Skip to main content

ORIGINAL RESEARCH article

Front. Mar. Sci.
Sec. Ocean Observation
Volume 11 - 2024 | doi: 10.3389/fmars.2024.1358899
This article is part of the Research Topic Colour and Light in the Ocean, volume II View all 27 articles

Detecting centennial changes in the clarity and colour of the Red and Eastern Mediterranean Seas by retracing the "Pola" expeditions

Provisionally accepted
  • 1 University of Exeter, Exeter, England, United Kingdom
  • 2 Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine, Rome, Lazio, Italy
  • 3 Division of Zoology and Marine Biology, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece

The final, formatted version of the article will be published soon.

    The world’s oceans and seas are changing rapidly due to several natural and anthropogenic reasons. Among these, the largest and likely most threatening to marine life being the climate crisis and rising sea temperatures. Studying the dominant primary producers of most marine ecosystems, phytoplankton, and their response to these alterations is challenging, yet essential due to the critical role phytoplankton play in both the oceans and wider biosphere. Satellites are a crucial tool used to study phytoplankton but lack the timespan needed to accurately observe abundance patterns in response to climate change. Historical oceanographic data are increasingly being used to understand changes in the abundance of phytoplankton over the last century. Here, we retrace Secchi depth and Forel-Ule colour scale surveys performed during the “Pola” expeditions between 1890-1898 using contemporary satellite data, to assess changes in water colour and clarity (and by extension phytoplankton abundance) in the Red Sea and the Eastern Mediterranean Sea over the past century. The results show a significant greening of both regions investigated as well as a decrease in water clarity. The Red Sea Forel-Ule colour increased by 0.83 (± 0.08) with an average decrease in Secchi depth of 5.07 m (± 0.44). The Forel-Ule colour in the Eastern Mediterranean increased by 0.50 (± 0.07) and the historic Secchi depth readings were an average of 8.85 m (± 0.47) deeper than present day. Changes in Secchi depth between periods were greater than that which may have been caused by differences in the size of the Secchi disk used on the “Pola” expeditions, estimated using traditional Secchi depth theory. There was no clear change in seasonality of phytoplankton abundance and blooms, although winter months saw many of the largest changes in both measured variables. We discuss potential drivers for this change and the challenges and limitations of combining historical and modern datasets of water clarity and colour.

    Keywords: Phytoplankton, Forel-Ule colour scale, Secchi disk, ocean colour, Climate Change

    Received: 20 Dec 2023; Accepted: 29 Jul 2024.

    Copyright: © 2024 Heath, Brewin, Pitarch and Raitsos. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Robert J. Brewin, University of Exeter, Exeter, EX4 4PY, England, United Kingdom

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.