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Biodegradation of polypropylene
by filter-feeding marine scallop
Mizuhopecten yessoensis:
infrared spectroscopy evidence
Viktor Pavlovich Chelomin, Aleksandra Anatolyevna Istomina*,
Andrey Alexandrovich Mazur and Avianna Fayazovna Zhukovskaya

Laboratory of Marine Ecotoxicology, V.I. Il’ichev Pacific Oceanological Institute, Russian Academy of
Sciences, Vladivostok, Russia
The problem of environmental pollution by plastics is global in nature and needs

to be addressed as soon as possible. Realization of the importance of this

problem contributed to the study of degradation and biodegradation of

synthetic polymers. It turned out that the driving force of plastic fragmentation

along with abiotic factors can be biotic. Based on the above, we investigated the

in vitro biodegradation of polypropylene (PP) fragments in digestive gland

homogenates and crystalline styles of the bivalve mollusk Mizuhopecten

yessoensis. Fourier transform infrared spectroscopy showed changes in the

chemical composition of functional groups on the plastic surface. Enzyme

complexes of crystalline styles enhanced the biodegradation of PP fragments

to a larger extent than did digestive glands. The results obtained using

M. yessoensis as an example suggest that marine phytophagous filter-feeding

invertebrates may accelerate the biodegradation of synthetic polymers. The

study provides a basis for rethinking the nature of relationships between

marine invertebrates and microplastic polluting the marine environment.
KEYWORDS

biotransformation of plastic, Fourier transform infrared spectroscopy, carbonyl index,
hydroxyl index, carboxyl index
1 Introduction

Extensive studies in recent years convincingly demonstrated that synthetic polymers

spread widely in the environment and invaded all aquatic, terrestrial, and air ecosystems,

thereby endangering their stability (Koelmans et al., 2014; Avio et al., 2015; Li et al., 2016;

Ahmed et al., 2022; Xia et al., 2023). Microplastic particles have been recorded in

representatives of various taxa (more than a thousand species) of different trophic levels

(Bom and Sá, 2021; Dellisanti et al., 2023). There is a lot of evidence that microplastic has a

harmful effect on biota (Jeong et al., 2016; Détrée and Gallardo-Escárate, 2018; Revel et al.,
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2019; Trifuoggi et al., 2019; Thomas et al., 2020; Chelomin et al.,

2022). This danger sharply stimulated interest in studying the

degradation and biodegradation processes of these man-made

materials. Despite their strength and chemical inertness, synthetic

polymers can not only break down because of physicochemical

processes (photo, thermal, mechanical and chemical degradation)

(Lambert and Wagner, 2016; Ward et al., 2019; Chamas et al., 2020;

Liu et al., 2021; Mattsson et al., 2021; Born and Brüll, 2022; Duan

et al., 2022; Xi et al., 2022) but also can degrade due to biota activity.

In the latter case, this generally optimistic view is based on

numerous studies on microorganisms, including mainly various

bacterial species (Tokiwa et al., 2009; Wu et al., 2016; Matjasǐč et al.,

2020; Jadaun et al., 2022; Miri et al., 2022; Idris et al., 2023),

cyanobacteria, microalgae (Sarmah and Rout, 2018; Sarmah and

Rout, 2020), and fungi (Liu et al., 2021). In addition, biodegradation

of different types of polymers was observed with the participation of

various insect larvae (Brandon et al., 2018; Kundungal et al., 2019;

Ren et al., 2019; Peng et al., 2020; Yang et al., 2021).

Unlike abiotic degradation, biodegradation is carried out with

the direct participation of biocatalysts - enzymes produced by living

organisms. A large variety of these specific enzymes are known to be

involved in various stages of polymer chain degradation (Lucas

et al., 2008). In general terms, the activity of these enzymes

ultimately leads to the oxidation and hydrolysis of polymers,

followed by the fragmentation and release of low molecular-

weight compounds (monomers and oligomers) that can be

involved in metabolic processes. It should be emphasized that

enzymes participate to varying degrees in the biodegradation

processes of artificial polymers. They are primarily catalysts

focused on the digestion of natural polymers (cellulose, lignin,

mucopolysaccharides) to extract energy for essential processes.

On the basis of these assumptions, it is logical to assume that

digestive enzymes of herbivorous marine invertebrates involved in

the digestion of cell walls of phytoplankton and algae, which include

polymeric carbohydrates, are also capable to oxidative hydrolysis

of plastic.

Since understanding the biodegradation and biological

depolymerization of plastic is important, this study proposes a

novel methodological approach to investigate the role of marine

invertebrate digestive enzyme complexes in plastic biodegradation.

The aim of this study is to evaluate the feasibility of enzymatic

biodegradation of polypropylene (PP) pieces in Mizuhopecten

yessoensis digestive organ homogenate.
2 Methods

2.1 Site of bivalves collection and material

Mollusks were collected in July 2023 in the waters of the

Alekseev Bay in the Sea of Japan (42°59’ N; 131°43’ Е). Adult

mollusks were selected by size so that they were in a similar

physiological state. (in total, fifteen representatives). Mollusks

were immediately dissected, and the digestive glands and

crystalline styles were extracted. Tissue homogenate was prepared

in 0.2 M of phosphate buffer, pH 7.5 (2:1, w/v).
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The plastic polymers used in the experiment came from

commercially available polypropylene rope, which chemical

composition was determined by FTIR spectroscopy.
2.2 Experiment in vitro

The plastic fragments (2.5 cm long and 1 mm wide) used in the

experiment were obtained by cutting unused polypropylene rope

manufactured by TRUSCO NAKAYAMA Corporation (Cat No.

PP-4300). The production technology and exact chemical

composition of the rope is not specified by the manufacturer.

The plastic fragments were incubated in 1.5 ml tissue

homogenate for 3 days (three times repeated for each animal

tissue). The daily replacement of the homogenate was performed.

When the homogenate was changed, the plastic pieces were washed

in distilled water. Incubation was carried out with constant stirring

(BIOSAN MultiBio RS-24) at room temperature. After 3 days of

incubation, the plastic pieces were washed in distilled water to

remove the homogenate residues and then in 70% ethanol to

remove the sorbed organic substances (proteins and fats) for 24 h

under constant agitation. After washing, the plastic pieces were

dried at room temperature for one day before analysis. Control

plastic samples were incubated in the homogenization buffer and

were subjected to the same washing and processing steps.

Biodegradation of the plastic surface were assessed using

FTIR spectroscopy.
2.3 Fourier-transform
infrared spectroscopy

FTIR spectra were acquired using an IRAffinity-1S (Shimadzu,

Japan) equipped with attachment frustrated total internal reflection

(wavenumber range of 4000–400 cm−1, 32 scans per spectrum,

spectral resolution of 4 cm−1). The background was measured with

the same settings against air. The obtained spectra were processed

using LabSolutions IR software (Shimadzu, Japan).

The degree of biodegradation of plastic fragments was evaluated

using three different indices: carbonyl index (CI), hydroxyl index

(HI) and carboxyl index (COI). CI is the most commonly used

index to measure the chemical oxidation of polyolefins such as

polyethylene and polypropylene and reflects the deterioration of the

mechanical properties of these polymers (Rouillon et al., 2016). CI

was determined using the SAUB (specified area under band)

technique described in Almond et al., 2020. CI was calculated

from the ratio between the integrated band absorbance of the

carbonyl (C=O) peak from 1850 to 1650 cm−1 and that of the

methylene (CH2) scissoring peak from 1500 to 1420 cm−1 as

expressed in the following equation: CI = (Area under band

1850–1650 cm−1)/(Area under band 1500–1420 cm−1).

The measurement of peak area rather than intensity at a

particular wavelength is based on the fact that the cleavage of

polyolefins produces not only ketones at 1714 cm-1, but also dozens

of potentially different carbonyl products such as g-lactones (1780
cm-1), esters and/or aldehydes (1733 cm-1), and carboxylic acids
frontiersin.org
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(1700 cm-1). The area between 1500 and 1420 cm-1 was chosen as

the reference range and remains distinct throughout the

degradation process during photo- and thermo-oxidation

(Almond et al., 2020).

Similarly HI was calculated as the absorbance ratio of hydroxyl

groups at 3300–3400 cm-1 and 986–952 cm-1 for reference peak

(Campanale et al., 2023). COI was calculated as the ratio of the

absorbance of carbon-oxygen groups at 1000–1200 cm-1 and the

value of the reference peaks at 2885–2940cm-1 (Campanale

et al., 2023).

The modification of the crystal structure of polypropylene was

estimated according to Rouillon, Bussiere, 2016, where crystallinity

= 998 cm-1/973 cm-1.
2.4 Statistics

Statistical processing of the results was performed using

Statistica 7. The Mann-Whitney’s U test for non-parametric

variables was used to assess reliability of parameter changes.

Significance was established at p < 0.001 and p < 0.01.
2.5 Ethical aspects

All experimental procedures were performed in accordance

with the ethical standards for animal experimentation, and

meticulous efforts were made to ensure that the animals suffered

as little as possible and to reduce external sources of stress, pain, and

discomfort. The current study has not exceeded the number of

animals needed to produce reliable scientific data. This article does

not refer to any study with human participants performed by

any authors.
3 Results

Using infrared spectroscopy method, we recorded several major

changes in the IR spectra of PP after treatment with homogenates

from the digestive gland and crystalline styles of the marine bivalve

M. yessoensis (Figure 1). By its chemical structure, PP is a

hydrocarbon, that lacks oxygen-containing functional groups

(oxygen bonds), which can be clearly seen in the IR spectrum of

the control sample of PP (Figure 1A). The pristine reference PP had

characteristic absorption bands (Figure 1A), which were displayed

at 2953 cm-1(–CH3 asymmetric stretching vibrations), 2837

cm-1and 1456 cm-1(-CH2 stretching and symmetric bending),

1375 cm-1 (–CH3 symmetric bending vibrations), 1166, 997 and

972 cm-1(–CH3 oscillating vibrations, respectively) (Gopanna et al.,

2019; Campanale et al., 2023). These characteristic absorption peaks

in the IR spectrum remained unchanged in the buffer solution. After

3-day treatment of the PP fragments with digestive gland and

crystalline styles homogenates, new absorption peaks in the IR

spectra of these samples were recorded in the areas of 3284 cm-1,

1734 cm-1 and 1653 cm-1 (Figures 1B, C), which are characteristic of

hydroxyl (C–OH), carbonyl (C=O), and double (C=C) bonds,
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respectively (dePaoli, 2008; De Bomfim et al., 2019; Wu et al.,

2021). In this context, the appearance of a new absorption band in

the area of 3284 cm-1 is caused by the addition of a hydroxyl group

to the polymer chain, indicating the initiation of oxidative

degradation processes (Auta et al., 2018). The spectra in the area

of 1900–1500 cm-1 reveal a known carbonyl component with a

broad absorption band reflecting the formation of several products,

among which the main absorption band (1734 cm-1),

corresponding to the carbonyl group of esters, dominates

(Rouillon et al., 2016). In addition to the appearance of oxygen-

containing functional groups, a new absorption peak (1653 cm-1)

was recorded in the structure of the polymer chain of the PP of the

experimental samples, corresponding to the vinyl group (De Paoli,

2008; De Bomfim et al., 2019). The C=C bond is also not

characteristic of an intact PP chain. It is assumed to arise due to

degradation processes with C–C bond breaking of the main carbon

chain initiated by substitution (–C–R) and C–H bond breaking

(De Paoli, 2008; De Bomfim et al., 2019). Furthermore, from the

comparative analysis of the IR spectra (Figures 1A–C), it is evident

that exposure of digestive gland and crystalline styles homogenates

to PP fragments leads not only to the appearance of new absorption

bands but also to the enhancement of individual small bands. In

both experimental samples, a significant increase in the intensity of

the peak in the range of 1200–1100 cm-1 (centered around 1167 cm-

1), corresponding to the spectral band of the carboxyl bond (C–O),

is observed, which also indicates the accumulation of various

products of oxidative degradation of the polymer (Campanale

et al., 2023).

To assess the extent of oxidative degradation of the PP polymer

chain observed under our experimental conditions, we

quantitatively estimated the functional group content and

presented them as the relevant indices: carbonyl (CI), hydroxyl

(HI), and carboxyl (COI) (Table 1).

Based on degradation indices, crystalline styles homogenate causes

significant changes in the chemical composition of PP surface chains.

In another case, treatment of PP fragments with digestive gland

homogenate apparently affected these processes to a less extent, as it

is manifested by a relatively small increase in CI and COI.

The oxidative degradation of PP, which results from the

introduction of oxygen-containing functional groups, can affect

the physical characteristics of the polymer. One of them is

crystallinity, which characterizes the degree of ordering of the

polymer chains (Rouillon et al., 2016; Wu et al., 2021). In our

experiments, this index calculated from the IR spectra, increased

significantly only in PP samples treated with crystalline styles

homogenate (Table 1).
4 Discussion

Among various methods for studying the environmental

behavior of synthetic polymers, one of the leading methods is

infrared spectroscopy (FTIR). This approach is a highly selective

and non-destructive method of analyzing functional groups in the

structure of the polymer chain, which allows not only to identify the

type of polymer, but also to detect changes in its structure. This
frontiersin.org
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method was particularly applied to characterize structural changes

in plastics initiated by abiotic (temperature, oxygen concentration

and UV) and biotic (microorganisms) influences (Skariyachan

et al., 2018; Almond et al., 2020; Villalobos et al., 2022;

Campanale et al., 2023).
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In general, the whole complex of changes detected in

experimental samples of PP indicates oxidative degradation of

polymer chains, which can be considered as the first stage of the

biodegradation process (Lucas et al., 2008). On the other hand, the

addition of oxygen-containing functional groups to the polymer
A

B

C

FIGURE 1

FTIR spectra of polypropylene after 3 days of incubation: (A) in the buffer (control), (B) in the digestive gland homogenate, (C) in the crystalline style
homogenate. CI, сarbonyl index; HI, hydroxyl index; COI, сarbon-oxygen index.
TABLE 1 Comparison of the polypropylene (PP) degradation indices and crystallinity after incubation in tissues homogenates.

СI HI COI Crystallinity

PP + buffer (control) 0 0 0,21 ± 0,03 0,68 ± 0,18

PP + DG 0,36 ± 0,24* (p=0,001) 0 0,3 ± 0,10* (p=0,015) 0,64 ± 0,06

PP + CS 1,31 ± 1,03*a (p=0,001) 6,40 ± 3,71*a

(p=0,0002)
2,79 ± 2,34*a (p=0,0009) 0,88 ± 0,05*a

(p=0,0009)
Data is presented as mean value ± standard deviation (n =10); * - significant differences vs. control; a - significant differences PP + DG vs. PP + CS (p < 0.008, Mann-Whitney’s U test for non-
parametric variables).
CI, сarbonyl index; HI, hydroxyl index; COI, сarbon-oxygen index; DG, digestive gland; CS, crystalline style.
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chains of PP increases the hydrophilicity of the polymer, making it

more accessible for further biodegradation steps (Miri et al., 2022).

Indirect confirmation of our results can be found in single studies

of microplastics in the digestive system or in the fecal remains of

organisms. For example, in polyethylene (PE) and PP microplastics

ingested by representatives of the mussels, changes in IR and Raman

spectra were reported (Kumar et al., 2020). The IR spectra of

polyethylene terephthalate (PET) in the feces of sea urchin

Paracentrotus lividus differed from those of control samples

(Parolini et al., 2020). A prime example is the study by Hamzah

and colleagues (Hamzah et al., 2021), who used FTIR to reveal major

changes in the composition of functional groups in PP and polyamide

(PA) micro fragments extracted from the digestive system of the

estuarine deposit-feeding polychaete Nomalycastis sp. Analysis of

fragments of expanded polystyrene (EPS) isolated from the fecal

remains of the terrestrial gastropod Achatinafulica showed that this

polymer underwent severe chemical modification in the digestive

tract (Song et al., 2020). It was also found that after staying in the

digestive tract of periwinkles Littorina brevicula micro fragments of

polymethylmethacrylate (PMMA), the physicochemical

characteristics significantly changed (Odintsov et al., 2022).

Concerning the type of our experimental approach, it can be

assumed that enzymes capable of degrading synthetic polymers,

particular PP, are present in the digestive system of the mollusk,

particular in the digestive gland and crystalline styles, which play a key

role in digestion and assimilation of food. This assumption is not

surprising if we take into account the digestive characteristics of

marine bivalves, including the scallop M. yessoensis. Bivalves are

planktonic filter feeders whose food composition is dominated by

microalgae, bacteria, andmacroalgae. Accordingly, the digestive gland

and crystalline styles synthesize and actively secrete various digestive

enzymes involved to varying degrees in the breakdown and

degradation of natural polymers, particular complex polysaccharides

that form the basis of the cell membrane structure of phytoplankton,

marine bacteria, and algae. Hydrolases, esterase, and carbohydrase

with different substrate specificities (amilase, cellulase, laminarinase,

alginatelyase, etc.) were found as part of these digestive enzymes

(Fernández-Reiriz et al., 2001; Milke et al., 2012; Lyu et al., 2016;

Trestrail et al., 2021; González et al., 2022). It should be noted,

however, that crystalline styles are characterized by a higher activity

of carbohydrases (cellulase, laminarinase and amylase) compared with

the digestive gland (Wojtowicz, 1972; Fernández-Reiriz et al., 2001).

Based on the results obtained, an assumption can be made these

features of the crystalline styles result in the stronger degradation of

PP fragments compared with the digestive gland (Table 1).

Within the framework of this problem, it should be emphasized

that, on the basis of the in vitro approach, we are among the first to

demonstrate the potential ability of a marine invertebrate to

accelerate PP biodegradation. Until now, the ability to degrade

different types of polymers was attributed mainly to enzymes

produced by diverse groups of microorganisms (Lucas et al.,

2008; Skariyachan et al., 2018; Othman et al., 2021; Miri et al.,

2022; Villalobos et al., 2022). In addition, there is strong evidence in

scientific paper for the biodegradation of different types of polymers

with the participation of insect larvae such as the common

mealworm Tenebrio molitor (Brandon et al., 2018; Przemieniecki
Frontiers in Marine Science 05
et al., 2019; Peng et al., 2020; Tsochatzis et al., 2021; Yang et al.,

2021; Peng et al., 2023), waxworms Galleria mellanella (Ren et al.,

2019; Billen et al., 2020; Lou et al., 2020) and Achroia grisella

(Kundungal et al., 2019), and waxworms Zophabas atratus (Yang

et al., 2020). However, in the case of examples with insect larvae, the

possibility of the participation of enzymes of symbiotic

microorganisms in the biodegradation of polymers cannot be

excluded. Concerning that the digestive tract of marine bivalves,

including the scallop M. yessoensis, also contains communities of

specific symbiotic microorganisms (Lu et al., 2017; Ma et al., 2019),

this possibility remains when explaining the authors’ results.

Although specific investigations of this issue are beyond the scope

of this study, it should be recognized that symbiotic

microorganisms are an integral part of a single digestive process

in which it is difficult to separate the digestive enzymes produced by

microorganisms and host cells.

On the basis of the above reasoning, it is logical to assume that

the appearance of defects in the polymer chain because of the

introduction of functional groups (C=O, C–O–R, C–OH, and C=C)

indicates the initiation and acceleration of the processes of oxidative

degradation of PP after treatment of these fragments with a

complex of digestive enzymes of the digestive gland and

crystalline styles of the scallop. It should be emphasized that the

authors detected accelerated chemical modification of PP during 3-

day experiments, whereas under natural conditions, microplastics

can be retained and subjected to enzymatic attack for longer periods

of time. Furthermore, in marine ecosystems, this process may be

repeated many times with other individuals of the species or by

other organisms with different feeding behavior. In essence, from an

ecological point of view, marine phytophagous filter-feeding

invertebrates can accelerate the biotransformation of artificial

polymers and ultimately participate in the removal of these

anthropogenic compounds from marine ecosystems. Thus, the

lifetime of plastic should be significantly less than it is currently

assumed. Although this hypothesis requires further research, it is

logical to assume that the results of these studies provide a basis for

reconsidering the nature of the relationship between marine

invertebrates and marine polluting microplastics.
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