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This study investigates that the subsurface pathways, travel time, and its

interannual variability of Fukushima-derived tracers subducted with the North

Pacific subtropical mode water (NPSTMW) using 22-year-long (1994–2015)

eddy-resolving (1/12°) and eddy-permitting (1/4°) ocean reanalysis. The

NPSTMW is a thick subsurface layer with low potential vorticity and relatively

uniform potential density, making it a key indicator of the North Pacific oceanic

conditions. A series of Lagrangian particle tracking simulations quantitatively

revealed that the Fukushima-derived particles moved along the Kuroshio

Extension (KE) and spread over the majority of the subtropical region in the

northwestern Pacific within 4–5 years. Approximately 36% of the particles flowed

eastward in the Kuroshio-Oyashio transition zone (KO) and thereafter re-

emerged to the sea surface at the remote area (near dateline), and 30% of

particles moved along the KE. The remaining 34% subducted into NPSTMW layer

and then widely spread out to the subtropical region along the re-circulation

gyre (RG), exhibiting a subsurface pathway during entire particle tracking. When

the particles were released, their pathway was immediately determined, whether

it flowed along the KO (>36°N), KE (30°–36°N), or RG (<30°N). Furthermore, the

interannual variability of the pathways was significantly associated with the

dynamic states of KE, such as the path length of the Kuroshio jet. This result

implies that understanding the subsurface dynamics and its variability of the KE

and NPSTMW is crucial for predicting the dispersion of radioactive materials in

the subsurface layer and its potential impact.
KEYWORDS

Fukushima-derived materials, North Pacific subtropical mode water, Kuroshio
extension, Ocean reanalysis, Particle tracking simulation
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1 Introduction

The North Pacific subtropical mode water (NPSTMW) is a

thick subsurface layer with low potential vorticity (PV) and a

relatively uniform potential density (sq = 24.8–25.7 kg m-3)

(Masuzawa, 1969; Oka and Qiu, 2012). The NPSTMW affects

geochemical tracers and the subtropical counter current (Kobashi

et al., 2006; Bates, 2012). The NPSTMW subducts into the

thermocline maintaining the wintertime sea surface temperature

(SST) and re-emerges to the surface during the following winter,

affecting the upper-layer distribution of nutrients and the oceanic

uptake of carbon dioxide (Sugimoto and Hanawa, 2005; Bates, 2012;

Oka et al., 2019; Oka et al., 2021). Therefore, the NPSTMW can be

considered as a good indicator of the oceanic conditions of the

North Pacific.

After the Fukushima Daiichi Nuclear Power Plant (FDNPP)

accident, which was triggered by the Tohoku earthquake and

tsunami on the 11th March 2011, a large amount of contaminated

water (~3.5 PBq) containing radioactive isotopes entered the Pacific

Ocean and the atmospheric deposition (12–15 PBq) as well

(Buesseler et al., 2011, 2012; Yoshida and Kanda, 2012; Kanda,

2013; Nagao et al., 2013). Many previous studies have reported that

a considerable amount of the radioactive materials were subducted

into the subsurface of the NPSTMW in the Kuroshio Extension

(KE) region (Kumamoto et al., 2014, 2018; Kaeriyama et al., 2016;

Inomata et al., 2018). Using observational data along 149°E section

during 2011–2012, Kumamoto et al. (2014) found the subsurface

radiocesiummaximum at a depth of 300 m in the subtropical region

and that its amount was about 6 PBq of 134Cs in the mode

water layer.

Subducted radioactive materials within the NPSTMW spread

into the subtropical region of the North Pacific (Men et al., 2015;

Cedarholm et al., 2019; Lee et al., 2023). Men et al. (2015) reported

that 134Cs was found at 21.50°N, 125.00°E at a depth of 200 m near

Taiwan Island after monitoring the area between 2011 and 2014.

They suggested that the radioactive materials originating from

FDNPP spread into the subtropical region along the subtropical

gyre of the North Pacific. Using high-resolution reanalysis data

from March 2011 to April 2013 and a backward particle tracking

simulation, Cedarholm et al. (2019) demonstrated that the

subsurface pathway, reaching the deepest observed cesium

location in 2013, runs along the KE to ~165°E, where it turns

sharply southward on the 26.5sq isopycnal surface. Using an eddy-

permitting (1/4° horizontal resolution) numerical ocean model to

estimate the dispersion path and travel time of the 137Cs released

directly from the FDNPP from 2011 to 2020, Lee et al.

(2023) reported that subsurface 137Cs spread clockwise in the

subtropical region, while a portion driven by the NPSTMW was

dispersed southward.

Meanwhile, based on the analysis of observational data between

1993–2004, Qiu and Chen (2006) found that NPSTMW formation

is increased (reduced) when the KE is stable (unstable).

Furthermore, Kim et al. (2022) demonstrated that NPSTMW

formation was closely related to the meridional and zonal

movements of the Aleutian Low, which stimulates sea surface

height anomalies propagating westward from the central North
Frontiers in Marine Science 02
Pacific. Xu et al. (2016) reported that the eddy effect also plays an

important role in transporting the NPSTMW into the subtropical

region by estimating PV transport using an anti-cyclonic eddy.

Using 17 Argo-profiling floats and 3,000 hydrographic profiles, they

suggested that the subduction and southward transport of the

NPSTMW by the anti-cyclonic eddy are comparable to that by

the mean flow in terms of magnitude. Although many studies have

reported the subsurface pathways of radioactive materials through

NPSTMW formation, the interannual variability of the pathways

has not yet been revealed due to limited study periods and the

spatial-temporal limitation of observational and model data. In

addition, the subsurface pathway of radioactive materials has

not been thoroughly investigated compared to its surface pathway

in previous studies (Behrens et al., 2012; Aoyama et al., 2013;

Inomata and Aoyama, 2023) because of the restraint of the

observational data.

Here, we quantitatively investigated the subsurface pathways of

particles on the 25.2sq isopycnal surface, which corresponds to the

NPSTMW, originating from Fukushima, as well as the travel time

and interannual variabilities of the particles using 22 years (1994–

2015) of ocean reanalysis data. The purpose of this study was to (1)

investigate the subsurface pathways and travel time of particles

originating from FDNPP during cooling seasons and (2) to reveal

the interannual variability of the pathways. In this study, we

consider the transport including subduction for the pathways of

the particles. The term “subduction” is regarded as ventilation of the

water mass, which leads to particle movement from the mixed layer

into the underneath layer (thermocline). This paper is organized as

follows. Section 2 explains the materials and methods. Section 3

explains the results of analyses of the subsurface pathways and its

interannual variability of the particles. Finally, Section 4

summarized and concludes the paper.
2 Materials and methods

2.1 Ocean reanalysis data

Two ocean reanalysis data models were used in the study; the

HYCOM (Hybrid Coordinate Ocean Model; HYCOM Global

Ocean Forecast System version 3.1) (Chassignet et al., 2007) and

the GREP (Global Ocean Reanalysis Ensemble Product) (Storto

et al., 2019). The GREP comprises four ensemble members, which

are C-GLORS, GLOSEA5, GLORYS2, and ORAS5, respectively. In

this study, the ensemble mean of the four GREP ensemble members

was used for particle tracking and analysis of the results. The

HYCOM has an eddy-resolving horizontal resolution (~1/12°

both in longitude and latitude) with 40 vertical levels and

enhanced resolution near the surface. All GREP ensemble

members share the tripolar ORCA025 grid, which is an eddy-

permitting horizontal resolution (~1/4° both in longitude and

latitude), with 75 vertical levels and enhanced resolution near

the surface.

HYCOM data, obtained every 3 hours, and GREP-ensemble

(hereafter GREP) data, obtained daily, were analyzed and validated

from January 1994 to December 2015. To examine the simulated
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NPSTMW in both reanalysis data, the vertical section of the density

and potential vorticity (PV) was compared, which was zonally

averaged over the longitudinal band of 140°–155°E, with the EN4

observational data (Good et al., 2013) (Supplementary Figure 1).

Compared with the EN4, both reanalysis data reproduced the

relatively thicker subsurface layer between 25.0 and 25.5 kg m-3

with the low PV (< 2.0 × 10-10 m-1 s-1) well, indicating the presence

of NPSTMW. In both reanalysis data, the low PV water, i.e.,

NPSTMW, was located between 100 m and 300 m in the

latitudinal band from 25°N to 35°N, although the HYCOM

reproduced a relatively thicker layer in the vertical direction

compared to those of the EN4 and GREP models. Although the

GREP reproduces a relatively denser NPSTMW, the cores of

the NPSTMW, which correspond to the minimum PV, appear on

the 25.2sq isopycnal surface in both reanalysis data. This result is

consistent with previous observations (EN4, Good et al., 2013) and

reports (Masuzawa, 1969; Oka and Qiu, 2012).

To validate the temperature distribution on the core layer of the

NPSTMW, the horizontal distributions of the simulated

temperature on the 25.2sq isopycnal surface was compared with

the EN4 (Supplementary Figure 2). Both reanalysis data reproduced

the horizontal distribution of the temperature on the 25.2sq

isopycnal surface well when compared to that of the EN4; for

example, simulated 5°, 10°, and 15°C isotherms were distributed at

similar positions with the EN4. In the subtropical region, the

differences between the two reanalysis data collections and EN4

were less than 0.1°C, while, the differences were over 1°C in the

subpolar region and the marginal seas (the Yellow Sea and the East

Sea/Japan Sea) due to limitations associated with the observational

data, such as the Argo floats, during data assimilation for those

regions. However, in this study, we focused on the subtropical

region, where the NPSTMW is mainly formed and spreads;

therefore, it is sufficient to investigate the pathways of the

FDNPP-originating particles along the NPSTMW layer.

To validate the interannual variability of the KE, the KE index,

which is defined by the normalized SSH anomaly in the KE region

(140°–165°E, 31°–36°N) (Qiu et al., 2014), was compared with the

estimated index from the AVISO data (Supplementary Figure 3).

The KE indices from both reanalysis data collections were highly

correlated with the estimated index from the AVISO data; the

correlation coefficients were 0.92 for HYCOM and 0.98 for GREP.

Because the NPSTMW is formed in the KE region and spreads into

the subtropical region, both reanalysis data collections were used to

investigate the variability of the pathways of the FDNPP-originating

particles along the NPSTMW layer. The KE state is represented by

the KE index which reflects the KE’s strength, path length and

meridional position; the increase of KE index, which is defined as

domain averaged SSH, in significant meanderings with rich eddies,

while the decrease of KE index tends to straighten its paths (Qiu

et al., 2014). When the KE jet is in a stable dynamic state, satellite

altimeter data further reveal tendencies with increasing eastward

transport and with pronounced northward position shift, while the

southern re-circulation gyre (RG) tends to strengthen and the

regional eddy kinetic energy level tends to decrease. The reverse

is true when the KE jet switches to an unstable dynamic state (Qiu

and Chen, 2006).
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2.2 Particle tracking model
and experiments

A Lagrangian particle tracking model was used to investigate

the pathway and the variability of the FDNPP-originating particles

(Seo and Park, 2020; Kim et al., 2021). It was based on that

employed by Kim et al. (2021) but included the derivatives of the

diffusion coefficients, which prevent the artificial accumulation of

particles in regions of low diffusivity (Proehl et al., 2005; Lynch

et al., 2015; Periáñez et al., 2019) (Equation 1).

~xt+Dt =  ~xt +
Z t+Dt

t
~uc(~xt , t)dt + R

ffiffiffiffiffiffiffiffiffiffiffiffi
2KhDt

p
+
∂Kh

∂ x
Dt (1)

where, ~xt is the position of a particle at time t, Dt is the time

interval (4 h), and input data~uc is the ocean current. The input data

were linearly interpolated to particle positions and model time

steps. The Runge-Kutta fourth order scheme was used for time

integration (Dormand and Prince, 1980). R is defined as a random

number between -1 and 1, and Kh is defined as a horizontal

diffusion coefficient adopted from the Smagorinsky (1963) mixing

scheme (Griffies and Hallberg, 2000; Iwasaki et al., 2017; Choi et al.,

2018). When a particle reached a land grid, it was set to be reflected

elastically to the nearest ocean grid since it cannot be beached.

The particles were released at one hundred points in the region

of 141.2°–142.0°E, 36.7°–38.1°N (71 km × 156 km), and were 0.09°

and 0.16° apart in the zonal and meridional directions, respectively

(Figure 1A). It is noted that the area of our release point (71 km ×

156 km) is similar to that of a previous study (45 km × 150 km) by

Behrens et al. (2012), who conducted a long-term tracer simulation

over 10 years using the atmospheric forced ocean model. It is also

noted that we also conducted the particle tracking simulations in a

much smaller area (18 km × 44 km), and the results were robust

(Supplementary Figure 4). One hundred particles were released

every 3 days from January 1st 1994 to December 28th 2011, and a

total 216,000 particles were released. It should be noted that

particles were not released on every day of the month. The

particle trajectories were calculated up to 5 years; for example,

from January 1st 1994 to December 31st 1998. The forward tracking

simulation was conducted on the 25.2sq isopycnal surface, which is

the core layer of the NPSTMW (Supplementary Figure 1), to

investigate the pathways and variability of the FDNPP-originating

particles within the NPSTMW subduction. The domain from 115°E

to 160°W and 10°N to 50°N was designated as our study region,

where the NPSTMW is mainly observed (Masuzawa, 1969; Oka and

Qiu, 2012; Rainville et al., 2014). The results are robust regardless of

the 25.0sq and 25.5sq isopycnal surfaces, which comprise the upper

layer of the NPSTMW (not shown).

In the present study, the cooling seasons were the main focus,

because the NPSTMW is formed and subducted into the subsurface

layer during the cooler seasons. To investigate the pathways of the

particles during the NPSTMW subduction, the particles within the

mixed layer were analyzed after they were released, similar to

Cedarholm et al. (2019) who investigated the particles entering

the mixed layer near the FDNPP via backward tracking on the

26.5sq isopycnal surface, which is outside of the NPSTMW density

range (25.0–25.5sq), from 166°E, 30°N using the HYCOM data
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from March 2011 to April 2013. The mixed layer depth (MLD) was

defined as the thickness of the mixed layer where the vertical density

gradient ( − ∂ r
∂ z ) is less than 3.0 × 10-3 kg m-4, which is consistent

with the criterion of PV (2.0 × 10-10 m-1 s-1) for NPSTMW. Further,

Kim et al. (2022) and Nishikawa and Kubokawa (2012)’s definition

of the MLDwas used, which is more suitable to detect low PV water.

The particles, which were released from December to April within

the MLD, were 82,173 for HYCOM and 79,903 for GREP,

respectively. In both May and November, some of particles were

found to be located within the MLD; however, the number was too

few, thus we did not consider those months for the analysis.
2.3 Validation of the particle
tracking simulations

To validate the particle tracking simulations, we estimated the

probability of the particles released from March 11th to 31st of 2011

by considering the atmospheric deposition. Figure 1A shows the

atmospheric deposition of 137Cs estimated by the KAERI (Korea

Atomic Energy Research Institute). Most of radionuclide were

deposited near the Fukushima Daiichi Nuclear Power Plant

(FDNPP) and it is located the northern part of the initial particle

deployment site. Therefore, we only consider the particles within

the 137Cs concentration of 30,000 Bq m-2 (thumbnail map in

Figure 1A) and released from March 11th to 31st in 2011. It was

revealed that the results shown in the revised manuscript are all

comparable, supporting validity of our source field approach in our

process-oriented study. This was in fact expected because analysis of

KAERI’s results showed that the atmospheric deposition was 0.08

PBq at the south of Kuroshio Extension (141°–143°E, 30°–35°N),

while it was 1.47 PBq at the northern area (141°–143°E, 35°–40°N).

When we reduce the comparison sea region of 141°–143°E,

32°–35°N and 141°–143°E, 35°–38°N, the atmospheric deposition

amounts are 0.07 PBq and 1.18 PBq, respectively. The amount of
Frontiers in Marine Science 04
atmospheric deposition at the sea region north of KE is significantly

larger than that at the sea region south of KE. After 3 months, the

particles flowed eastward across 160°E (Figures 1B, C). After 6

months, the particles reached the dateline and spread in meridional

direction (Figures 1D, E). Figures 1F, G show the distributions of

the particles at the vertical-latitudinal section along 149°E during

the winter of 2011–2012. In the subsurface layer the particles were

distributed in the latitudinal band of 25°–35°N between 100 and 300

m. This result is similar to that of the observed 134Cs in the same

area during the winter of 2012 (Kumamoto et al., 2014). It is noted

that the results were robust regardless of particle release points’

number (30 by 30 points) (Supplementary Figure 5).

We also compared the particle distributions along 147°E and 165°E

sections with the observed radiocesium of Aoyama et al. (2016) and

Kaeriyama et al. (2023). Supplementary Figure 6 shows the particle

distribution at 147°E section. Simulated results from both reanalysis

data show that the particle distributions of 2013 are similar each other

and comparable to the observation in Kaeriyama et al. (2023), though

the simulated particles were located relative shallower depth (100–300

m) compared to the observed one (200–400m). Comparison simulated

results with Figures 1F, G (149°E section from 2011 November to 2012

March) displays that the particles moved further southward and spread

in vertical direction during a year (2012–2013). Supplementary

Figure 7 shows the particle distribution at 165°E section during June-

July-August of 2012 and 2015. Simulated results show that the particle

distributions of 2012 and 2015 are more or less similar to the

observations of Aoyama et al. (2016) and Kaeriyama et al. (2023),

which show the southward extension of particles and observed

radiocesium concentrations in 2015. However, close examination

reveals that there are some differences between simulated particle

distributions and observed concentrations; the simulated particle

distributions show an elongated pattern associated with oblique

subduction, while the observations are widely distributed in vertical

direction. It is obvious that this attributes to the limitation in particle

tracking method on the isopycnal surface.
B

C

D

E

F

G

A

FIGURE 1

(A) Atmospheric deposition of 137Cs estimated by KAERI (Korea Atomic Energy Research Institute, Suh et al., 2017). Initial particle deployment site (100
release points) is overlapped in thumbnail map. Thick black contour indicates 137Cs = 30,000 Bq m-2. Probability of particle trajectories during 3 months
from the FDNPP (release period: March 11th to 31st of 2011) of (B) HYCOM and (C) GREP data. (D, E) Same as (B, C) but 6 months. (F, G) Particle
positions at the meridional section along 149°E from the (F) HYCOM and (G) GREP data.
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3 Results

3.1 Subsurface pathways of Fukushima-
originating particles

The results of forward tracking on the 25.2sq isopycnal surface
are shown in Figure 2 using the probability distribution and mean

travel time (Rypina et al., 2014). In both reanalysis data, the

particles originating from the FDNPP flowed east along the KE,

and then moved southwest across the KE in the zonal band of 160°

E–180° (Figures 2B, C). The particles spread towards the east of the

Philippines and Taiwan islands along the subtropical gyre and then

moved northward along the KE. Although particle tracking was

conducted on the 25.2sq isopycnal surface in this study, the

spreading patterns in both reanalysis data are similar to those

reported in previous studies (Behrens et al., 2012; Rossi et al.,

2013; Cedarholm et al., 2019). It takes approximately 3–5 years to

reach the southwestern part of the North Pacific from the FDNPP

(Figures 2D, E), which has been confirmed in previous

observational and modeling studies (Behrens et al., 2012; Aoyama

et al., 2018; Inomata et al., 2018; Wang et al., 2022). In the

subtropical region (< 30°N), the probability and travel time in the

HYCOM were approximately 5% higher and 6 months faster than

those of the GREP, because the horizontal resolution and eddy

activity differ between the HYCOM (1/12°, eddy-resolving) and the

GREP (1/4°, eddy-permitting). It should be noted that less than 1%

of the total particles moved towards the subpolar region, the South

China Sea, and the marginal sea of the western North Pacific, such

as the East Sea/Japan Sea. Furthermore, it should be noted that the

results are robust, regardless of particle tracking on the 25.0sq and
25.5sq isopycnal surfaces, which are the density criteria of the

NPSTMW (25.0–25.5sq).
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To quantify the pathways of the particles, we separated the

pathways into three groups according to the trajectories (longitude,

latitude, and time) of each particle based on clustering analysis

(Gaffney, 2004). Figure 3 displays the three patterns of the particle

trajectories in both reanalysis data. The HYCOM and GREP

exhibited reasonably similar results, although there were some

differences in their trajectories due to the horizontal resolution.

Approximately 36% (cluster 1) and 30%–31% (cluster 2) of the

particles moved eastward along the Kuroshio-Oyashio transition

zone and KE, respectively. The remaining (33%–34%, cluster 3)

portion had strong spatial variability, and flowed eastward until

reaching the longitudinal band at 160°–170°E, and then continued

to move southwestward along the re-circulation gyre. It was noted

that the portions of each cluster were generally similar (±2%),

regardless of the released season. These results suggest that

approximately two-thirds of the particles from the FDNPP flow

directly eastward over the dateline along the KE, while one-third of

the particles flow southward across the KE, and then spread into the

entire subtropical region. We defined clusters 1, 2, and 3 as the

Kuroshio-Oyashio transition zone (KO), Kuroshio Extension (KE),

and Recirculation Gyre (RG) patterns, respectively.
3.2 Characteristics of the three
subsurface pathways

To categorize the properties of each cluster, we averaged the

longitudinal and latitudinal positions, and the depth, temperature,

and salinity of the trajectories using the tracking time in each

cluster (Figure 4). The longitudinal positions of the KO and KE

patterns steadily increased in an eastward direction and it took

approximately one year to reach the dateline (Figures 4A, F). After
B C

D E

A

FIGURE 2

(A) Initial particle deployment site (100 black dots) for the forward particle tracking simulations on the 25.2sq isopycnal surface. The green dot
denotes the location of the Fukushima Daiichi Nuclear Power Plant. Color shading indicates the climatological mean temperature on the 25.2sq

isopycnal surface. (B) Probability and (D) travel time of particles from the HYCOM data. The thick gray line in (D) indicates the 1% probability contour.
(C, E) same as (B, D) but for the GREP data.
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they had passed the dateline, the eastward movement speed rapidly

decreased, because the current speeds of the Oyashio and Kuroshio

gradually decrease in an eastward direction. Because calculation of

the particle tracking was halted when the particles reached 160°W,

the number of particles within the analysis domain dramatically

decreased after 1–2 tracking years, thus the longitudinal positions

were almost the same after 2 tracking years (KO for ~168°W and KE

for ~171°W). In contrast, the longitudinal position of the RG pattern

increased in an eastward direction until reaching 165°E (~1.2 tracking

year), and then turned southwestward, as shown in Figures 3C, F.
Frontiers in Marine Science 06
Notably, the latitudinal positions of the three patterns were

distinctly different during 5 tracking years, i.e., KO north of 36°N,

KE for 30°–36°N band, and RG south of 30°N (Figures 4B, G). The

pathways were immediately separated in each meridional direction

as soon as the particles were released, thus we examined whether the

pathways of the particles were affected by the meridional ranges at

the release point. We found that the meridional range of the release

point was not associated with the pathways (Supplementary

Figure 8). In other words, the particles released at the northern

(middle and southern) part of the deployment location did not
B C D E

F G H

A

I J

FIGURE 4

Mean properties of the (A) longitudinal, (B) latitudinal, (C) depth positions, (D) temperature, and (E) salinity of the three clusters (blue for KO, red for KE,
and green for RG) at each tracking time. The background shade in (A) indicates the number of particles in the study area (115°E–160°W, 10°–50°N) at
each tracking time. (F–J) same as (A–E) but for the GREP data.
B C

D E F

A

FIGURE 3

Random selection of one hundred trajectories, which are separated in (A) cluster 1; Kuroshio-Oyashio transition zone (KO) pattern, (B) cluster 2;
Kuroshio Extension (KE) pattern, and (C) cluster 3; Recirculation Gyre (RG) pattern from the HYCOM data. The number of particles in each cluster is
shown in parentheses. The thick green lines indicate the mean regression trajectories, which represent the major pathways of the total particle
trajectories in each cluster. The magenta line denotes the Kuroshio axis defined as the 12°C isotherm at a depth of 300 m (Mizuno and White, 1983).
(D–F) same as (A–C) but for the GREP data.
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follow the KO (KE and RG) pattern. This result suggests that the

pathways and fates of the particles were primarily determined by

the state of the ocean when they were released. We will show the

relationship between the variability of the pathways and the

dynamic states of the KE in following Section.

The three patterns exhibited significantly different time evolutions

in terms of depth, temperature, and salinity (Figures 4C–E, H–J). The

depth and temperature of the KO pattern exhibited strong seasonal

variation. The particles of the KO pattern subducted by approximately

50 m during the warming seasons (April to November), and then re-

emerged into the sea surface during the cooling seasons (December to

following March), which is referred to as the re-emergence process

(Alexander et al., 1999; Sugimoto and Hanawa, 2005). The KE pattern

exhibited relatively weak seasonal variation in terms of depth and

temperature when compared to those of the KO pattern. Meanwhile,

the particles of the RG pattern sank by 190m at ~17.5°C and ~34.7 psu,

which are the typical properties of the NPSTMW (100–300 m, 16°–20°

C, 34.6–34.8 psu) (Masuzawa, 1969; Oka and Qiu, 2012), and indicates

a subsurface pathway during entire particle tracking. This result

suggests that the RG pattern represents the subducted portion of

Fukushima-originating particles within the subsurface layer, with the

NPSTMW towards the south of the KE.

To examine the subduction of the particles into the subsurface via

the RG pattern, we plotted the particle positions, 1 year after release

from the FDNPP, at the meridional section along 149°E (Figure 5). It is

noted that Figure 5 is a minor fraction of the particles released from the

FDNPP. In both reanalysis data, the particles were distributed between

the surface and 300 m and were mostly located at the latitudinal band

of 25°–35°N at a depth of 100–300 m (Figures 5C, D). In the HYCOM,

the particles extended by 15°N in the meridional direction, while an

extension of 20°N was observed in the GREP data. In addition, the total

number of particles at 149°E of the HYCOM (#1545) was 2.25 times
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larger than that of the GREP (#687), because the HYCOM [eddy-

resolving horizontal resolution (1/12°)] reproduced a larger meander

and more vigorous eddy activities in the KE region, thereby

transporting more particles south across the KE when compared to

the GREP (1/4°, eddy-permitting horizontal resolution).

This result is consistent with the characteristics of the RG pattern

demonstrating the subducted portion of the Fukushima-originating

particles within the subsurface layer in the NPSTMW south of the KE

(Figures 3, 4B, C). The distribution patterns of the particles at 149°E

were reasonably similar to the vertical distribution of the NPSTNMW

or low PV water (Supplementary Figure 1). Furthermore, the

subducted pattern of the particles was also similar to that of the
134Cs observed in the same area during the winter of 2012 by

Kumamoto et al. (2014), who located a subsurface 134Cs maximum

at a depth of 300 m. They suggested that it had been transported

southward with the formation/subduction of the NPSTMW within 10

months after the accident (Figure 3A of Kumamoto et al., 2014). It is

noted that the vertical distributions of the particle along 165°E and 30°

N are also quite similar compared to the previous observations

(Yoshida et al., 2015; Aoyama et al., 2016) (Supplementary Figures 9,

10). We also compared the distribution of the particles, which were

released in March 2011, in the 149°E area during the winter of 2011–

2012 (Figures 1F, G). Although, the number of particles were few, the

subducted patterns are similar to those displayed in Figure 5.
3.3 Interannual variability of the
subsurface pathways

The number of particles in the 149°E area exhibited strong

interannual variation. For example, it increased in the mid-1990s

and decreased in the late-1990s and early-2000s (Figures 5A, B). To
B

C D

A

FIGURE 5

Particle positions (1 year after release from the FDNPP) at the meridional section along 149°E from the (A) HYCOM data and (B) GREP data. The
number of particles in each year is shown in parentheses. The number of particles in each 1° (meridional) by 10 m (vertical) grid box for the
(C) HYCOM data and (D) GREP data.
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investigate the interannual variability of the subsurface pathways,

we estimated the annual portions of the three patterns (Figure 6)

from the total particles (82,173 for HYCOM and 79,903 for GREP).

Strong interannual variabilities were observed in the time series of

the three patterns. In addition, three patterns exhibited clear

relationships with each other. For example, in the mid-1990s and

early-2000s, the KO portion decreased, while the KE and RG

portions increased. In contrast, in the late-1990s and mid-2000s,

the KE and RG portions decreased, while the KO portion increased.

This result suggests that the primary trajectory of particles can

change between the KO and other pathways (KE and RG). The

correlation coefficients between the KO and KE (RG) were –0.78

(–0.75) for the HYCOM and –0.85 (–0.88) for the GREP,

respectively. The relationship between the KE and RG was

relatively lower in the HYCOM (rKE_RG = 0.16) than the GREP

(rKE_RG = 0.50). The RG pattern represents the subducted particles

within the NPSTMW (Supplementary Figure 11); the correlation

coefficients were 0.51 for HYCOM and 0.59 for GREP with regards

to the RG pattern and the number of particles south of 30°N and

below 100 m along the 149°E area shown in Figure 5.
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Figure 7 displays the interannual variabilities of the Kuroshio

path length and the annual portion of the subsurface pathway (RG)

estimated with HYCOM and GREP data. It should be noted that the

subsurface paths in both reanalysis data were significantly

correlated with the Kuroshio path length, but with opposite

correlations. HYCOM exhibited a positive correlation, which

suggests that the proportion of RG patterns increase (decreases)

when the Kuroshio path is in a large (small) tortuous state. We can

assume that the opposite relationship between the two reanalysis

data models is due to the horizontal resolutions; the eddy-resolving

HYCOM reproduces mesoscale eddies well, enhancing the

southward NPSTMW subduction, while the GREP, which has an

eddy-permitting resolution, cannot represent it.
4 Summary and discussion

The possible subsurface pathways and variabilities of the

FDNPP-originating particles were quantitatively investigated

using a 22-year-long (1994–2015) ocean reanalysis and
B

C

A

FIGURE 6

Annual portion of the (A) KO, (B) KE, and (C) RG patterns from the HYCOM data (solid line) and GREP data (dashed line). Note that the year (e.g.,
1995) indicates the particle deployment period from December of the previous year (e.g., 1994) to the following April (e.g., 1995).
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Lagrangian particle modeling on the 25.2sq isopycnal surface,

which corresponds to the core layer of the NPSTMW. The

reanalysis data reproduced the NPSTMW and KOE variability

well. A series of forward particle tracking analyses revealed that

the particles spread over the entire western North Pacific along the

(1) KO (~36%), (2) KE (~31%), and (3) RG (~34%) (Figure 8). We

discovered that it took approximately 4–5 years to reach the eastern

coast of Taiwan, the Philippine islands, and the marginal seas of the

western North Pacific, such as the East Sea/Japan Sea, which is

consistent with the results of previous observational and modeling

studies (Behrens et al., 2012; Aoyama et al., 2018; Inomata et al.,

2018; Wang et al., 2022).

When the particles were released, their pathways were

immediately determined, whether they flowed along the KO

(> 36°N), KE (30°–36°N), or RG (< 30°N) patterns. The particles

along the KO and KE patterns moved eastward and it took

approximately one year to reach the dateline, while the particles

along the RG pattern turned southwestward near 165°E. The depth

and temperature of the KO pattern displayed strong seasonal

variation, whereas the KE pattern displayed relatively weak

seasonal variation in terms of depth and temperature. The RG
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pattern represents the subducted portion of the Fukushima-

originating particles within the subsurface layer of the NPSTMW

south of the KE.

In a recent study using a 3-dimensional hydrodynamic model

(Lee et al., 2023), it was reported that a radioactive tracer originating

from the FDNPP took approximately 8–9 years to reach the Taiwan

and Philippine islands and followed a clockwise trajectory; however,

there may have been limited southward movement that dissipated

rapidly. This main propagation indicates a relatively longer travel

time compared to previous studies (Behrens et al., 2012; Aoyama

et al., 2018; Inomata et al., 2018; Wang et al., 2022) because they

consider the limitation associated with the minimum concentration

of 0.01 Bq m-3 of the tracer dyne method. Further observational and

modeling studies are required to understand the detailed pathway

and travel time of the FDNPP-originating particles in the

subsurface layer.

Several previous studies suggested that the eddy activities in the

KE region affect the variability of the NPSTMW transport and its

subsurface spread into the subtropical region (Uehara et al., 2003;

Qiu and Chen, 2006; Nishikawa et al., 2010; Oka and Qiu, 2012).

Oka and Qiu (2012) reported that the NPSTMW subduction,
B

A

FIGURE 7

Time series of annual portion of the RG pattern (green) and the path length (black) of the Kuroshio main axis, which is defined by a 50 cm contour
of the sea surface height in the regions of 141°–165°E during the cooling seasons (December to following April) from (A) the HYCOM data and
(B) GREP data. Note that the year (e.g., 1995) indicates the particle deployment period from December of the previous year (e.g., 1994) to the
following April (e.g., 1995).
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revealed using Argo float data and high-resolution models, was

quite different from that obtained using a non-eddy permitting or

eddy permitting model. They suggested that the subduction of

NPSTMW may be larger due to the enhanced eddy transport in

the unstable KE period, which is accompanied by high regional

eddy activity. Nishikawa et al. (2010) also reported that eddy

subduction contributed to approximately half of the total STMW

subduction. In this study, the relationship between the subsurface

pathways and the eddy activities were not specifically investigated,

although the variabilities of the RG pathways were found to be

significantly correlated with the path length of the Kuroshio jet

(Figure 7). We can assume that the different relationships observed

in the reanalysis data are related to the horizontal resolution.

Therefore, it is important to reproduce realistic eddy activities in

the numerical ocean model to predict the time-space evolution of

the particles in the subsurface layer. Moreover, our findings imply

that the variability of the pathways is significantly associated with

KE variability in the North Pacific region. The relationship between

the local KE dynamics and the eddy activity needs to be further

investigated in the future.

In order to quantitatively estimate the proportion of particles

originated from the northern and southern KE, we have

conducted an additional sensitivity experiment with larger

atmospheric deposition including the south and north of KE

(Figure 9A). We consider the particles released within 1 m (sea
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surface deposition) from March 11th to 31st in 2011 and the 137Cs

deposition flux of 1,000 Bq m-2 following both reviewer’s

comment. The subsurface pathways in 6 months are similar

compared to those of Figure 1, although the pathways rather

spread in north-south direction at the KE region (Figures 9B, E).

Figures 9C, D, F, G show the distributions of the particles at the

vertical section along 149°E during the winter of 2011–2012. In

the HYCOM, the concentration of the 137Cs originated from the

northern (southern) KE is 90,793 (33,018) Bq m-2 and it is about

73% (27%) of total 137Cs along 149°E section (Figures 9C, D). The

ratio is similar in the GREP (north: 35,744 Bq m-2, 74% and south:

12,393 Bq m-2, 26%) (Figures 9F, G). This result suggested that

more than 70% of the subsurface radioactive were originated from

the northern KE as discussed in this study as well as the previous

studies (Kumamoto et al., 2014; Kaeriyama et al., 2016;

Cedarholm et al., 2019). It is noted that the local atmospheric

deposition also can be a source of the subsurface radioactive as

shown in Figures 9D, E, although the atmospheric deposition and

oceanic input were not quantitatively distinguished in this study.

Therefore, it is needed to quantitatively estimate the ratio between

the atmospheric deposition and oceanic input considering the

concentration of the radioactive using 3-D particle tracking

simulation in further study. For the origin of the rest subsurface

radioactive materials, we might guess two contributions, namely

subduction south of KE and MLD deepening by the persistent
FIGURE 8

Schematic map of three subsurface pathways of the particles.
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meso-scale eddy (Kouketsu et al., 2012), consequently resulting in

the cross-sectional pattern of two separated patches with one

maximum in the north (near surface) and the other in the south

(subsurface) regions.
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concentration of 137Cs at the release points of each particle. (F, G) Same as (C, D) but for the northern KE.
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