained through the

GOMP algorithm. This approach effectively addresses the

limitations of the SVD-LS-TMSBL algorithm, where the LS

channel estimation method is more sensitive to noise, and the

noise reduction capability of SVD is suboptimal in low SNR

environments, leading to reduced channel estimation accuracy.
FIGURE 12

Channel estimation errors calculated with different noise variances.
FIGURE 13

NMSE for different channel estimation methods.
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These results demonstrate that the KSVD-GOMP-TMSBL method

achieves superior channel estimation performance compared to the

other algorithms. It can be observed that the proposed algorithm is

capable of effectively reducing the impact of noise on the TMSBL

algorithm, thereby enhancing the accuracy of channel estimation in

OFDM communication systems.

The subsequent analysis centers on the influence of the KSVD-

GOMP-TMSBL algorithm on the performance of the OFDM

communication system. Figure 14 illustrates the bit error rate

(BER) of various channel estimation methods, suggesting that the

performance of the OFDM communication system is improved by

the KSVD-GOMP-TMSBL algorithm. With an increase in SNR, all

five channel estimation methods represented in the figure

demonstra te a reduct ion in the BER of the OFDM

communication system. At an SNR of 15 dB, the BERs for the LS,

GOMP, TMSBL, LS-TMSBL, and KSVD-GOMP-TMSBL

algorithms are 6.2%, 5.7%, 5.8%, 5.3%, and 4.5%, respectively. In

comparison to the benchmark algorithms, the BER of the KSVD-

GOMP-TMSBL algorithm decreases by at least approximately

15.1%. Based on the aforementioned analysis, the KSVD-GOMP-

TMSBL algorithm contributes to the enhancement of the OFDM

communication system’s performance.

Table 2 presents the estimation errors of various channel

estimation methods under identical signal-to-noise ratio

conditions. The results clearly indicate that the estimation

accuracy of the KSVD-GOMP-TMSBL algorithm is markedly

improved compared to other methods. At a signal-to-noise ratio

of -10 dB, the channel estimation error of the KSVD-GOMP-

TMSBL algorithm decreases by around 96.6%, 95.4%, 92.2%, and

92.1% compared to the LS, GOMP, TMSBL, and LS-TMSBL

channel estimation methods, respectively. The estimation error of

the KSVD-GOMP-TMSBL algorithm similarly decreases across

other signal-to-noise ratio values. This confirms the significant

enhancement in channel estimation accuracy achieved by the

KSVD-GOMP-TMSBL algorithm.
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4.2 Algorithm complexity analysis

The following section will analyze the convergence and

convergence rate of the KSVD-GOMP-TMSBL algorithm.

Figure 15 illustrates the NMSE of the TMSBL and KSVD-GOMP-

TMSBL algorithms for varying numbers of iterations at a signal-to-

noise ratio (SNR) of -10 dB. It can be observed that both algorithms

demonstrate convergence as the number of iterations increases. The

KSVD-GOMP-TMSBL algorithm reaches convergence at 7

iterations, while the TMSBL algorithm reaches convergence at 26

iterations. The results demonstrate that the KSVD-GOMP-TMSBL

algorithm exhibits a faster convergence rate than the TMSBL

algorithm. It has been demonstrated that the integration of the

KSVD-GOMP-TMSBL algorithm for noise reduction based on a

KSVD dictionary and the utilization of GOMP to derive the prior

knowledge of the TMSBL algorithm can effectively reduce the

number of iterations of the TMSBL algorithm and accelerate the

convergence speed.

The KSVD-GOMP-TMSBL algorithm is primarily composed of

three key components: KSVD dictionary learning for noise

reduction, a priori knowledge acquisition based on GOMP

channel estimation, and TMSBL algorithm channel estimation.

The KSVD dictionary learning technique for noise reduction

incorporates GOMP sparse coding and dictionary updating. The

computational complexity of GOMP sparse coding is O(kpJL), and

that of dictionary updating is O(pJL(L + 1)). Consequently, the

computational complexity of KSVD dictionary learning noise

reduction is O(pJL(k + L + 1)). The computational complexity of

acquiring a priori knowledge through GOMP channel estimation is

O(kpJL +ML). The computational complexity of TMSBL channel

estimation is O(N(M2p + L4 + L2M)), where N represents the

number of iterations. In conclusion, the principal computational

complexity of the KSVD-GOMP-TMSBL algorithm is O(pJL(k +

L + 1) +ML + N(M2p + L4 + L2M)). It can be observed that the

complexity of the proposed algorithm is predominantly dictated
FIGURE 14

BER for different channel estimation methods.
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by the TMSBL channel estimation component. The computational

complexity of the TMSBL algorithm is primarily driven by the value

of N, especially when the number of iterations is substantial, which

may result in a significant increase in the algorithm’s overall

complexity. The KSVD-GOMP-TMSBL algorithm employs

GOMP to derive the initial hyperparameter matrix and the

simplified dictionary matrix. This process is analogous to the

iterative updating in TMSBL during the intermediate phase,

leading to a reduction in the number of iterations and an

acceleration of the convergence process. This is corroborated by

the results shown in Figure 15. These findings demonstrate that the
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KSVD-GOMP-TMSBL algorithm effectively reduces the

computational complexity of the TMSBL algorithm.

The KSVD-GOMP-TMSBL algorithm utilizes the GOMP

channel estimation algorithm to derive the time-domain impulse

response hGOMP of the underwater acoustic channel. It incorporates

a priori knowledge from the TMSBL and leverages the

characteristics of the underwater acoustic channel to determine

the initial parameters of the EM algorithm. This approach can

effectively reduce the complexity of the algorithm. Utilizing the null

subcarrier in conjunction with (Equation 14) to calculate the noise

variance, instead of iteratively updating with (Equation 13), can
FIGURE 15

NMSE of TMSBL algorithm and KSVD-GOMP-TMSBL algorithm at different numbers of iterations.
TABLE 2 Estimation errors of different channel estimation methods.

Channel estimationmethods SNR (dB)
estimation

error
Channel estimationmethods

SNR
(dB)

estimation
error

LS

-10

17.2500 LS

5

0.5384

GOMP 12.7900 GOMP 0.4062

TMSBL 7.5060 TMSBL 0.2417

LS-TMSBL 7.4570 LS-TMSBL 0.2160

KSVD-GOMP-TMSBL 0.5873 KSVD-GOMP-TMSBL 0.0165

LS

-5

5.5200 LS

10

0.1687

GOMP 4.2530 GOMP 0.1292

TMSBL 2.4120 TMSBL 0.0779

LS-TMSBL 2.4120 LS-TMSBL 0.0623

KSVD-GOMP-TMSBL 0.1462 KSVD-GOMP-TMSBL 0.006

LS

0

1.7420 LS

15

0.054

GOMP 1.3590 GOMP 0.042

TMSBL 0.7897 TMSBL 0.0253

LS-TMSBL 0.7574 LS-TMSBL 0.0166

KSVD-GOMP-TMSBL 0.0556 KSVD-GOMP-TMSBL 0.0018
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theoretically decrease the number of iterations and thus simplify the

complexity of the system. The computational complexity of the

KSVD-GOMP-TMSBL algorithm will be subsequently analyzed by

examining the algorithm ’s running time. The hardware

configuration for the simulation comprises a Core i5 Intel

processor at 2.3GHz with 12GB of RAM.

Figure 16 illustrates the comparison of the running time among

various channel estimation methods. It is evident that the TMSBL

algorithm exhibits the highest running time. The LS a priori TMSBL

method demonstrates a lower running time compared to the

TMSBL algorithm. This is attributed to the utilization of the LS

algorithm to acquire a priori knowledge for the TMSBL algorithm,

thereby reducing its overall complexity. The KSVD-GOMP-TMSBL

Algorithm, employing K-SVD Dictionary Learning, the

incorporation of a noise reduction algorithm, and utilizing the

GOMP algorithm for acquiring a priori knowledge of the TMSBL

algorithm, diminishes the number of iterations and decreases the

running time in comparison to the TMSBL algorithm and the LS-

TMSBL algorithm. At a signal-to-noise ratio of -10 dB, the running

time of TMSBL is 52.71s, the LS a priori TMSBL method records a

running time of 40.3s, and the KSVD-GOMP-TMSBL algorithm

demonstrates a running time of 28.66s. In comparison to the

preceding two methods, the running time diminishes by

approximately 45.63% and 28.89%, respectively. Although the

complexity of the KSVD-GOMP-TMSBL algorithm remains

relatively high compared to channel estimation methods such as

LS and GOMP, Figure 9 indicates that the KSVD-GOMP-TMSBL

algorithm exhibits superior channel estimation accuracy. Overall,

the computational complexity of the KSVD-GOMP-TMSBL

algorithm is diminished in comparison to both the TMSBL

algorithm and the LS-TMSBL algorithm.

Table 3 illustrates the running time of various channel

estimation methods under identical SNR conditions. As evident

from Table 3, the running time of the KSVD-GOMP-TMSBL

algorithm decreases in comparison to both the TMSBL and LS-
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TMSBL algorithms. At a signal-to-noise ratio of 0 dB, the running

time of the KSVD-GOMP-TMSBL algorithm decreases by

approximately 50.3% compared to TMSBL and 33.9% compared

to LS-TMSBL algorithms. The running time of the KSVD-GOMP-

TMSBL algorithm also decreases at different signal-to-noise ratio

values. This indicates a reduction in the computational complexity

of the KSVD-GOMP-TMSBL.
5 Sea trial data validation

To validate the feasibility of the proposed algorithm, we utilized

data obtained from sea trials in a specific maritime area for

verification. For the offshore experiment, the sound source

emission device UW350 was positioned at a depth of 5m. The

pilot signal utilized was a 200-600Hz broadband long pulse signal

with a sampling frequency of 10kHz, and the average in-band

signal-to-noise ratio was -0.02dB. Based on GPS data, the distance

between the transmitting ship and the receiving ship was calculated

as 4672m. The receiving ship positioned the hydrophone in the

seawater at a depth of 24m, and the depth of the experimental sea

was measured at 25.5m. The depths of the mentioned equipment

and seawater were measured by depth sensors.

Figure 17 depicts the channel estimation results obtained

through the application of the KSVD-GOMP-TMSBL algorithm.

The illustration reveals the relatively stable structure of the shallow-

sea underwater acoustic channel, characterized by concentrated

channel energy on a few paths, demonstrating sparse characteristics

that manifest as a sparse multipath structure.

Figure 18 illustrates the received BER for various channel

estimation methods. The sparsity of the GOMP algorithm is set

to 20, the energy coefficient of the LS-TMSBL algorithm is set to

0.05, and the sparsity of the KSVD-GOMP-TMSBL algorithm is set

to 20, with an energy coefficient of 0.05. As depicted in Figure 16,

the BER of the LS algorithm and GOMP algorithm is the highest
FIGURE 16

Running time of different channel estimation methods.
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among the considered algorithms. The LS algorithm is notably

influenced by noise, leading to a high BER. Meanwhile, GOMP is

extremely sensitive to sparsity, and the actual sparsity of the channel

in the real environment is unknown, contributing to a high BER for

the GOMP algorithm. The BER of both the TMSBL algorithm and

the LS-TMSBL algorithm is lower than that of the LS algorithm and

GOMP algorithm. In comparison to the aforementioned four

algorithms, the BER of the KSVD-GOMP-TMSBL algorithm is

lower, further validating its performance.

Figure 19 depicts the runtime of different channel estimation

methods. It is evident from the figure that the TMSBL algorithm

and the LS-TMSBL algorithm have the longest runtime,

approximately 15 seconds. The KSVD-GOMP-TMSBL algorithm

boasts a runtime of approximately 11 seconds, marking a reduction

of about 26.7% compared to the two preceding algorithms. The LS

algorithm and the GOMP algorithm demonstrate the shortest

running time; however, as shown in Figure 16, the KSVD-

GOMP-TMSBL algorithm outperforms both the LS algorithm
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and the GOMP algorithm in terms of BER. The superiority of the

KSVD-GOMP-TMSBL algorithm in running time is evident.

Table 4 provides the average BER and average runtime for

different channel estimation methods. The average BER of different

channel estimation methods is higher due to a lower average in-

band SNR, and no channel coding is applied. However, it is evident

that the KSVD-GOMP-TMSBL algorithm exhibits a lower average

BER compared to the comparison algorithms. The KSVD-GOMP-

TMSBL algorithm demonstrates the shortest runtime among the

three channel estimation methods with a closer BER. This indicates

that the KSVD-GOMP-TMSBL algorithm performs effectively in

reducing both system BER and system complexity.
6 Conclusion

The estimation of underwater acoustic channels using the

TMSBL algorithm in shallow sea environments is challenged by
FIGURE 17

Channel estimation results.
TABLE 3 Running time of different channel estimation methods.

Channel estimation
methods

SNR
(dB)

Running time (s)
Channel estima-
tion methods

SNR
(dB)

Running time (s)

TMSBL

-10

52.71 TMSBL

5

10.48

LS-TMSBL 40.42 LS-TMSBL 8.02

KSVD-GOMP-TMSBL 28.66 KSVD-GOMP-TMSBL 4.96

TMSBL

-5

28.45 TMSBL

10

6.54

LS-TMSBL 21.91 LS-TMSBL 4.58

KSVD-GOMP-TMSBL 15.6 KSVD-GOMP-TMSBL 2.98

TMSBL

0

17.37 TMSBL

15

3.69

LS-TMSBL 13.08 LS-TMSBL 2.65

KSVD-GOMP-TMSBL 8.64 KSVD-GOMP-TMSBL 1.83
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high computational complexity, and the algorithm’s performance is

significantly affected by the signal-to-noise ratio. The article

proposes an improved channel estimation method for the

temporal multiple sparse Bayesian learning OFDM underwater

acoustic communication system. The K-SVD dictionary learning

algorithm is employed to reduce noise in the received pilot matrix.

Simultaneously, the null subcarrier is utilized to obtain a more

accurate noise variance, thereby reducing the computational

complexity of the algorithm and enhancing its noise immunity.

The method employs the GOMP channel estimation algorithm to

obtain the time-domain impulse response of the underwater

acoustic channel. It acquires a priori knowledge of the TMSBL

and selects the initial parameters of the EM algorithm based on the
FIGURE 19

Running time of different channel estimation methods.
FIGURE 18

BER for different estimation methods.
TABLE 4 Comparison of average BER and average runtime of different
channel estimation methods.

Channel
estimation
methods

Average
BER

Average running
time (s)

LS 0.2109 0.0054

GOMP 0.2235 0.1672

TMSBL 0.1888 15.5599

LS-TMSBL 0.1889 15.3406

KSVD-GOMP-TMSBL 0.1820 11.5221
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characteristics of the underwater acoustic channel, thereby

enhancing the accuracy of channel estimation. Simulations

indicate that at a signal-to-noise ratio of -10 dB, the KSVD-

GOMP-TMSBL algorithm reduces the NMSE of channel

estimation by 92.2% compared to the TMSBL algorithm,

significantly improving estimation accuracy. Furthermore, the

running time is reduced by 45.6%, thereby accelerating the

convergence of the TMSBL algorithm and reducing its

computational complexity. The validation with experimental data

from the sea trials demonstrate that the proposed algorithm has a

lower impact on the signal-to-noise ratio compared to traditional

channel estimation algorithms, and exhibits strong robustness. It

achieves accurate estimates even in low signal-to-noise conditions

in shallow water and operates at high speed.

The KSVD-GOMP-TMSBL algorithm effectively addresses the

problems associated with low estimation accuracy and high

computational complexity in the estimation of acoustic channels

in shallow water under the conditions of low signal to noise ratio.

This algorithm serves as a reference for estimating the acoustic

channel in shallow water. Although the algorithm can effectively

improve the performance of channel estimation, the reliance on

pilot signals means that their quantity will influence the algorithm’s

performance. Therefore, the next step is to explore channel

estimation methods that require fewer pilot signals to further

enhance robustness.
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding author.
Frontiers in Marine Science 18
Author contributions

CX: Writing – review & editing, Writing – original draft. YR:

Writing – original draft, Writing – review & editing. ML: Writing –

review & editing. GT: Writing – review & editing. QM: Writing –

review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by the National Natural Science Foundation of China

under Grant (61761048), the Basic Research Special General project of

Yunnan Province, China (202101AT070132) and Yunnan Minzu

University Graduate Research Innovation Fund Project (2024SKY122).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
Aharon, M., Elad, M., and Bruckstein, A. (2006). K-SVD: An algorithm for designing
overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54,
4311–4322. doi: 10.1109/TSP.2006.881199

Chen, P., Guo, Q., Li, P., and Cui, F. (2020). Joint sparse channel estimation and data
detection based on bayesian learning in OFDM system. Comput. Sci. 47 (11A), 349–
353. doi: 10.11896/jsjkx.191100090

Chen, S. S., Donoho, D. L., and Saunders, M. A. (2001). Atomic decomposition by
basis pursuit. SIAM Rev. 43, 129–159. doi: 10.1137/S003614450037906X

Cheng, H. K., and Wang, H. X. (2022). Time varying underwater acoustic channel
estimation based on Kalman filter. Tech. Acoustics 41, 833–837. doi: 10.16300/
j.cnki.1000-3630.2022.06.007

Cotter, S. F., and Rao, B. D. (2002). Sparse channel estimation via matching pursuit
with application to equalisation. IEEE Trans. Commun. 50, 374–377. doi: 10.1109/
26.990897

Giao, G., Song, Q. J., Ma, L., Liu, S. Z., Sun, Z. X., and Gan, S. W. (2018). Sparse
Bayesian learning for channel estimation in time-varying underwater acoustic OFDM
communication. IEEE Access 6, 56675–56684. doi: 10.1109/ACCESS.2018.2873406

Hong, D. Y., Wang, W., Yin, L., Pu, Z. Q., Zhou, C. Y., and Huang, H. N. (2022). An
improved temporal multiple sparse Bayesian learning under-ice acoustic channel
estimation method. Acta Acustica 47 (5), 591–602. doi: 10.15949/j.cnki.0371-
0025.2022.05.013

Jia, S. Y., Zou, S. C., Zhang, X. C., and Tian, D. Y. (2022). Multi-block Sparse
Bayesian learning channel estimation for OFDM underwater acoustic communication
based on fractional Fourier transform. Appl. Acoustics 192, 108721. doi: 10.1016/
j.apacoust.2022.108721
Jiang, W. H., Tong, F., Zhang, H. T., and Li, B. (2021). Dynamic discriminative
compressed sensing estimation of hybrid sparse underwater acoustic channel. Acta
Acustica 46 (6), 825–834. doi: 10.15949/j.cnki.0371-0025.2021.06.005

Lyu, X. R., Li, Y. M., and Guo, Q. (2021). Joint channel and impulsive noise
estimation method for MIMO-OFDM systems. J. Commun. 42, 54–64. doi: 10.11959/
j.issn.1000–436x.2021238

Meng, X. Y., and Liu, Z. L. (2023). TB-GOMP channel estimation algorithm for
shallow underwater acoustic communication. J. Ordnance Equip. Eng. 44, 223–229.
doi: 10.11809/bqzbgcxb2023.05.032

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat. Soc.
Ser. B: Stat. Method. 58, 267–288. doi: 10.1111/j.2517-6161.1996.tb02080.x

Tong, F., Wu, F. Y., and Zhou, Y. H. (2022). Underwater acoustic channel estimation
(China: Science Press).

Wang, H., Sun, T. J., and Liu, T. (2020). Active sonar target classification based on
dictionary learning. Tech. Acoustics 39 (5), 552–558. doi: 10.16300/j.cnki.1000-
3630.2020.05.006

Wipf, D. P., and Rao, B. D. (2004). Sparse Bayesian learning for basis selection. IEEE
Trans. Signal Process. 52, 2153–2164. doi: 10.1109/TSP.2004.831016

Wipf, D. P., and Rao, B. D. (2007). An empirical Bayesian strategy for solving the
simultaneous sparse approximation problem. IEEE Trans. Signal Process. 55, 3704–
3716. doi: 10.1109/TSP.2007.894265

Wu, F. Y., and Tong, F. (2017). Improved compressed sensing estimation of block
sparse underwater acoustic channel. Acta Acustica 42, 27–36. doi: 10.15949/
j.cnki.0371-0025.2017.01.004
frontiersin.org

https://doi.org/10.1109/TSP.2006.881199
https://doi.org/10.11896/jsjkx.191100090
https://doi.org/10.1137/S003614450037906X
https://doi.org/10.16300/j.cnki.1000-3630.2022.06.007
https://doi.org/10.16300/j.cnki.1000-3630.2022.06.007
https://doi.org/10.1109/26.990897
https://doi.org/10.1109/26.990897
https://doi.org/10.1109/ACCESS.2018.2873406
https://doi.org/10.15949/j.cnki.0371-0025.2022.05.013
https://doi.org/10.15949/j.cnki.0371-0025.2022.05.013
https://doi.org/10.1016/j.apacoust.2022.108721
https://doi.org/10.1016/j.apacoust.2022.108721
https://doi.org/10.15949/j.cnki.0371-0025.2021.06.005
https://doi.org/10.11959/j.issn.1000&ndash;436x.2021238
https://doi.org/10.11959/j.issn.1000&ndash;436x.2021238
https://doi.org/10.11809/bqzbgcxb2023.05.032
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.16300/j.cnki.1000-3630.2020.05.006
https://doi.org/10.16300/j.cnki.1000-3630.2020.05.006
https://doi.org/10.1109/TSP.2004.831016
https://doi.org/10.1109/TSP.2007.894265
https://doi.org/10.15949/j.cnki.0371-0025.2017.01.004
https://doi.org/10.15949/j.cnki.0371-0025.2017.01.004
https://doi.org/10.3389/fmars.2024.1362416
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Xing et al. 10.3389/fmars.2024.1362416
Xing, C., Dong, S., and Wan, Z. (2023). Direction-of-arrival estimation based on
sparse representation of fourth-order cumulants. IEEE Access 11, 128736–128744.
doi: 10.1109/ACCESS.2023.3332991

Xing, C. X., Wang, Z. L., Jiang, S. Y., and Yu, R. M. (2022). Direction of arrival
estimation based on high-order cumulant by sparse reconstruction of underwater
acoustic signals. Acta Acustica 47, 440–450. doi: 10.15949/j.cnki.0371-0025.2022.04.010

Xing, C. X., Wu, Y. W., Xie, L. X., and Zhang, D. Y. (2021a). A sparse dictionary
learning-based denoising method for underwater acoustic sensors. Appl. Acoustics 180,
108140. doi: 10.1016/j.apacoust.2021.108140

Xing, C. X., Zhang, D. Y., Song, Y., Wu, Y. W., and Xie, L. X. (2021b). Research on
inversion of sound speed profile using dictionary learning method. Tech. Acoustics 40
(6), 750–756. doi: 10.16300/j.cnki.1000-3630.2021.06.002

Xu, W., Yan, S. F., Ji, F., Chen, J. D., Zhang, J., Zhao, H. F., et al. (2016).
Marine information gathering, transmission, processing, and fusion: current status
and future trends. Scientia Sinica(Informationis) 46 (8), 1053–1085. doi: 10.1360/
N112016-00064

Yang, P. (2023). An imaging algorithm for high-resolution imaging sonar system.
Multimed Tools Appl. 83, 31957–31973. doi: 10.1007/s11042-023-16757-0
Frontiers in Marine Science 19
Yin, J. W., Gao, X. B., Han, X., Zhang, X., Wang, D. Y., and Zhang, J. C. (2021).
Underwater acoustic channel estimation and impulsive noise mitigation based on
sparse Bayesian learning. Acta Acustica 46 (6), 813–824. doi: 10.15949/j.cnki.0371-
0025.2021.06.004

Zhang, X. (2023). An efficient method for the simulation of multireceiver SAS raw
signal. Multimed Tools Appl. 83, 37351–37368. doi: 10.1007/s11042-023-16992-5

Zhang, X. B., Yang, P. X., Wang, Y. M., Shen, W. Y., Yang, J. C., Wang, J. F., et al.
(2024). A novel multireceiver SAS RD processor. IEEE Trans. Geosci. Remote Sens. 62,
1–11. doi: 10.1109/TGRS.2024.3362886

Zhang, X., Wu, H., Sun, H., and Ying, W. (2021). Multireceiver SAS imagery based
on monostatic conversion. IEEE J. Selected Topics Appl. Earth Observations Remote
Sens. 14, 10835–10853. doi: 10.1109/JSTARS.2021.3121405

Zhang, Z., and Rao, B. D. (2011). Sparse signal recovery with temporally correlated
source vectors using sparse Bayesian learning. IEEE J. Selected Topics Signal Process. 5,
912–926. doi: 10.1109/JSTSP.2011.2159773

Zhu, L., Liu, S., Cao, S. N., and Liu, Y. Y. (2020). Nonparametric Bayesian dictionary
learning in sparse gradient domain for image denoising. Comput. Eng. Design 41 (3),
802–807. doi: 10.16208/j.issn1000-7024.2020.03.032
frontiersin.org

https://doi.org/10.1109/ACCESS.2023.3332991
https://doi.org/10.15949/j.cnki.0371-0025.2022.04.010
https://doi.org/10.1016/j.apacoust.2021.108140
https://doi.org/10.16300/j.cnki.1000-3630.2021.06.002
https://doi.org/10.1360/N112016-00064
https://doi.org/10.1360/N112016-00064
https://doi.org/10.1007/s11042-023-16757-0
https://doi.org/10.15949/j.cnki.0371- 0025.2021.06.004
https://doi.org/10.15949/j.cnki.0371- 0025.2021.06.004
https://doi.org/10.1007/s11042-023-16992-5
https://doi.org/10.1109/TGRS.2024.3362886
https://doi.org/10.1109/JSTARS.2021.3121405
https://doi.org/10.1109/JSTSP.2011.2159773
https://doi.org/10.16208/j.issn1000-7024.2020.03.032
https://doi.org/10.3389/fmars.2024.1362416
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

	A TMSBL underwater acoustic channel estimation method based on dictionary learning denoising
	1 Introduction
	2 TMSBL-based underwater acoustic channel estimation method
	2.1 Received signal model
	2.2 TMSBL underwater acoustic channel estimation

	3 Improved TMSBL channel estimation method
	3.1 K-SVD-based noise reduction of the received pilot matrix
	3.2 A priori knowledge acquisition based on GOMP channel estimation

	4 Simulation results and analysis
	4.1 Simulation results and performance analysis
	4.2 Algorithm complexity analysis

	5 Sea trial data validation
	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


