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DeepSTARia: enabling
autonomous, targeted
observations of ocean
life in the deep sea
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Eric C. Orenstein1, Ivan Masmitja1,2, Jonathan Takahashi3,
Benjamin Woodward3 and Kakani Katija1*

1Research and Development, Monterey Bay Aquarium Research Institute, Moss Landing,
CA, United States, 2Institut de Ciències del Mar, Consejo Superior de Investigaciones Cientı́ficas
(CSIC), Barcelona, Spain, 3Research & Development, CVision AI, Medford, MA, United States
The ocean remains one of the least explored places on our planet, containingmyriad

life that are either unknown to science or poorly understood. Given the technological

challenges and limited resources available for exploring this vast space,more targeted

approaches are required to scale spatiotemporal observations and monitoring of

ocean life. The promise of autonomous underwater vehicles to fulfill these needs has

largely been hindered by their inability to adapt their behavior in real-time based on

what they are observing. To overcome this challenge, we developed Deep Search

and Tracking Autonomously with Robotics (DeepSTARia), a class of tracking-by-

detection algorithms that integrate machine learning models with imaging and

vehicle controllers to enable autonomous underwater vehicles to make targeted

visual observations of ocean life. We show that these algorithms enable new, scalable

sampling strategies that build on traditional operational modes, permitting more

detailed (e.g., sharper imagery, temporal resolution) autonomous observations of

underwater concepts without supervision and robust long-duration object tracking

to observe animal behavior. This integration is critical to scale undersea exploration

and represents a significant advance toward more intelligent approaches to

understanding the ocean and its inhabitants.
KEYWORDS

ocean, autonomy, machine learning, computer vision, robotics, tracking
1 Introduction

The world’s ocean, particularly the deep ocean, is one of the least accessible places on

the planet, and represents nearly 98% of the habitable living space by volume (Haddock

et al., 2017). Due to its importance in regulating climate (Smith et al., 2018), support of

ecosystems that sustain sources of food (Pikitch et al., 2014; Vigo et al., 2021), and other
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ecological services (Thurber et al., 2014), understanding the ocean

and how it changes with time is vitally important. However,

conducting observations at spatiotemporal scales that

meaningfully characterize a changing ocean is no small feat

(Capotondi et al., 2019). The chemical and physical oceanography

communities are beginning to meet this challenge by successfully

implementing programs that rely on large-scale autonomy,

robotics, and data sharing to achieve their goals (McKinna, 2015;

Claustre et al., 2020). For a number of reasons, biological

observations have fallen behind, where long-term observations

cover only 7% of the ocean’s surface waters, and are focused

largely in coastal regions (Hughes et al., 2021; Satterthwaite et al.,

2021). This lack of observational capacity creates large knowledge

gaps in our accounting for and understanding of marine

biodiversity, creating challenges for regulation and monitoring of

human activities in the ocean (Hughes et al., 2021). Ocean scientists

and stakeholders must improve our ability to observe the ocean as

the Blue Economy (Bennett et al., 2019)— ocean-related industries

and resources from renewable energy generation to food harvesting

and culturing — grows and the marine environment continues to

shift as the climate changes (Danovaro et al., 2020).

Relying on fully manual, labor-intensive approaches to

exploration and monitoring in the ocean are too costly to execute

at the necessary scale; established ship-based protocols require

hours of highly trained human effort on specialized vessels.

Expanding our biological observational capacity requires new

autonomous sampling strategies that respond to the environment

by adapting behavior or opportunistically targeting organisms

(Costello et al., 2018; Ford et al., 2020). Here we present

DeepSTARia (Searching and Tracking Autonomously with

Robotics), a class of algorithms that enables autonomous

underwater vehicles to execute targeted sampling tasks based on

real-time visual signals, a strategy previously only available to

human operators. DeepSTARia represents a significant advance in

deep sea autonomy, illustrating the potential for autonomous

underwater vehicles to effectively scale up our ability to study

marine organisms by reducing the need for costly ship time and

limiting reliance on manual operation.

Non-extractive biological observations can be conducted in

many ways using various modalities, including imaging,

environmental DNA (or eDNA), and acoustics (Benoit-Bird and

Lawson, 2016; Masmitja et al., 2020; Chavez et al., 2021). Of these

modalities, imaging is the most direct approach, and its use has

grown with various platforms, imaging systems, and sampling

missions (Durden et al., 2016; Lombard et al., 2019). Benthic

landers, cabled observatories, and drop cameras for example can

provide temporal data of animal distributions at a fixed location

(Danovaro et al., 2017; Giddens et al., 2020). Other approaches

using remotely operated vehicles (ROVs) and autonomous

underwater vehicles (AUVs) have the benefit of mobility to

provide varying views in time and space of biological

communities in the ocean (Robison et al., 2017). While AUVs

have the benefit of autonomy (Schoening et al., 2015; Ohki et al.,

2019), most of these platforms do not have adaptive and targeted
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sampling capabilities when compared with manually controlled

ROVs (Durden et al., 2021).

Biological observations using ROVs and AUVs traditionally

involve quantitative transects (Howell et al., 2010). Transects are

missions where imaging parameters and vehicle behavior are kept

constant (e.g., position relative to the seafloor for benthic missions,

observation depth for missions in the water column, vehicle speed,

vehicle heading, sampling duration, imaging field of view, camera

exposure, illumination power) while sampling a particular location

in the ocean. Transects can be conducted at different locations or

time intervals to address a number of ecological questions (Robison

et al., 2017). At the conclusion of transect missions, researchers

download and review the collected visual data to identify animals,

quantify species occurrence and counts, and denote the physical

environment to characterize the biological community (Howell

et al., 2010; Aguzzi et al., 2021). Such missions are often

conducted for marine biodiversity monitoring but are not

sufficient to properly account for all organisms, especially those

that are small in body size, relatively rare, or patchily distributed

(Brandt et al., 2014). Adaptive sampling strategies are necessary to

properly account for marine biodiversity, especially in the difficult-

to-access deep sea (Costello et al., 2018).

Oftentimes, research goals dictate a more opportunistic

approach, seeking out and capitalizing on rare encounters. This

necessitates a very different sampling strategy, usually requiring a

closer look to identify animals or observe their behavior (Ford et al.,

2020). These Discovery missions involve pausing a Transect to

collect close-up or extended recordings of an animal to facilitate

identification (Figure 1). These missions are usually directed by

scientists, viewing the in situ video feed on a topside monitor, and

adjusting vehicle behavior when they see an animal or phenomenon

of interest and need more time or additional perspective views for

study and evaluation. More recently, researchers have been

interested in understanding not only presence and absence of

animal systems, but also their fine-scale behavior to understand

their ecomechanics (Katija et al., 2020). These studies require Follow

missions to keep the target in view for longer periods of time. Both

Discovery and Follow operations are typically run on an ROV flown

by a skilled human pilot, which we define here as an individual with

many hours of experience and who operates ROVs in a

professional capacity.

Thanks to recent improvements in AUV capabilities and

performance (e.g., power, control, and on-board computational

resources), the research community has begun developing

targeted and adaptive biological observation capabilities for these

autonomous robotic platforms (Zhang et al., 2021). By switching

from ROVs – which require significant physical infrastructure and

personnel that cost on the order of tens of thousands of dollars per

day to operate – to vehicles like AUVs, we could enable large-scale,

global surveys of ocean life capable of meeting the endurance, depth

range, and maneuverability requirements for such missions

(Reisenbichler et al., 2016). Making these sampling strategies

entirely autonomous involves leveraging vehicle sensor data

(imaging, acoustics, or both) to locate animals of interest and
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maintain the position of the vehicle relative to the target for as long

as possible (Yoerger et al., 2021). Using these signals for visual

tracking and control (or visual servoing) has a long history (Wu

et al., 2022), and more modern algorithms (Girdhar and Dudek,

2016; Katija et al., 2021) show promise in enabling the entire range

of vehicle missions described here. However, Discovery and Follow

behaviors remain challenging to implement in the open ocean and

require significant algorithmic improvements before they can be

conducted without humans-in-the-loop.

To address this challenge, we developed DeepSTARia to expand

the opportunistic and adaptive sampling capabilities of remote and

autonomous vehicles in the deep ocean. DeepSTARia consists of

four modules: an object detection and classification model, a 3D

stereo tracker, a vehicle controller, and a Supervisor module. By

integrating real-time machine learning models operating on visual

data into vehicle controllers, DeepSTARia has achieved a range of

biological observation missions (e.g., Transect, Discovery, and

Follow) completely autonomously for the first time. We

demonstrate that vehicles using DeepSTARia can conduct

traditional and adaptive biological observation missions without

human intervention. Field tests were conducted in Monterey Bay,

California, USA with a flyaway ROV as a proxy for any AUV

carrying a stereo camera system. An object detection model, trained

on 15 taxonomic groups, enabled near-real-time iterative

improvements to the DeepSTARia algorithm and timely human

intervention if required. Minimal user input to the algorithm

enabled a suite of autonomous observations that either match or

improve our biological observation capabilities during fully remote

missions. Our results demonstrate the potential for DeepSTARia

and similar tracking-by-detection algorithms to enable future

autonomous missions to ply the ocean for known and unknown

life. These approaches are an important step toward scaling

biological observations in the ocean by reducing the human,
Frontiers in Marine Science 03
fiscal, and environmental costs of fully manual operations. The

valuable resulting data could inform intelligent, sustainable

management of our shared ocean resources and inspire the future

of large-scale ocean exploration.
2 Materials and methods

In order to evaluate the effectiveness of DeepSTARia, we

conducted field trials using a deep sea robotic platform in

Monterey Bay. After field trials, data were reviewed to compare

various water column exploration missions using the metrics

described below.
2.1 Robotic platform used to
demonstrate DeepSTARia

Field trials of DeepSTARia were conducted in the Monterey Bay

National Marine Sanctuary at Midwater Station 0.5 (latitude:

36.781 N, longitude: 122.012 W) with bottom depths exceeding

500 m. We used a tethered remotely operated vehicle (ROV) for our

field trials as a proxy for an autonomous vehicle so as to enable real-

time iterative improvements to the algorithm during trials and

utilize human intervention if the need arose. Five dives were made

with the 1500 m-rated ROV MiniROV (Figure 2) as part of these

trials; results reported here were all obtained within a 6-hour

window during a single dive on May 24th, 2021 to a maximum

depth of 293 m. In these trials, the science/pilot camera (Insite

Pacific Inc. Mini Zeus II) and white lights were complemented by a

fixed stereo imaging system (based on Yoerger et al., 2021) to

provide repeatable position measurements and red lights to reduce

interference with animal behavior for these trials (Allied Vision
Transect

Follow

Discovery

FIGURE 1

Integrating machine learning (ML) algorithms into vehicle controllers (or DeepSTARia) enables a suite of underwater observational missions. By
varying the duration of various modes (search, acquire, track) of DeepSTARia, an autonomous underwater vehicle can conduct a variety of
underwater observational missions: (Orange) Transect, where the vehicle moves at a constant speed and depth at specified time intervals; (Blue)
Discovery, where the vehicle moves at a prescribed depth and changes vehicle behavior (e.g., range, bearing, depth) to slow down and observe a
detected object for a specified duration before continuing on its sampling mission; and (Yellow) Follow, where the vehicle again moves at a
prescribed depth, and slows down and continues to shadow a detected object for as long as needed for the specified mission. The ML algorithms
enable selection of detected objects, enabling targeted sampling during Discovery and Follow missions.
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G-319B monochrome cameras and Marine Imaging Technologies

underwater housings with glass dome ports, and Deep Sea Power

and Light MultiRay LED Sealite 2025 at 650–670 nm). The stereo

imaging system (baseline approximately 190 mm) was mounted

such that the port (left) side camera was aligned with the vertical

plane of the science camera, and the center of the vehicle. The center

of this camera view was chosen as the origin of the vehicle’s

orthogonal reference frame for the purposes of DeepSTARia

(Figure 2A). The machine learning models and vehicle control

algorithms (Figure 2B) were operated on a shipboard (or topside)

Tensorbook laptop (Lambda Labs, Inc.) outfitted with an Nvidia

RTX 2070 GPU to allow for rapid switching between pilot control

and autonomous operation.
2.2 Overview of DeepSTARia

Deep Search and Tracking Autonomously with Robotics

(DeepSTARia) enables robust autonomous Transect, Discovery,

and Follow missions in the ocean based on visual signals by

combining machine learning models with vehicle control

algorithms. DeepSTARia integrates a multi-class RetinaNet object

detection model (Lin et al., 2017), a 3D Stereo Tracker, and a

Supervisor module that makes vehicle control decisions to be

actuated by the vehicle controller (Figure 2). The object detector

is run on each of the stereo cameras, and bounding boxes of target

classes are then matched within the Tracker module to estimate

their position in 3D space. The object class, location, and track are

passed to the Supervisor module (Figure 3), which can adjust

behavior of the vehicle based on current and past 3D Stereo

Tracker information. Lightweight Communications and

Marshaling [LCM; Huang et al. (2010)] is used to share data

between modules and save all information for later analysis.

The implementation of DeepSTARia is under active research

and development and as such is not intended as a plug-and-play
Frontiers in Marine Science 04
solution. Researchers interested in utilizing the subsequent methods

of DeepSTARia should be aware that significant adaptation from

the current research implementation may be required to support its

deployment. Further details about the initial development of

DeepSTARia (known as ML-Tracking), including the challenges

encountered, are described in Katija et al. (2021).

2.2.1 Multi-class object detector and 3D stereo
tracker modules

Still images from past ROV deployments were used to train the

multi-class detector; (Katija et al., 2021) this included both typical color

images from the science cameras of several ROVs (drawn from the

underwater image database FathomNet (Katija et al., 2022), and

monochrome images obtained with the stereo camera setup described

here. Images of animals commonly observed in the Monterey Bay area

were used to form 17 classes (15 taxonomic and 2 semantic categories)

using visually distinct taxonomic groups of varying taxonomic levels

(e.g., Aegina, Atolla, Bathochordaeus, Bathocyroe, Beroe, Calycophorae,

Cydippida, Lobata, Mitrocoma, Physonectae, Poeobius, Prayidae,

Solmissus, Thalassocalyce, Tomopteridae; see Figure 4). In addition,

parts or associated elements were defined in some cases to enable

more precise tracking objectives [e.g., Bathochordaeus inner filter,

Bathochordaeus outer filter, Calycophorae (nectosome), Physonectae

(nectosome), and Prayidae (nectosome)]. Labeled images were

annotated and localized by experts using a variety of tools (VARS

Annotation (Schlining and Stout, 2006), VARS Localize (Barnard,

2020), GridView (Roberts, 2020), RectLabel (Kawamura, 2017), and

Tator (CVision AI, Inc, 2019)).

We obtained between 205 and 6,927 images per class in the labeled

set, for a total of 28,485 images. This annotated image set was used to

fine-tune a RetinaNet model with a ResNet50 (He et al., 2016)

backbone pre-trained on ImageNet (Deng et al., 2009). Labeled

training data and the MBARI Midwater Object Detector can be

accessed via FathomNet at www.fathomnet.org (Katija et al., 2022)

and www.github.com/fathomnet/models (Woodward et al., 2022).
Y

Z

X

Y

Z

X

Left
Camera

RetinaNet
Model

RetinaNet
Model

3D
Stereo
TrackerRight

Camera

Vehicle
Thrusters

Vehicle
Control

Supervisor

A B

Topside

Images
Bounding Boxes

3D Target Position
Thruster Command

FIGURE 2

Demonstration vehicle and high-level diagram describing the DeepSTARia algorithm. (A) The ROV MiniROV was used as a proxy for an autonomous vehicle,
with lighting (red squares) and imaging (red circles) integrated for the field trials. The vehicle reference frame is indicated by the white arrows. (B) Images
from the left and right camera were transferred up the ROV tether for processing topside. The DeepSTARia algorithm involves processing images with a
RetinaNet detection model Woodward et al. (2022), where detected object positions in the vehicle reference frame were computed in the 3D Stereo Tracker
module. The Supervisor module then uses these inputs and prescribed logic to issue commands to the vehicle controller, which is visualized in real-time
during vehicle operations. Modifications to the Supervisor module can then elicit a spectrum of vehicle missions as described here.
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The object detector provides information from each camera to the

3D Stereo Tracker, designed to distinguish individual objects (e.g.,

organisms), by including their positional history (or trajectory) relative

to the vehicle. The 3D Stereo Tracker module is a multi-target tracking

algorithm based on the unscented Kalman filter [UKF; Wan and Van

Der Merwe (2000); Katija et al. (2021)]. It provides the best estimate of

the target location relative to the left-camera on the vehicle based on

stereo video, target state estimation, and vehicle inertial measurements.

It uses stereo intersection over union (IOU) to solve for

correspondence between pairs of bounding boxes from the object

detector. If a pair has a valid stereo IOU, the Tracker searches for an

existing trajectory to update with a measurement using Mahalanobis

Distance (Mahalanobis, 2018) as the matching criterion. If no

matching trajectory is found, the Tracker starts a new trajectory. At

each iteration, the Tracker updates each trajectory with a score based

on whether or not a new measurement was assigned to the trajectory.

The trajectory with the highest score is used to estimate the target

location and output to the Supervisor module (Figure 3). When the

tracked object leaves the field of view or is no longer detected by the

object detector, the Tracker will “coast” the trajectory for a given

number of iterations before deleting the trajectory. In these cases, the

Supervisor module will defer to the raw object detector output or

Kernelized Correlation Filter (Henriques et al., 2015) Tracker initialized

on the latest object detector bounding box.

2.2.2 Supervisor module
Given the positions and classifications of detected objects in the

vehicle stereo cameras, a series of commands can be issued to the

vehicle controller to progress through various mission modes, a

process handled by the DeepSTARia Supervisor module (Figure 3).

The Supervisor consists of three modes – search, acquire, and track –

that loop continuously until transitions are initiated by input from

the object detectors, 3D Stereo Tracker, mode timeouts, and external

communications (user intervention or Supervised Autonomy). The

Supervisor interfaces with the vehicle controller to adjust the vehicle

behavior. The vehicle controller has been adapted from (Rife and

Rock, 2006; Yoerger et al., 2021) for our system.

In the search mode, the vehicle closes the loop on heading (as

measured by a compass) and depth (as measured by a pressure

sensor) using proportional, integral, and derivative (PID)

controllers on all vehicle axes. The user can then specify a desired
Frontiers in Marine Science 05
forward speed in the form of percent thruster effort, with a default

of 20% used in our field trials (Figure 3). This mode is analogous to

how an ROV pilot would typically fly a vehicle during a midwater or

benthic transect mission. For Transect missions with DeepSTARia,

the Supervisor never leaves the search mode. For Discovery and

Follow missions, the Supervisor remains in the search mode until a

particular object or list of objects is detected within the predefined

acquisition range of 0.65 m to 3.0 m (Figure 3), and thereby

triggering a transition to acquire mode. Note that this range can

be adjusted depending on your mission requirements.

Upon entering acquire mode, the vehicle’s behavior is changed,

slowing down and centering the detected object in the cameras’ field

of view. The Supervisor achieves this by slewing the heading and

depth setpoints towards the estimated target bearing and vertical

offset from the vehicle origin. The same PID control and gains are

used in this mode as in search. The vehicle forward effort is set

proportionally to the range of the object such that as the vehicle

approaches the object the forward effort decreases until it becomes

zero when the object is within the tracking range (defined below).

The Supervisor will remain in the acquire mode until the target

enters the tracking range (and transitions to track) or the target

remains outside of the acquisition range for more than 10 seconds

(and transitions to search).

In track mode, the vehicle will attempt to hold its position

relative to the target object constant. This is done by enabling the

target tracking controller, which closes the loop on range, bearing,

and vertical offset of the target with a defined range setpoint

(typically set between 0.65 m and 1.5 m; Figure 3) and bearing

and vertical offset of 0 (i.e., centered on the left stereo camera). A

different set of gains is used in this mode (compared to search and

acquire) to enable more precise tracking of the target with the faster

response time to target movement. The Supervisor will remain in

the track mode until one of four conditions is met: (1) The target

drifts outside of the tracking range but remains in the acquisition

range for more than 10 seconds (and returns to acquire); (2) the

Supervisor receives an external command to end the tracking (and

returns to search, ‘supervised autonomy’); (3) The target remains

outside the acquisition range for more than 10 seconds (and returns

to search; ‘target lost’); or (4) the track duration exceeds a

predefined time limit (and returns to search). In Discovery

missions, this time limit was set to 15 seconds in our field trials,
Search
Auto depth/heading

Forward thrust

Track
Hold position on target

with PID control

Supervised autonomy

User can force Search mode

Acquire

Approach target

Target class enabled and in
Acquire range
R: 0.65 - 3 m, θ: ±30°, y: ± 1 m

Target outside of Acquire range,
or 10 seconds have elapsed

Depth / heading / thrust
Search classes

Target in Track range
R: 0.65 - 1.5 m, θ: ±20°, y: ± 0.5 m

Target outside of Track range,
but in Acquire range for 10 seconds

Target outside of Acquire range / no target for 10 seconds / track timeout / user intervention

Transect mission
Maintain Search mode,
no transition to Acquire

Discoverymission
Search --> Acquire --> Track for

Followmission
Search --> Acquire --> Track,
maintain tracking until
canceled by human supervisor

FIGURE 3

Supervisor module within DeepSTARia. The DeepSTARia Supervisor handles transition between three modes, each associated with different vehicle
behavior: search, acquire, and track. Thresholds for transition between modes include values for range (R), bearing (q), and vertical position (y,
defined to be consistent with the y-axis in Figure 2). Once initial thresholds and set points were set, only minimal input was required to perform any
of three mission types (Transect, Discovery, Follow).
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forcing the vehicle to move on in search of new animals that

matched the selected classes. In order to prevent reacquiring the

previous target in this case, the search mode is locked for 1 second

after leaving track mode. In Follow missions, the system can be set

to remain in track mode indefinitely (until interruption by human

intervention); for the purposes of our field demonstrations, this

duration was limited to 15 minutes. Note that we distinguish

human intervention as an emergency precaution during our field

trials to ensure the safety of the vehicle and its operators, whereas

human supervision is done during normal operations of the vehicle

in an autonomous mode only when prompted by the vehicle.

The Supervisor module implements a list of target classes to

track out of the total set of classes the object detector was trained on

(Figure 4). During the supervisor loop, detected targets are

compared to the list of selected classes and mode transitions

occur only when the detected target is in the list of classes of

interest, or when the Supervisor is set to ignore class label during

target acquisition. This final mode enables the Supervisor to acquire

any detected target, but only track targets that belong to a subset of

all possible targets.
2.3 Metrics for evaluating DeepSTARia
field trials

The raw trajectories produced by the 3D stereo Tracker module

were subject to several errors common to tracking-by-detection

algorithms; due to erroneous detections (false positives and false

negatives), misclassifications, and false associations of new

detections with existing object tracks, these raw trajectories

needed correction. Two post-processing steps were performed for

the sake of more meaningful quantitative analysis. The first step

aimed to resolve the issue of falsely-joined trajectories comprised of

several distinct objects. As these trajectories corresponded to

significant time gaps between detections of the distinct objects, all

trajectories with gaps of more than 2 seconds between successive

detections were split accordingly. Once split, all resulting

trajectories with at least 4 frames were maintained. The values

reported in Table 1 are representative of the post-processed

trajectories. Each trajectory was included in a mission if the

timestamp of its first detection fell within the mission time

bounds. The duration represents the time between the first and

last detections of a trajectory. We report the number of trajectories

meeting or exceeding a duration of 15 seconds as a point of

comparison with the 15-second tracking timeout for

Discovery missions.

A trajectory T can be represented as a sequence of n detections,

where each detection di consists of a timestamp in seconds ti ∈ R
and 3D position in the vehicle frame pi ∈ R3:

T = (d1, d2,…, dn)

di = (ti, pi)

pi = ½ xi yi zi �⊤
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The number of detections per second is computed as the

frequency of detection events within a 1-second window around

each point in the trajectory. As detections occur at a maximum of

10 Hz, these values may range from 1 to 11. The average vehicle-

relative target speed is estimated as the sum of point-to-point

Euclidean distances (in the vehicle coordinate frame), likewise

within a 1-second window around each point.

At each point pk, the time window is defined by detections dl
and dr, with dl minimizing tl where tl ≥ tk−1 and dr maximizing tr
where tr ≤ tk+1. Within these bounds, we arrive at the windowed

subsequence W = (dl,…,dk,…,dr).

The detection frequency f is simply the size of the subsequence

divided by the true window duration:

f =
r − l
tr − tl

,

and the average vehicle-relative speed �v is

�v = o
r
i=l+1 ‖ pi − pi−1 ‖2

tr − tl
:

3 Results

Field trials of DeepSTARia were performed on ROV MiniROV

(Figure 1) in the Monterey Bay National Marine Sanctuary over five

days in May 2021. The first three days focused on iterative

improvements of settings and operational interfaces, while the

final two days prioritized testing and performing consecutive

Transect (Video S1) and Discovery (Video S2) missions with a

wide array of midwater animal targets (Figure 4). Here, we present

only data from our fourth experimental day, to ensure consistency

across our tests in terms of vehicle configuration, algorithm settings,

and staffing. While the object detection model and 3D stereo

Tracker (Figure 2) operated continuously through the entire ROV

deployment, we present the results of distinct missions where the

ROV pilot relinquished control of the vehicle, and no human

supervisor input was provided (Figure 3). Via the Supervisor

module, DeepSTARia cycled between three modes – search,

acquire, and track – that dictate vehicle behavior based on input

from the object detector, 3D Stereo Tracker, user-defined settings

(e.g. mission type, mode timeouts), and user intervention. Table 1

summarizes the 4 Discoverymissions performed at different depths,

lasting at least 17 minutes each, and the 6 Followmissions exceeding

5 minutes that we conducted. Additionally, 3 Transect missions are

also reported for comparison. We note that a human supervisor did

tune the target vertical offset of the 3D Stereo Tracker in small

increments over the course of 30 seconds in mission H (Table 1),

but no changes to the model parameters or vehicle controller

were made.

All but one of the Follow missions listed were purposely

terminated by human intervention; mission M concluded due to

a tracking failure (Table 1). In that case, the tracked object

(Physonectae nectosome) was particularly low in contrast due to

the high level of transparency in this species (Resomia ornicephala),
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even after tuning the camera parameters specifically for this

individual. We subsequently focus our analysis on Follow mission

H (Table 1), where a Solmissus jellyfish was tracked for more than

11 minutes. We chose this mission because it showcases several

challenges for the algorithm, including: (i) another object of the

same class passing by; (ii) total occlusion; and (iii) physical

interference by another object (Video S3).

Differences in animal community composition and abundance

caused large variations in object detections and trajectories

(sequences of 3D positions of a single object derived from

detections multiple video frames) between missions at different

depths. On average, between A-F (Table 1), the mean trajectory

duration (e.g., number of recorded image frames per individual)

increased by 187% in Discovery missions, and yielded 5% fewer

trajectories per unit time than Transect missions at the same target

depth. As a result, the distance covered per minute was on average

24% less in Discovery missions. One of the model classes,

(Physonectae nectosome), was excluded from triggering the

acquire and track modes due to the high abundance of this class,

so that vehicle behavior did not change when this class was detected.

However, trajectories were still being recorded, and accounted for ∼
18% of trajectories in Discovery missions.

Transect missions are characterized by the Supervisor

remaining in search mode throughout the mission (i.e., not

stopping to track). By comparison, Follow missions represent a

continuous span of time spent in track mode following a single

target organism. Discovery missions represent a balance between

these extremes, where the vehicle repeatedly stops to acquire and
Frontiers in Marine Science 07
track targets of interest for fixed durations before returning to

search mode. The Supervisor modes over time for the three

representative missions A, B, and H is shown in Figure 5, along

with the proportion of time spent in each mode. In the Discovery

mission A, transitions from search to acquire represent attempts to

stop, and transitions to track represent successful acquisitions.

Whenever the timeout of 15 seconds during each stop was

reached, the Supervisor transitioned back to search mode.

Unsuccessful acquisitions can be seen around 350 and 850

seconds into the mission, where the Supervisor returned back to

search after a short time in acquire.

The Discovery and Follow missions were conceived to increase

the amount of time and number of views per observation of an

organism, allowing for a more detailed look for identification by

moving the vehicle such that the animal enters the most well-

resolved and illuminated area in front of the vehicle with minimal

motion blur. This also provides the opportunity to observe the

animal’s behavior by keeping it centered in the field of view, which

is rare during the relatively fast fly-by speeds associated with

transects (Figure 5). During Transect missions, the vehicle does

not respond to object detections, which therefore move radially past

and out of view as the vehicle moves forward. Discovery and Follow

mission instead actively align objects with respect to the image

center, increasing the number of recorded views. In Discovery, the

vehicle aligns briefly for a pre-specified duration (15 seconds) with

each animal, showing a much larger fraction of bounding box

observations near the image center and offering more image frames

of each individual.
TABLE 1 Data summary of missions conducted during DeepSTARia field trials.

Mission Duration
[min:s]

Genus Mean depth
[m]

# of trajectories Mean trajectory
duration [s]

# of trajectories ≥ 15 s

ID Type

A Discovery 22:27 252 111 7.1 21

B Transect 12:32 252 104 3.2 1

C Discovery 19:40 201 110 3.7 5

D Transect 11:28 201 52 2.5 0

E Discovery 17:22 151 27 5.8 4

F Transect 10:25 151 16 1.2 0

G* Discovery 21:11 101 62 5.6 9

H Follow 11:16 Solmissus 247 77 27.8 14

I Follow 05:00 Solmissus 251 27 16.4 2

J Follow 35:50 Bolinopsis 267 152 19.5 11

K† Follow 08:20 Bathochordaeus 250 32 19.4 3

L† Follow 08:13 Bathochordaeus 246 44 19.0 6

M* Follow 09:10 Resomia 111 31 19.0 1
The mission duration is defined as the time between enabling the search behavior and the next human intervention (canceling the mission), with the exception of the Follow missions: here the
duration in track mode (without any human input) is reported. While each Follow mission tracked one individual animal (identified to the genus level by expert annotators), other objects entered
the field of view, and the associated trajectories are included here. The number of recorded trajectories and their mean duration takes into account all observations with a minimum number of 4
stereo detections. The number of trajectories greater than 15 seconds indicates the number of times track mode was successful. Missions visualized in Figures 5 and 6 are highlighted in grey.
*Exposure settings of the stereo cameras were different from the other missions, creating a brighter image and affecting object detection rates.
†Follow missions K and L tracked the same individual.
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A

B

C

FIGURE 5

Changing modes (e.g., search, acquire, track) and cumulative distributions of detected bounding boxes from (A) Transect, (B) Discovery, and (C)
Follow underwater vehicle missions during DeepSTARia field trials. Left column shows the mode switching over time for a representative vehicle
mission and the middle illustrates the cumulative time within each mode (red = track, orange = acquire, green = search) for the corresponding
mission. Heatmaps are based on bounding box locations in the left camera image during each mission type, where Transect missions B, D, and F,
and Discovery missions A, C, and E have been combined, respectively. Note that the range of the color scale increases panels.
FIGURE 4

Highlight images of midwater animals that served as target objects during DeepSTARia field trials. Each image represents one of the 15 taxonomic
groups that formed 17 separate classes in the RetinaNet model used in this work. Three classes were defined for Bathochordaeus: the animal, house,
and outer filter, to address the different size scales of the outer structures and the small animal of interest inside, allowing initial detection of the
larger structure and subsequent tracking of the animal inside.
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Finally, during Follow, a single object is kept in place with

respect to the vehicle, resulting in higher rates of detections centered

in the imaging field of view.

The 3D position of detected objects relative to the vehicle frame

can be seen in more detail in Figure 6. The Transect mission

(Figures 6A, B) sees objects passing by in nearly straight lines at

constant velocity, with their detection rate increasing as the vehicle

approaches (i.e., the Z position decreases; Figure 6A), until they are

lost from the field of view. In Discovery missions, the trajectories

converge as the vehicle positions itself to center the object of interest

within the field of view at a fixed distance, and is associated with a

reduction in relative object speeds. The Follow mission takes this

one step further, maintaining a high rate of detection and very low

relative speed throughout once the vehicle is centered on the

animal. The proportion of time spent in each mode across

Discovery missions A, C, E, and G can be seen in Figure 7.
4 Discussion

DeepSTARia enables a range of underwater vehicle missions for

biological observations that are otherwise considered impossible to

execute autonomously. In addition to traditional transects (where

vehicle depth and heading are kept constant) (Howell et al., 2010;

Robison et al., 2017), DeepSTARia allows for fully autonomous

Discovery and Follow missions that typically require scientists and

researchers to monitor and direct underwater vehicle operations

(Figure 5). Discoverymissions enable collection of more images and

views – nearly 2.5 times as many on average – of individual targets

(Table 1) and higher rates of detections (Figures 6A, C, E) than

Transects. These improvements enhance the quality and
Frontiers in Marine Science 09
composition of the imagery obtained (Figure 5), enabling

extended duration animal behavior observations and more precise

and accurate animal identification. Follow missions expand our

ability to capture long duration observations of an animal in its

environment as prescribed by the Supervisor track mode timeout

setting (Table 1; missions H-M), which was defined to be 15

minutes for our field trials.

Our approach distinguishes itself from other real-time object

tracking and visual servoing approaches by integrating a multi-class

object detector that includes visually complex classes and the

Supervisor module functionality. For Discovery and Follow

missions, the multi-class approach is very effective at reducing

undesired changes in vehicle behavior when compared to

traditional shape-based approaches [e.g., blob detection (Yoerger

et al., 2021)]. A human operator can adapt the observational focus

by actively selecting or ignoring certain classes, either for research

interests or to account for target abundance. For example, Discovery

missions that continuously slow on very common species, such as

the physonect siphonophore [Nanomia bijuga; a member within the

same family (Physonectae) is shown in Figure 3] in Monterey Bay,

would take a significant amount of survey time. Selective targeted

vehicle behaviors like this are generally difficult to specify and

control with other unsupervised methods (Girdhar and Dudek,

2016). Here, we manually defined these rejected and target classes

prior to the start of a mission. Future work could involve

augmenting the Supervisor module to enable the vehicle to

dynamically adjust its focus, either disregarding or prioritizing

classes surpassing a specified abundance threshold. Furthermore,

the object detector used in DeepSTARia included three nested

classes for the giant larvacean Bathochordaeus [animal, house,

and outer filter (Katija et al., 2020)], which allows for initial
A C E

B D F

FIGURE 6

Trajectories of observed detections during representative (A, B) Transect, (C, D) Discovery, and (E, F) Follow missions. Top row shows the trajectories
colored by the detection rate within a 1-second window, and bottom row shows the average vehicle-relative speed within a 1-second window, for
Transect mission B, Discovery mission A, and Follow mission H, respectively.
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detection of the large outer filter at an extended range, and tracking

of the animal itself once the vehicle has approached and slowed. Not

only do nested classes like these help to increase the likelihood of

successful detection and subsequent tracking of smaller objects that

associate with larger ones, changing vehicle behavior farther afield

helps to minimize vehicle disturbance of the fragile outer mucus

structures as demonstrated in (Katija et al., 2020, Katija et al., 2021)

and potential changes in animal behavior.

Both the Discovery and Follow missions effectively enhance our

ability to densely sample organisms of interest either with images,

video, or auxiliary sensors. These sorts of long duration

observations are invaluable for assessing interactions between an

organism, other individuals, and the environment (Norouzzadeh

et al., 2018). The missions yield data suitable for novel studies of

trait-based (Orenstein et al., 2022) and movement ecology

(Abrahms et al., 2021) that fundamentally rely on studying how

an organism moves through space. Without bursts of images or

videos, ecologists are limited to studying count data in particular

spatiotemporal regions (Kennedy et al., 2019). Studying these facets

of animal behavior are particularly challenging in the deep sea,

where tracking individuals has historically been a labor intensive

task requiring the careful attention and precise movements of a

skilled ROV pilot. With consistent access to such data, scientists will

be able to better assess individual biological fitness, study cryptic

predator-prey interactions, and better understand migratory

behavior to name a few. These missions can also generate

valuable machine learning training data on new objects and

animals (Katija et al., 2022), by providing a variety of perspective

views on a single organism during Track modes that cannot be

similarly achieved at the same temporal resolutions during Transect

missions (Table 1).

Besides enabling unique ecological studies, the Follow mission

could be used to update the behavior of an individual fully

autonomous robot, inform vehicle behavior in multi-vehicle

missions (Zhang et al., 2021), or coordinate robot swarms

observing collections of targets (Connor et al., 2020). One

potential scenario might entail a system of two vehicles: an AUV
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carrying an imaging system communicating acoustically with an

Autonomous Surface Vehicle (ASV) tracking the subsea asset

(Masmitjà Rusiñol et al., 2019). Based on the onboard

DeepSTARia state, imagery can periodically pass between the

AUV to the ASV, and be transmitted onwards via cellular or

satellite networks to an onshore AUV operator. The AUV

operator would monitor the AUV’s behavioral changes during

deployment using the Supervised Autonomy mode (Figure 2),

which can be used to override the track mode and have the

vehicle resume search. The workflow would function akin to our

ROV-based work on a single AUV, but could be extended to trigger

behavioral changes on additional vehicles carrying other sampling

equipment like genomic or acoustics payloads (Zhang et al., 2021).

In practice, one could expect that the energy expense of on-board

computation for DeepSTARia would limit the deployment time of

an AUV; however, our estimates suggest that the power budget

would be more heavily impacted by the demands for illuminating

the scene rather than the recording or processing of visual data. The

Supervised Autonomy framework enables autonomous vehicle

behavior adjustments while retaining low-latency guardrails by

keeping a human in the loop.

We advocate for the selective automation of ship-borne activities,

emphasizing that tasks amenable to automation, such as tedious and

repetitive activities like biological monitoring via midwater transects,

should be targeted for autonomous execution. Ultimately, the long-

term goal is for AUVs to sample biological targets fully

autonomously. However, classical supervised ML algorithms

trained off-line for real-time detection and identification are

unlikely to work in all scenarios in dynamic environments like the

ocean: models often struggle when deployed in real world settings due

to changing relative proportions of the target classes, the introduction

of previously unseen concepts, or discrepancies in the pixel-level

image statistics (Recht et al., 2019; Koh et al., 2021). This typically

manifests in ecological applications as distribution shifts – where the

statistics of the target data differ from that of the training – as a

function of time or space (Koh et al., 2021). These challenges are

inherent in ocean sampling and limit the ability of fully autonomous

systems to adjust their behavior based on visual signals. There are

several bleedingedge, pure ML solutions that are well-worth

experimentation: Open World Object Detection frameworks to

identify novel classes in a new domain (Joseph et al., 2021);

contrastive learning to identify out-of-distribution samples and

study areas (Yamada et al., 2021); and uncertainty quantification to

compute robust confidence thresholds around ML outputs for

hypothesis testing (Angelopoulos et al., 2022). Additionally, the

promise of reinforcement learning holds potential for addressing

the control problem associated with handling more complex

animal behavior (e.g., swimming): an area where the current

implementation of simple PID thruster-effort-based control

struggles. While these approaches are promising, they are

experimental, and implementation in the field will benefit from the

use of Supervised Autonomy to ensure the routines are effectively

acquiring the desired data and evoking the appropriate

vehicle behavior.
FIGURE 7

Cumulative duration within the three vehicle modes. search =
green, acquire = orange, track = red) over four Discovery missions
(total duration of 80:40 for missions A, C, E, G; Table 1) performed
during DeepSTARia field trials.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1357879
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Barnard et al. 10.3389/fmars.2024.1357879
5 Conclusion

DeepSTARia is a significant stride toward expanding the

capabilities of underwater robots by actively adjusting behavior in

response to real-time visual observations. Our experiments

demonstrated the approach’s efficacy on an ROV, allowing a

human operator to completely step away from the controls.

Deploying DeepSTARia on AUVs would fundamentally alter our

approach to studying organisms in the deep sea, speeding the

discovery of ocean life and processes unknown to the research

community. Such a step change in observational capacity is

desperately needed: estimates suggest that between 30 and 60% of

marine life have yet to be described (Appeltans et al., 2012) and

current methods for marine species description can take more than

21 years on average per species (Fontaine et al., 2012). The future of

species discovery must someday leverage algorithms like

DeepSTARia to autonomously run Discovery and Follow missions

to continuously monitor an ocean region or explore a new one

(Aguzzi et al., 2020). As algorithms and embedded hardware

continue to improve on autonomous vehicles, data collected

during these missions may someday lead to onboard learning of

features of animals and objects without loss of performance on

existing classes, identification of unknown classes (Joseph et al.,

2021), and verification by human observers via Supervised

Autonomy. These advances, enabled by algorithms like

DeepSTARia, are critical to scale our ability to discover, study,

and monitor the diverse animals that inhabit our ocean.
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