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Improved sea surface salinity
data for the Arctic Ocean derived
from SMAP satellite data using
machine learning approaches
Alexander Savin1,2*, Mikhail Krinitskiy1,2
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1Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia, 2Moscow Institute
of Physics and Technology, Dolgoprudny, Russia
Salinity is among the key climate characteristics of the World Ocean. During the

last 15 years, sea surface salinity (SSS) ismeasured using satellite passivemicrowave

sensors. Standard retrieving SSS algorithms from remote sensing data were

developed and verified for the most typical temperature and salinity values of

the World Ocean. However, they have far lower accuracy for the Arctic Ocean,

especially its shelf areas, which are influenced by large river runoff and have low

typical temperature and salinity values. In this study, an improved algorithm has

been developed to retrieve SSS in the Arctic Ocean during ice-free season, based

on Soil Moisture Active Passive (SMAP) mission data, and using machine learning

approaches. Extensive database of in situ salinity measurements in the Russian

Arctic seas collected duringmultiple field surveys is applied to train and validate the

machine learning models. The error in SSS retrieval of the developed algorithm

compared to the standard algorithm reduced from 3.15 to 2.15 psu, and the

correlation with in situ data increased from 0.82 to 0.90. The obtained daily SSS

fields are important to improve accurate assessment of spatial and temporal

variability of large river plumes in the Arctic Ocean.
KEYWORDS

sea surface salinity, machine learning, SMAP, river plume, Arctic Ocean
1 Introduction

Sea salinity is a crucial factor for understanding physical processes in the World Ocean

and is recognized as one of the key climate variables (Durack et al., 2016). Sea salinity affects

sea density, heat capacity, and other characteristics of seawater. Salinity together with

temperature determine the global system of density currents in the World Ocean (Le Vine,

2019; Le Vine and Dinnat, 2020). Sea salinity is influenced by multiple processes including

precipitation and evaporation, continental freshwater runoff, ice formation and melting. As a

result, salinity measurements provide information about internal ocean water structure, as
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well as ocean–atmosphere and land–ocean interactions (Horner-

Devine et al., 2015; Durack et al., 2016; Dinnat et al., 2019).

During the last 15 years, remote sensing measurements are

actively used to gather sea surface salinity (SSS). The Soil Moisture

and Ocean Salinity (SMOS) mission (Kerr et al., 2010) (launched in

2009), the Aquarius mission (Le Vine et al., 2007) (launched in 2011),

and the Soil Moisture Active Passive (SMAP) mission (Entekhabi

et al., 2010) (launched in 2015) provide sea salinity data. L–band (1.4

GHz) microwave sensors, installed on these satellites, allow to retrieve

SSS values frommicrowave radiation data (Boutin et al., 2018; Dinnat

et al., 2019; Le Vine, 2019; Reul et al., 2020). These satellites provide

data with spatial resolution of approximately 25 km and ensure

Global coverage approximately within 3 days.

Standard algorithms that are used to retrieve SSS values from

microwave radiation data were designed and validated with high

precision (up to 0.1 psu) for tropical and open ocean temperature

and salinity conditions of the World Ocean. However, these

algorithms have lower accuracy (about first units of psu), when

retrieving SSS in the Arctic Ocean (Carmack et al., 2016; Matsuoka

et al., 2016; Garcia-Eidell et al., 2017; Kao et al., 2018; Tang et al.,

2018; Dinnat et al., 2019; Qin et al., 2020; Supply et al., 2020). In

addition to low temperatures (below 5–10 °C), Arctic shelf regions

are characterized by high spatial and temporal variability of salinity

due to large river runoff, as well as seasonal sea ice melting. Both

these processes, which determine sea salinity in coastal and shelf

Arctic waters, show large seasonal and inter-annual variability.

Furthermore, the accuracy of satellite algorithms for SSS retrieval

decreases in coastal areas near the coastline (Kolodziejczyk et al.,

2016; González-Gambau et al., 2017; Kao et al., 2018; Olmedo et al.,

2018; Qin et al., 2020). All these mentioned factors have significant

negative impact on the quality of SSS retrieval algorithms in the

Arctic Ocean. Nevertheless, there is a certain encouraging progress

in capturing the general patterns and seasonal cycles in high

latitudes using satellite–derived SSS data (Kubryakov et al., 2016;

Fournier et al., 2019; Martıńez et al., 2021; Zhao et al., 2022).

There are two main ways of correcting standard algorithms for

retrieving SSS using remote sensing data. The first one, which is a more

common approach, consists in modification of the dielectric

permittivity seawater model that plays a key role in the SSS retrieval

process (Liu et al., 2010; Dinnat et al., 2019; Reul et al., 2020; Supply

et al., 2020). In this case, the dielectric permittivity allows to determine

the reflection coefficients using the Fresnel equations, from which the

emission coefficients are computed (Dinnat et al., 2019; Zabolotskikh

and Chapron, 2020). The brightness temperature value is then derived

from these coefficients, which is used in SSS retrieval algorithms. The

second approach consists in usage of machine learning (ML), which is

applied to find complex statistical dependence between the considered

variables. This method was used to retrieve SSS in coastal regions,

affected by intense river runoff (Jang et al., 2021). These areas are

located near the coastline, and SSS retrieval becomes challenging for

standard algorithms due to land contamination.

The aim of this study is to improve standard SMAP algorithm for

SSS retrieval usingML approaches to provide better quality for the shelf

areas of the Arctic Ocean that are strongly influenced by river discharge.

ML models are trained and validated using in situ measurements of

SSS, collected during multiple oceanographic surveys performed from
Frontiers in Marine Science 02
2015 to 2021 in the Barents, Kara, Laptev, and East Siberian seas. The

most significant features for determining SSS are identified and the

distribution of errors in the obtained data is analyzed in this study.
2 Data

2.1 SMAP satellite and ancillary data

In this study, data from SMAP Salinity version 4.0 Level 2C,

distributed by the National Aeronautics and Space Administration

(NASA) Physical Oceanography Distributed Active Archive Center

(PO.DAAC) (Meissner et al., 2022), is used for training and

validating ML models.

Brightness temperature in vertical and horizontal polarizations

(i.e., the main data measured by the microwave sensor), as well as

the SSS from the standard algorithm (i.e., the standard SMAP SSS

product for scientific applications) are used in this study. Other

characteristics provided by different sources synchronized with the

satellite measurements are also assimilated. These include the solar

zenith and azimuth angles for the observation point, land fraction

weighted by antenna gain pattern, land fraction within footprint,

and sea ice fraction weighted by antenna gain pattern. Moreover,

additional data from external sources is used as feature descriptions

for ML models, such as sea surface temperature from the Canadian

Meteorological Center (CMC), wind speed and direction from the

Cross-Calibrated MultiPlatform wind vector analysis (CCMP), and

average solar flux from the National Centers for Environmental

Prediction (NOAA NCEP). All the satellite-measured and external

data are projected onto a unified spatial-temporal grid and

distributed by NASA PO.DAAC as a joint product.
2.2 ERA-5 atmospheric reanalysis data

In addition to the data distributed by NASA PO.DAAC, ERA-5

atmospheric reanalysis data from the European Centre for

Medium-Range Weather Forecasts (ECMWF), which is provided

by the Copernicus Climate Change Service (C3S) (Hersbach et al.,

2020), is also used in this study. ERA-5 provides information on

atmospheric conditions from 1979 to the present moment,

including data on atmospheric temperature, humidity, pressure,

wind speed, and wind direction.

ML models utilize data on near-surface atmospheric conditions

including sea level pressure, air temperature at the height of 2 meters,

and zonal and meridional wind components at the height of 10

meters. Considering these parameters is necessary in ML algorithms

due to their strong influence on the incoming microwave radiation,

which can lead to potential distortions in the results, obtained from

standard algorithms (Dinnat et al., 2019; Reul et al., 2020).
2.3 In situ salinity data

In situ data used in this study were collected during multiple

oceanological expeditions, conducted by Shirshov Institute of
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Oceanology, Russian Academy of Sciences and Il’ichev Pacific

Oceanological Institute, Far Eastern Branch, Russian Academy of

Sciences. The measurements were performed onboard research

vessels “Academic Mstislav Keldysh” and “Academic Ioffe” from July

to October in 2015–2021 with spatial resolution ∼ 50 m (Osadchiev

et al., 2020a, Osadchiev et al., 2020b; Osadchiev et al., 2021a, Osadchiev

et al., 2021b, Osadchiev et al., 2022; Osadchiev et al., 2023a, Osadchiev

et al., 2023b). In total, over 1.1 million individual SSS measurements

were collected. The coverage of in situ measurements in the Arctic

Ocean analyzed in this study is demonstrated in Figure 1.

Multiple in situ measurements demonstrated that the Ob-

Yenisei and Lena plumes have distinct vertical and lateral salinity

gradients at the isohalines of 14–16 psu and at the isohalines of 24–

26 psu (Osadchiev et al., 2021a, Osadchiev et al., 2021b). The first

frontal zone at 14–16 psu represents transformation of freshwater

discharge on synoptic time scales (i.e., several weeks), while the

second frontal zone at 24–26 psu represents transformation of

freshwater discharge on seasonal time scales (i.e., several months).

The distribution of SSS data values among the analyzed in situ

measurements is shown in Figure 2. The majority of the collected

data was obtained at areas limitedly affected by river discharge with

SSS values exceeding 24 psu. These SSS values will be referred to as

“high” salinities. “Low” salinities will refer to values below 15 psu,

mainly found in estuarine areas with a strong influence of river

runoff. Salinities between 15 and 24 psu will be called “medium”

salinities. It should be noted that in (Jang et al., 2021) low salinities

(mainly starting from 20 psu) as compared to typical salinities of the

World Ocean (33-38 psu) were examined. However, considering

the specific characteristics of the Arctic seas, in this study, salinities

above 24 psu are referred to as high salinities since the measured

SSS values covers wide range of values from 0 to 35 psu.
3 Methodology

3.1 Data used

In this study, the SMAP SSS is improved using ML approaches.

The ML models utilize a feature set consisting of 13 variables,
Frontiers in Marine Science 03
namely, 12 variables are derived from the standard SMAP

algorithm and one is the SMAP salinity product obtained through

the standard algorithm. These variables were described in Section

2.1. Consideration of these features is motivated by several reasons.

First, the complexity of the problem is a key consideration.

Improving SSS estimates across the entire range of values from 0

to 35 psu using only brightness temperature data is found to be

insufficient (Fore et al., 2016). Second, errors in the salinity retrieval

algorithms caused by the proximity to land or sea ice provide

significant challenges. Ice drift, formation, and melting could

significantly decrease the accuracy of standard algorithms (Fore

et al., 2016; Reul et al., 2020; Meissner and Manaster, 2021). To

address these challenges, features characterizing the land and sea ice

fractions are included to the analyzed data set. Furthermore, the

quality of the incoming microwave radiation could be affected by

the solar angle at the study area. Features describing the solar angle

serve as indicators of data quality for the ML models.

In situ data is used for training and validation of ML models. In

situ and satellite measurements are compared according to their

spatial and temporal proximity. In situ and satellite data is

considered to be from the same grid cell and compared if the

distance between the satellite and in situ measurement points does

not exceed 10 km, and the time difference between measurements is

no more than 3 hours. In different studies, the time difference for

comparison ranges from up to 12 hours (Boutin et al., 2018) to up to

3 hours (Jang et al., 2021). In this study, the small acceptable time

difference can be attributed to the high temporal variability in

surface salinity due to the energetic dynamics of river plumes. The

data is split into training and testing sets for model validation based

on day of year, meaning all data collected within a single calendar

day is included either to the training or testing set. The verification

dates are randomly selected from the entire data set, ensuring that

the feature descriptions and target distributions of variables in the

testing set align with those in the training data.

During the matching process, for each satellite measurement

point, all in situmeasurements that meet the mentioned spatial and

temporal criteria are selected. As a result, there can be multiple in

situmeasurements corresponding to one satellite measurement and

vice versa, introducing natural variability into the data. In total,
FIGURE 1

Spatial distribution of in situ salinity data collected in 2015–2021 in the Arctic Ocean and analyzed in this study.
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after the matching, there are approximately 500,000 pairs of

satellite–in situ measurements, with around 350,000 pairs

representing different in situ measurement points. On average,

each in situ measurement corresponds to 1.4 different sets of

satellite features.

To retrieve atmospheric pressure, temperature, and near-

surface wind fields in the vicinity of in situ measurements, some

ML models consider two-dimensional ERA-5 data in addition to

SMAP data as a part of the feature description (Hersbach et al.,

2020). ERA-5 data is distributed on a regular grid with a spatial

resolution of 0.25° and a temporal resolution of 1 hour. In situ and

satellite measurements are transferred to this grid for correct

matching with ERA-5 data.

Processing of ERA-5 data aims to improve the accuracy of

retrieving of atmospheric conditions around the observation points.

These fields are considered in an approximate neighborhood of 250

km in both the meridional and zonal directions, which corresponds

to 2.25° in the meridional direction and 8° in the zonal direction

from the observation point.
3.2 Comparison of in situ and satellite
SSS data

As discussed in (Boutin et al., 2016; Reul et al., 2020), several

issues arise when validating satellite algorithms for retrieving SSS

using in situ data. The first issue is that in situ measurements are

pointwise samples, and their density is usually much higher than

that of satellite data. Satellite data, on the contrary, is spatially

averaged data, with resolution starting from several kilometers.

Additionally, the variables used in the standard SMAP algorithm

are taken from various sources and then transferred to a unified

spatial and temporal grid. This interpolation may also lead to

additional biases.

The second issue of matching satellite and in situ data is that

satellite radiometers operating in the L-band range receive signals

from the upper millimeters of the ocean surface. In situ

measurements are typically taken at depths of 2–4 meters. In case

of high stratification in the upper layer, which can be caused by high
Frontiers in Marine Science 04
precipitation and strong evaporation (however, not typical for the

Arctic Ocean during the warm season (Haine et al., 2015)), as well

as the inflow of river discharge and ice melting (both processes play

a significant role in the study region), in situmeasurements may not

correspond to the satellite measurements due to the difference in

measurement depth, even if they were conducted with low spatial

and temporal difference (Boutin et al., 2016).

To examine the influence of vertical stratification in the upper

layer of Arctic shelf areas, this study considers in situmeasurements

conducted in 2018–2021. The aim of this consideration is to verify

that at the depth of in situ measurements (2–4 meters), salinity

differs from satellite-derived SSS less than a certain threshold value.

This value was chosen equal to 1 psu, and the difference between

salinity at 5 meters depth and the upper measured salinity in the

same profile was examined. Note that measurements of sea salinity

exactly at the sea surface generally are not available due to the

physical size of CTD instruments, presence of sea surface waves, air

entrapment during probe submersion and other factors. In fact, the

upper reliable measurement is obtained at a the depths of 1.5–2.5

meters, and this value was compared with the salinity measured at 5

meters in this study. It is assumed that the water from the surface to

a depth of 2 meters is mixed by wind waves (Rainville et al., 2011),

and the described comparison accurately solves the problem of

relation between the satellite and in situ measurements (Boutin

et al., 2016).

The map of vertical measurements at hydrographic stations in

the Arctic Ocean is shown in Figure 3. Blue points represent

stations, where the difference between the upper measured

salinity value and the value at the depth of 5 meters is less than 1

psu, red points represent stations where the difference is greater

than 1 psu.

Out of nearly 300 profiles demonstrated in Figure 3, in 93% of

cases difference between surface salinity and salinity at the depth of

5 meters is < 1 psu. Figures 3C, D show typical profiles at stations

that do not satisfy this condition. For instance, measurements at

stations of group A were conducted during intense sea ice melting

in close proximity to the measurement point (Figure 3C). Melting of

sea ice reduces salinity of surface layer in the Arctic Ocean, because

sea ice salinities (< 10 psu) are much less that seawater salinities
FIGURE 2

Salinity distribution among the analyzed in situ measurements. Red vertical lines demonstrate thresholds between low (< 15 psu), medium (between
15 and 24 psu) and high (> 24 psu) salinity classes.
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(Cox and Weeks, 1974; Tucker et al., 1987; Wang et al., 2020).

Melting of sea ice releases large freshwater volume to the surface sea

layer reducing its salinity till the depths of 5-10 m (Perovich et al.,

2021). Salinity at greater depths remains stable, which is

demonstrated in Figure 3C.

Stations in groups B and C were conducted within the Ob-Yenisei

and Lena river plumes, respectively (Figure 3D). The stratification in

the near-surface layer here is not as strong as in the case of intense sea

ice melting, but it exceeds the considered threshold value by 1 psu.

However, the overwhelming majority of profiles exhibit small

difference between salinity at the depth of 5 meters and at the sea

surface indicating that the methodology of comparing satellite data

and in situ measurements is correct.
3.3 Machine learning approaches

3.3.1 Classical ML models
Machine learning (ML) approaches were previously used for

processing remote sensing data, including SSS retrieval (Chen and

Hu, 2017; Pham et al., 2017; Wang and Deng, 2018; Bao et al., 2019;

Cho et al., 2020; Kim et al., 2020; Jang et al., 2021). This study

considers ML models from classical methods like Random Forest

(RF) and Gradient Boosting (GB) to deep artificial neural networks

(ANN) of various architectures. A linear regression (LR) model is

used as a baseline model to assess the quality of the results that can

be obtained using ML models.

Certainly, in this study an improvement in the accuracy of SSS

estimation compared to standard satellite algorithms is expected,
Frontiers in Marine Science 05
and models that do not achieve such results are not considered

meaningful. At the same time, we use a simple linear model for

comparing the quality of results obtained by different models.

The first of the main ML models considered in the study is the

RF model (Breiman, 2001), which is often used for regression and

classification tasks. This model is an ensemble of decision trees,

each of them individually may provide low quality in solving the

task, but by having a large number of them, a better performance

could be achieved. Each decision tree consists of nodes that split the

input features and leaves those, which contain the value of the target

function. The ensemble consists of multiple trees with different and

random parameters. In this study, a model implemented in the

scikit-learn library (Pedregosa et al., 2011) is used.

The second classical ML model considered in the study is GB.

Similarly as if was in RF, this model is also based on weaker models.

However, unlike RF, where decision trees are built independently

for each sample, in GB this process happens sequentially, and earlier

trees are used to improve the subsequent ones. The main variable

hyperparameter of GB model is the maximum number of

constructed trees. CatBoost Gradient Boosting model

implemented by Yandex (Dorogush et al., 2018) is used in this

study. The search for optimal hyperparameters for the RF and GB

models is performed using the optuna framework (Akiba

et al., 2019).

All three described classical models are considered in two

configurations: “single-level” and “two-level”. In the “single-level”

configuration, the models are used to directly predict the SSS values

over the entire range of measured natural values, effectively solving

the regression task (Figure 2). The “two-level” configuration has a
A B

DC

FIGURE 3

Location of stations with small (< 1 psu, blue dots) and large (> 1 psu, red dots) salinity difference between the surface layer and the depth of 5 m in
the Kara Sea (A) and in the Laptev and East Siberian seas (B). Examples of vertical salinity profiles with large salinity difference between the surface
layer and the depth of 5 m due to intense sea ice melting (C) and within river plumes (D).
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more complex configuration. First, it solves a classification problem

to split the salinity values into “low”, “medium”, and “high” as

described in Section 2.3. Then, based on the predicted class, a

regression model is applied to predict SSS.

The complexity of the “two-level” configuration is driven by

highly uneven distribution of in situ SSS. The majority of the

measurements refer to high salinity class, which means that these

data would be encountered more frequently during the model

training. It means that the model would be well-trained on the

part of the data spectrum where the density of the distribution is

high, but would perform noticeably worse on the opposite side of

the salinity spectrum. To account this issue, methods of non-

uniform data sampling grouped by a certain feature, such as the

target variable value, are commonly applied. In this study, instead of

adjusting the weight coefficients for individual data points, different

models are trained on separate classes. This approach is considered

more preferable, because the determined classes mainly correspond

to fundamentally different water masses. If waters with high salinity

values have pure oceanic origin, the low salinity values indicate the

formation of these waters as a result of mixing of river runoff with

saline seawater.

3.3.2 Artificial neural networks
Apart from the classical models, various types of artificial neural

networks (ANN) are also examined in this study. One such type is

the Multilayer Perceptron (MLP), which is the most common

architecture of ANN. It comprises mult iple neurons

interconnected to map the input features to the target variable. In

this study, the model involves a feature set consisting of 13

satellite variables.

Similarly to the classical models, the neural network approach

also considers a “two-level” analog. However, unlike the classical

solutions where the classification and regression tasks were solved

sequentially, in this algorithm, the class values obtained from the

satellite variables themselves serve as input features for the SSS

retrieval. The architecture of this model is demonstrated

in Figure 4A.

The last configuration of artificial neural networks considered

in this study allows inclusion of two-dimensional fields of

atmospheric pressure, temperature, wind speed and wind
Frontiers in Marine Science 06
direction in addition to satellite measurements near the

observation point. The architecture of this model is depicted

in Figure 4B.

To extract features from the two-dimensional data,

Convolutional Neural Networks (CNN) are employed. To

enhance generalization and efficiently extract meaningful features,

the convolutional part of the overall neural network is pre-trained

using an autoencoder approach on data from July to October of the

years 2000–2019. Data for pre-training is randomly selected

uniformly across time and space. The encoder for the two-

dimensional data has an AlexNet-like neural network model

configuration (Krizhevsky et al., 2012), which consists of

convolutional layers with gradually decreasing dimensions and

increasing numbers of channels. At each convolutional stage, two

additional channels representing the two-dimensional coordinates

of the considered data fields are added to the input features. This

approach aids in enhancing the overall informativeness of the

extracted features.

Another type for the encoder is based on a ResNet-like neural

network model configuration (He et al., 2016). This model consists

of blocks that include two convolutional layers, optional dimension

reduction and/or channel increase, as well as feature transport from

the block input and its sum with the block output. In this study, the

convolutional layer is also enhanced with spatial positional

encoding. In all neural network models used, a nonlinear

activation function Mish (Misra, 2019) is added between each

pair of weight layers, which has a number of advantages over the

classical Relu activation function (Nair and Hinton, 2010).

Pre-trained convolutional encoder derives features from two-

dimensional physical field description and adds them to the satellite

feature set, processed through MLP. From all the obtained variables,

a unified vector is formed and fed into the final MLP, which

retrieves SSS. The architecture of the entire model is

demonstrated in Figure 4B.

For training of all models used in this study, the mean squared

error (MSE) between the model predicted values and the measured

SSS values is used as the loss function. In addition, the correlation

coefficient r is considered as a quality metric. Optimization of the

models is not based on this metric during training, but it is taken

into account when interpreting the obtained results.
A B

FIGURE 4

Neural network models applied in this study including composite classification and regression model (A) and composite model considering SMAP
and ERA-5 features (B).
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4 Results and discussion

4.1 Accuracy of SMAP SSS data in the
study area

To examine the quality of standard SMAP SSS algorithm in the

Arctic shelf areas, the differences between the measured in situ SSS

values and the satellite estimates were calculated. Figure 5

demonstrates the distribution of errors in satellite salinity relative

to the measured values. The Root Mean Squared Error (RMSE) is

3.15 psu, and the correlation coefficient r between them is 0.82. In

addition to the entire error distribution, errors for the low, medium,

and high SSS value classes (as defined in Section 2.3) are considered.

Such error distributions are presented in Figures 5C–E.

For the described in Section 2.3 classes, the RMSE values are 6.06

psu, 3.41 psu, and 2.41 psu, respectively. Satellite algorithms perform

best on high SSS values, i.e., outside the zone of significant influence of

river runoff. The salinity of these waters is the closest to the typical

values in the World Ocean, hence, the best performance of standard

satellite algorithms is achieved on this SSS class. At the same time, the

majority of the measured SSS values belong to this class, and therefore

the quality of both algorithms, standard and developed in this study, is

mainly determined by their performance on this salinity class. It should

also be noted that the standard algorithm predicts SSS values above 40

psu at some observation points. However, values above 35 psu are not

observed in the considered set of in situ data.

Since a significant part of the Arctic Ocean is characterized by

low SSS values, the aim of this study is to develop a model capable of

accurately estimating SSS at the entire range of SSS values including
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low salinities. While errors of the satellite algorithms relative to the

measured values follow normal distribution for high and medium

salinity values, the error distribution for low salinity values appears

to be more complex. Although the mean error of standard satellite

algorithms here is 6.06 psu, individual differences are up to 30 psu.

Therefore, it is necessary to consider the loss function and quality

metrics for all major parts of the target variable distribution.

As previously was noted in (Fore et al., 2016; Qin et al., 2020; Reul

et al., 2020), the performance of satellite algorithms is influenced by

various different conditions at the observation point, such as

atmospheric temperature and pressure, the presence or absence of

coastline or sea ice, etc. We investigated the dependency of error of

standard algorithms relative to observations at different months of year.

Despite an overall RMSE of 3.15 psu, the highest error occurs in July,

reaching 4.16 psu. This feature is caused by the fact that nearly half of in

situmeasurements in this month were located in coastal areas with low

SSS values. Satellite algorithms perform best in August and September,

with RMSE values of 2.72 psu and 2.98 psu, respectively. Almost half of

all measurements were performed within these two months, and the

determined accuracy can be considered as mostly correct. The largest

number of measurements is collected in October, with a significant part

of them referring to medium SSS values. The RMSE value for October

is 3.33 psu. Decrease in accuracy with a relatively low presence of

freshwater can be explained by low sea surface temperatures in October

(Osadchiev et al., 2023a), which reduce the sensitivity of satellite

radiometers to the incoming microwave radiation (Kolodziejczyk

et al., 2016; Dinnat et al., 2019; Reul et al., 2020). Another reason is

the increase of ice coverage in October, which reduces the performance

of standard SSS retrieval algorithms.
A B

D EC

FIGURE 5

Characteristics of SMAP sea surface salinity retrieval algorithm assessed using in situ salinity measurements in Arctic Ocean: a scatter diagram of
SMAP SSS compared to in situ salinity (A), error distributions for the full range of salinity (B), and for low (C), medium (D) and high (E) salinity values.
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4.2 Application of different models

The most classical neural network ML models showed an

improvement in the quality of SSS retrieval compared to standard

algorithms. The results are presented in Table 1. In this study, linear

regression is considered as the baseline ML model. Some linear

models have already been constructed to correct errors in satellite

algorithms (Kolodziejczyk et al., 2016; Qin et al., 2020). Currently, the

linear model is not used as the main method for SSS retrieval, but it

can be utilized as an estimation of possible ML performance. So, the

linear regression model overall showed higher results as compared to

standard algorithms (Table 1), and the performance of the other

models can be compared to the performance of the linear model.

The two main classical ML models considered in this study are RF

andGB. As described in Section refmodels, thesemodels were examined

in both a “single-level” and “two-level” approach. The hyperparameters

of the models were tuned using the optuna framework.

RF and GB models yield improved quality compared to the

standard satellite algorithms. However, the RF model demonstrates

inferior SSS retrieval results compared to the linear model. On the

contrary, the quality of GB model surpasses both the LR and RF

models. Besides, “single-level”models, which were trained on the entire

spectrum of SSS values, perform better on high andmedium SSS values.

Neural network models trained on satellite vector feature set did

not show an improvement in SSS quality compared to standard

algorithms. Moreover, they yielded poor results while retrieving
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medium SSS values, performing worse than the standard

algorithms. The error values presented in Table 1 for these

models are significantly higher as compared to the classical models.

The addition of two-dimensional atmospheric data from ERA-5

also did not improve the results despite high performance of pre-

trained encoder model for climate data extraction.
4.3 Selection of the best model

As a result of applying classical ML models, the best results were

achieved using GBmodel, both for the described SSS classes and for the

entire distribution. RMSE values for the difference between in situ SSS

values with predicted ones (Table 1), improved as compared to the

results of the standard SMAP algorithm. The correlation coefficient

increased from 0.82 to 0.90. The characteristic distributions of SSS error

obtained using the best algorithms are shown in Figure 6.

The best ML model improved quality of the standard

algorithms. The overall error for all dataset was 2.15 ± 0.18 psu

(for the standard algorithm it was 3.15 psu). For the selected low,

medium, and high SSS classes, the errors were 3.43 ± 0.86, 2.70 ±

0.29, and 1.71 ± 0.17 psu, respectively (for the standard algorithm,

they were 6.06, 3.41, and 2.41 psu, respectively). The best quality, for

both the standard algorithm and the models constructed in this

study, is achieved for high SSS values. The worst results of the

models are observed for low SSS values. This feature is caused by
TABLE 1 The results of the applied ML models for retrieving SSS. For each model MSE for low, medium and high SSS values are demonstrated.

Model

RMSE, psu Total

“Single-level” “Two-level”

Linear Regression

4.46 ± 0.72 4.77 ± 1.66

2.53 ± 0.213.11 ± 0.49 3.59 ± 0.58

2.00 ± 0.20 1.86 ± 0.16

Random Forest

4.39 ± 1.29 3.95 ± 0.98

2.64 ± 0.323.43 ± 0.50 3.34 ± 0.52

2.07 ± 0.30 2.04 ± 0.29

Gradient Boosting

3.75 ± 0.87 3.44 ± 0.86

2.16 ± 0.182.70 ± 0.29 3.67 ± 0.66

1.71 ± 0.17 1.85 ± 0.28

MLP

4.75 ± 0.78 4.56 ± 0.79

3.21 ± 0.293.81 ± 0.56 5.33 ± 1.03

2.13 ± 0.34 2.32 ± 0.31

MLP with ERA-5

4.25 ± 0.37

2.26 ± 0.263.55 ± 1.07

1.83 ± 0.16

SMAP SSS

6.06

3.153.41

2.41
fro
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relatively small amount of data in this range, as well as complex

spatial and temporal variability of river plumes.

Note that there are different x- and y-axis in Figures 5, 6, because

Figure 5 demonstrates the whole set of data, while Figure 6

demonstrates only the test set. Also, Figures 5, 6 show different orders

of errors between the satellite algorithms and the developed model. The

errors in the satellite algorithms exceed 20 psu, and we choose a wider x-

axises in panels (B)–(E) in Figure 5 than those in Figure 6.

Further analysis of the obtained results will be conducted using

the best constructed “two-level” composite model. It consists of a

classifier, based on the results of which the SSS value is predicted

according to the algorithm for low SSS if the low salinity class was

predicted, or according to the algorithm trained on the entire range

of SSS values if the predicted class differs from the low salinity class.
4.4 Model error distribution

As was mentioned earlier, the performance of satellite

algorithms depends on the geographical location and atmospheric

conditions of the study area. Some features considered in the SSS

retrieval model aim to account for factors such as proximity of the

observation point to the coastline or to sea ice, which can negatively

impact the quality of standard algorithms (Fore et al., 2016; Kao

et al., 2018; Olmedo et al., 2018; Qin et al., 2020; Reul et al., 2020).

To assess the quality of the constructed model, the spatial

distribution of errors is examined on the test data set (Figure 7A).

It should be noted that the summer measurements mainly
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correspond to the Kara Sea and do not cover other regions, as

those areas are mainly ice-covered during this period (Osadchiev

et al., 2021b). Errors in these regions occur mainly near the coastline

and in the ice melting areas, as well as in the regions influenced by

river runoff. Errors decrease at the observation points located off

these areas and are close to zero in the open sea.

A similar pattern also takes place during the autumn period. The

model tends to underestimate the SSS values at the boundaries of river

plumes and tends to overestimate them closer to the estuarine zones. In

ice formation areas, SSS values also become underestimated. Errors

occurring near the ice edge can be explained by the fact that the water

surface near ice masses is intensively freshened due to sea ice melting

(Zhang et al., 2023). At the same time, the salinity of seawater sharply

increases at the depth of several meters. Since satellite measurements

correspond to the upper millimeters of the ocean surface (Reul et al.,

2020), and the in situ data used to verify the algorithms are taken at

depths of 2–4 meters, greater discrepancies between algorithm

products and in situ SSS values may be observed in such areas, as

discussed in section 3.2. The use of sea ice fraction as a feature in the

ML model aims to account for this bias, but it is not possible to

adequately correct the errors in such areas.

Figure 7B demonstrates dependence of the difference between

in situ and predicted SSS values obtained from the constructed

algorithm, with the density of data points plotted by the day of the

year. First, the majority of the data points were collected in

September and October, which corresponds to the period with

the highest number of in situ SSS measurements. Secondly, the

difference distribution is concentrated around zero, and the
A B

D EC

FIGURE 6

Characteristics of a model providing the best SSS approximation quality: a scatter diagram of predicted SSS compared to in situ salinity (A), error
distributions for the full range of salinity (B), and for low (C), medium (D) and high (E) salinity values.
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amplitude of this difference remains roughly constant over time.

This indicates that the constructed model is able to accurately

estimate SSS values during both summer and autumn periods, even

when sea surface temperature decreases.
4.5 “Two-level” models

Overall, based on the results of all constructed models (Table 1), it

can be concluded that “single-level”models perform better for high and

medium salinity values, while “two-level” models show higher quality

for low values. This can be explained, first, by the distribution of the in

situ data, i.e., the distribution of the target variable (Figure 2). It has

almost normal distribution with a clearly pronounced peak around 29

psu and a long tail towards low salinity values. As was expected, the

model performance decreases as the target variable values move away

from the peak, resulting in the worst resolution in the low salinity

range. This problem could not be resolved by common normalization

of the entire distribution, because the amount of data related to the high

salinity class accounts for approximately 70% of the total number of

available measurements. Once the data would be normalized, the

distribution peak would not shift significantly, and its structure

would remain almost unchanged.

Second, the low quality for low and medium salinity values in the

“two-level” models may be related to relatively poor classification

accuracy. In the best models, the accuracy metric reaches a value of

0.90 ± 0.02. However, it is important to understand that this relatively
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high indicator is mainly determined by the large amount of data in the

high salinity class, which is easily classified. The F1 score provides a

better insight into the problem, for low salinity values, it is 0.70 ± 0.13,

for medium values it is 0.75 ± 0.05, and for high values it is 0.96 ± 0.01.

The low quality for the first two classes can be explained by arbitrary

division into medium and high values, because the threshold value

equal to 15 psu is not observed at the distribution structure.

Since the best quality was achieved by the “two-level” composite

model, which has relatively poor classification accuracy, it is important

to consider the quality of the algorithms not only on the defined salinity

classes but also at the boundary between the low and medium classes.

The objects that were misclassified and were processed by the “wrong”

algorithm when solving the regression task are of special interest.

Classification errors occur in two main cases. First, such data are

geographically located in areas where freshwater masses prevail. This is

observed from the second half of August to mid-September. Second,

classification errors could occur in late October during the beginning of

the ice formation period, and at that time, they might be outside the

influence of river plumes.

SSS values for objects belonging to low salinity class, i.e., up to 15 psu,

but classified as medium salinity values, are predicted by “one-level”

algorithm. In this case, SSS is retrieved with relatively high accuracy. This

is because during the training of “one-level” models, there were low

salinity values in the training data set, and the model operates them well.

Another situation occurs when objects with initially medium salinity

values are classified as having low salinity values. With such data, the

model trained on low salinity class performs significantly worse,
A

B

FIGURE 7

Spatial (A) and temporal (B) error distribution of SSS.
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assigning them low salinity values. Thus, summarizing the fact that in the

first case, the salinity values are determined well, and in the second case,

the model tends to underestimate the real values, it could be concluded

that in general, around 15 psu, the predicted SSS values are slightly

underestimated compared to the in situ ones. This is also demonstrated

by the quantile-quantile plot shown in Figure 8A. In addition, SSS values

around 25 psu are also underestimated. This can be explained by the fact

that the inner plume front bounding the estuarine zone correspond to 15

psu, and the outer boundary of the plume correspond to 25–28 psu. In

these areas, there is active mixing of different water masses, and the

quality of SSS retrieval algorithms decreases.

However, despite all the flaws of “two-level” models, a

regression model trained on the low salinity class and working

only on it shows significantly higher quality than the “one-level”

model on this class. Although the error values of the constructed

algorithms seem to be close (3.43 ± 0.86 for the “two-level” model

and 3.75 ± 0.87 for the “one-level”model), a significant difference is

observed in the characteristic distribution of the error. In the first

case, it has the nature of a normal distribution with a pronounced

peak at zero, while when using a single model, the error distribution
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has several peaks, its center does is not located at zero, and the

model tends to predict overestimated SSS values (Figure 8B).

Since classification is important for obtaining results on low salinity

values, but at the same time its quality does not allow to achieve

expected results, another model architecture was considered, which has

been developed in neural network approaches. Classification is

performed, but the obtained class is used as a feature along with the

original satellite features. However, this approach did not yield the

expected results when using classical methods. The quality of the final

result did not improve for low salinity values.
4.6 Feature importance

Feature importance for the best model is demonstrated in

Figure 9. Note that there are different y-axis in Figures 9A, B. The

“single-level” model has an expected feature importance balance:

SSS from the standard SMAP algorithm plays the most significant

role here, as this variable is correlated with the target variable at 0.82

(Figure 9A). Among other features, the solar zenith angle, sea ice
A B

FIGURE 8

Quantile-quantile plot for in situ and predicted SSS (A). Error distribution for low salinity values, predicted by “single-level” model (B).
A B

FIGURE 9

Feature importance for the “single-level” model (A) and for low salinity values model (B).
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fraction, solar radiation flux, and the brightness temperature in

horizontal polarization are highlighted.

A more complex configuration is observed for low salinity

values in the “two-level” model (Figure 9B). In this case, the

salinity value from the standard algorithm does not play a

decisive role, which can be explained by the relatively low

accuracy of the standard algorithms for this part of the SSS

distribution. In addition to features describing the position of the

Sun above the observation point and the land and ice fractions, the

solar radiation flux, determined by cloud cover, plays an important

role, similar to the previous case. Solar energy has a significant

influence on the signal emitted from the water surface (Meissner

et al., 2018), which explains the high significance of this feature in

the SSS estimation. The role of wind, especially its direction, has

increased. It is interesting to note the different significance of the

zonal and meridional components. In the considered Arctic seas,

the meridional wind usually brings warm air from the continent,

while the zonal wind corresponds to the general direction of

atmospheric eastward circulation in the region. Finally, the signal

from the sea surface, i.e. the brightness temperature in horizontal

and vertical polarizations, has a significant influence on the model
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results. This is the main signal directly obtained from the satellite,

whi most of other features are supplied from external sources.

It is worth noting the high importance of wind and sea surface

temperature on the quality of sea surface salinity (SSS) retrieval

(Dinnat et al., 2019; Reul et al., 2020). Low sea surface temperature

in the Arctic Ocean provides a natural sources of errors, because it

decreases the sensitivity of the brightness temperature radiometers

(Martıńez et al., 2021).
4.7 The resulting SSS data

To examine the spatial and temporal variability of the large river

plumes in the Arctic Ocean as well as other water masses based on the

improved SSS values, daily and weekly average SSSmaps are created for

the Eurasian part of the Arctic Ocean. SSS values are calculated at

nodes of a regular grid with a step of 0.5° in latitude and 0.125° in

longitude.With this step, the grid becomes almost square around 75°N,

which corresponds to the center of the study region. These maps allow

distinguishing large Ob-Yenisei and Lena plumes, analyzing their

boundaries and internal structure during the ice-free period of the year.
FIGURE 10

Weekly averaged maps of the reconstructed SSS in the Eurasian Arctic Ocean in July–November 2020.
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As an example, Figure 10 shows typical weekly SSS maps

constructed from satellite data from July to November 2020. The

maps illustrate the distribution of the Ob-Yenisei and Lena plumes

during this period. Sharp increases in area can be observed for both the

Ob-Yenisei and Lena plumes during their formation in July, which

corresponds to the summer flooding season (Osadchiev et al., 2021a,

Osadchiev et al., 2021b). The Lena plume has a significantly larger area

(2–3 times) in the Laptev Sea and East Siberian Sea compared to the Ob-

Yenisei plume in the Kara Sea. In August-September, the areas of both

plumes remain stable, but there is synoptic variability in the position of

their boundaries. During this time, the salinity of the plumes gradually

increases due to the mixing with underlying saltier seawater under

conditions of reduced river runoff during the autumn period (Osadchiev

et al., 2021a, Osadchiev et al., 2021b). Clear boundaries of the river

plumes are visible until mid-October, after which these boundaries

begin to dissipate in the second half of October. By early November, the

areas covered by the Ob-Yenisei and Lena plumes become ice-covered.
5 Conclusions

In this study, machine learning approaches are considered to

improve satellite salinity in Arctic regions. Vector feature set from

SMAP and two-dimensional climatic fields from ERA-5 atmospheric

reanalysis are used as feature descriptions. The validation is carried out

on in situ data collected during multiple oceanographic expeditions.

Almost all the models examined in this study showed an improvement

of SSS quality compared to standard algorithms. The best composite

model, Gradient Boosting, increased the overall quality of SSS retrieval

from 3.15 psu to 2.15 ± 0.18 psu and from 6.06, 3.41, 2.41 to 3.43 ±

0.86, 2.70 ± 0.29, and 1.71 ± 0.17 psu for classes of low, medium, and

high salinity values, respectively. Since this model uses only vector

satellite features from SMAP, it is possible to retrieve SSS in the Arctic

Ocean in near real time.

The constructed model provides high accuracy in investigating the

spatial and temporal variability of themajor water masses in the surface

layer of the Arctic Ocean using surface salinity data. High accuracy of

the developed algorithm at low salinity values is especially important

for detecting spreading areas of river plumes, where the quality of

standard algorithms is low. The constructed SSS maps provide

opportunity to quantitatively assess seasonal variability of the

boundary and internal structure of the Ob-Yenisei and Lena river

plumes during the ice-free period of the year. Further studies, based on

the developed algorithm, will be focused on detailed analysis of the

seasonal and inter-annual variability of the area and salinity of these
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river plumes, as well as their dependence on river runoff, wind forcing,

and other external forcing factors.
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