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Center, Qingdao, China, 3College of Chemistry and Chemical Engineering, Ocean University of China,
Qingdao, China, 4Beijing Juxin Zhuifeng Technology, Ltd., Beijing, China
Compounds containing one carbon atom or no carbon-carbon bond (C1

compounds), such as trimethylamine and methanol, are important climate

relevant gases in the atmosphere and play key roles in global warming. The ocean

is a significant source or sink of such compounds, while the concentrations of

trimethylamine and methanol in seawater remain largely unconstrained due to the

analytical challenges involved. Therefore, it is necessary to establish a continuous,

rapid and sensitive method for the determination of these compounds with high

polarity, volatility or solubility at low seawater concentrations. Here we developed a

purge and trap system, coupled to a gas chromatography equipped with dual

nitrogen phosphorus detector (NPD) and flame ionization detector (FID) for the

simultaneous online analysis of trimethylamine and methanol at nanomolar range

using a small sample volume (~ 10 mL). The dual detection of trimethylamine and

methanol with NPDor FIDwas achieved by installing a capillary flow splitter between

the capillary column and detectors. After modification and optimization of the setup

and conditions, excellent linearity (R2 > 0.99) and repeatability (< 6%) were obtained

for both compounds; the detection limits for trimethylamine andmethanol were 0.3

nM and 17.6 nM, respectively. Using this method, water samples collected from

coastal and open ocean were analyzed; trimethylamine and methanol

concentrations ranged from 0.6 to 18.8 nM and 26.0 to 256.2 nM, respectively.

Collectively, this method allowed for online, rapid, sensitive and simultaneous

quantification of trace trimethylamine and methanol concentrations with low-cost

instrumentation and small sample volume, which makes it promising for further

application in volatile compounds analysis in marine environments.
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1 Introduction

One carbon (C1) compounds, defined as molecules with no

carbon-carbon bond, such as methane, methanol, methyl sulfides

and methyl amines, are widespread on earth and play key roles in

atmospheric chemistry and global warming (Yang et al., 2013; Masson-

Delmotte et al., 2018; Sun et al., 2019; Mao et al., 2022; Hopkins et al.,

2023; Bange et al., 2024). While methane and dimethyl sulfide have

been intensively studied due to their impact on climate change

(Charlson et al., 1987; Dean et al., 2018; Zhuang et al., 2018a; Forster

et al., 2021; Mao et al., 2021), little is known about the biogeochemical

cycling of other C1 compounds, such as trimethylamine and methanol

(Van Neste et al., 1987; King, 1988; Singh et al., 2001; Zhuang et al.,

2019; Fitzsimons et al., 2023). Gaseous amines in the atmosphere,

including trimethylamine, can enhance particle nucleation as well as

growth and affect secondary organic aerosol formation (Yao et al.,

2018). Methanol is one of the most abundant oxygenated volatile

organic compounds that can contribute to the formation of

atmospheric ozone (Heikes et al., 2002).

Seawater represents an important sink and source of C1

compounds with respect to the atmosphere. Trimethylamine can

be released by phytoplankton from the degradation of quaternary

amines (e.g., glycine betaine) and derived from the excretion or decay

of marine animals and microorganisms (Carpenter et al., 2012;

Mausz and Chen, 2019). Containing both carbon and nitrogen,

trimethylamine can be used as carbon, nitrogen and energy sources

for marine microbes (Taubert et al., 2017; Zhuang et al., 2018b).

Similar to trimethylamine, methanol is ubiquitous in marine systems

and largely produced by phytoplankton (Yang et al., 2013; Mincer

and Aicher, 2016). Methanol is predominately used as a microbial

energy source for CO2 production (Zhou et al., 2023), and was also

observed as an important carbon source channeled into biomass in

highly productive areas (Dixon et al., 2013b; Zhuang et al.,

2018b). Therefore, the metabolism of trimethylamine and

methanol constitute an important part of the marine carbon and

nitrogen cycles.

Despite the significance of trimethylamine and methanol in the

ocean, large uncertainty remains for global sea-air exchange fluxes

due to limited measurements of their concentrations. A few studies

reported that trimethylamine and methanol concentrations were

within the nanomolar range in seawater (Beale et al., 2011, 2013;

Cree et al., 2018; Wu et al., 2020). Determination of trimethylamine

and methanol at such low concentrations is challenging and an

efficient enrichment for preconcentration is usually required before

chromatographic (GC) or mass spectrometric (MS) analysis. The

basic nature and high polarity lead to the strong adsorption of

trimethylamine to the surface of glassware and instruments, while

the high solubility of methanol makes it difficult to be extracted

from seawater. Several approaches have been developed to

determine the low concentrations of trimethylamine or methanol

in seawater, for example, solid-phase microextraction with gas

chromatography method and dopant-assisted atmospheric

pressure photoionization time-of-flight mass spectrometry

method for trimethylamine and inlet-proton transfer reaction/

mass spectrometer method for methanol (Beale et al., 2011;
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Cree et al., 2018; Wu et al., 2020). However, the time-consuming

pretreatment with manipulative steps and requirement of a large

sample volume, or the employment of high-cost instruments, has

limited the routine application of these methods in marine research.

Furthermore, the purge and trap (P&T) pretreatment with gas

chromatography has been widely used for the trace analysis of

marine volatile compounds (Zhang et al., 2004, Zhang et al., 2015;

Yang et al., 2010, Yang et al., 2011; Zhong et al., 2012) due to its

versatility with easy operation, high extraction efficiency, and the

requirement of low-cost instrumentation. Recently, we have

successfully developed P&T-GC-MS or P&T-GC methods to

analyze concentrations of trimethylamine or methanol in

sedimentary pore waters with 5 – 6 mL samples (Zhuang et al.,

2014, 2017).

In this study, we sought to establish a P&T-GC method for the

simultaneous determination of seawater trimethylamine and

methanol. To achieve this, the two compounds were separated by

a single column but detected using dual nitrogen-phosphorus

detector (NPD) and flame-ionization detector (FID). We further

optimized the P&T conditions (e.g., purge flow rate, purge

temperature and trap temperature) to improve the sensitivity of

the method. After optimization, we assessed the performance and

applied this method to determine natural seawater samples

collected from the coastal waters of Jiaozhou Bay and the open

ocean of the western Pacific.
2 Materials and methods

2.1 Chemicals and solutions

Trimethylamine hydrochloride (98%) and methanol (analytical

reagent) were purchased from Merck (KGaA, Germany) and

Sinopharm Chemical Reagent, Ltd (Shanghai, China), respectively.

The primary stocks of trimethylamine (1.2 mM) and methanol (12.3

mM) were prepared separately in double-distilled water and both

stock solutions were stored < 1 week in a 50 mL serum vial without

headspace at 4°C in the dark. Standard solutions for calibration

(trimethylamine: 0.5 – 7.2 nM; methanol: 24.0 – 360.0 nM) were

made by mixing and diluting the trimethylamine and methanol

primary stocks to desired concentrations. Ammonium chloride (>

99.5%) and sodium hydroxide (> 96%) were purchased from

Sinopharm Chemical Reagent Co., Ltd (Shanghai, China).
2.2 P&T system coupled to GC-NPD&FID

A modified P&T system (Acrichi PTC, Beijing Juxin Zhuifeng

Technology, Ltd, China) was used for the preconcentration of

trimethylamine and methanol before GC analysis. The P&T

system includes a purge unit to extract the volatiles from the

seawater, a dehydration unit to remove the moisture, and a trap

unit to concentrate the volatile gases (Figure 1). Briefly, 10 mL

seawater was introduced into a 40 mL glass vial and capped with a

silicone/PTFE septum. After injecting 400 mL of 5 MNaOH and 200
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mL of 20 mM NH4Cl through the septum, the 40 mL glass vial, used

as the bubbling chamber, was placed on a heating bracket at 85°C.

The addition of NaOH helps to release trimethylamine from the

non-volatile hydrochloride form at seawater pH ~ 8.2 and NH4Cl

would reduce the adsorption of trimethylamine on the surface of

labware and column (Dalene et al., 1981). A sparging needle pierced

through the septum, and then the sample was purged with nitrogen

gas. The evolved gas passed through an inert hollow condenser pipe

electronically set at −5°C to condense the water, and then entered a

cryogenic trap packed with Tenax TA, which was electronically

controlled at −25°C. After 10 min of purging and trapping, the cold

trap was heated to 220°C for 2 min and the vaporized analytes were

channeled to the GC with high-purity nitrogen. After the

introduction of gas into GC, the P&T system was purged with

high-purity nitrogen (99.999%) for 3 min to eliminate moisture and

the cryogenic trap was heated to 300°C to avoid carryover between

samples. All tubes, components, and connectors of the P&T system

were deactivated and maintained at 180°C to minimize adsorption.

The quantification of trimethylamine and methanol was

performed using an Agilent 8890 GC equipped with NPD and

FID. This is achieved through a splitter based on the capillary flow

technology of Agilent, which was installed between the capillary

column and detectors and connected the NPD and FID in parallel

(Figure 1). Volatile compounds were separated with a HP-PLOT Q

column (30 m × 0.32 mm, Agilent Technologies Inc., USA). The

optimized GC conditions included: split ratio, 0.5:1; injection

temperature, 70°C; oven temperature started at 40°C for 2 min,

ramped to 240°C at 35°C min–1 and held at 240°C for 3 min. Carrier

gas flow rates were optimized to increase the analytes response

(5.5 mL min–1, see section 3.1). The NPD temperature was set at
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320°C and the flow rates of hydrogen and air were 10 mL min–1 and

60 mL min–1. The temperature of the FID was 300°C, with a

hydrogen and air flow of 30 mL min–1 and 400 mL min–1,

respectively. Parameters for the P&T system were detailed in

Supplementary Table S1.
2.3 Procedural blank and
contamination tests

To test for potential contamination from the laboratory, a

procedural blank of non-spiked water was measured using the

same procedure as the standards. While trimethylamine was not

detected in non-spiked double-distilled water, there was a consistent

background presence of methanol in the water. Additional tests

confirmed that the P&T system did not introduce trimethylamine

and methanol blank by purging an empty vial without adding water.

Therefore, the calibration for methanol was conducted by subtracting

the blank from the water. To prevent methanol contamination, the

septa used to seal the bubbling chamber were baked at 75°C for 72 h.

Furthermore, all measurements were conducted in a laboratory free

of trimethylamine and methanol, as confirmed by exposing blank

water in the lab for two weeks (Zhuang et al., 2014).
2.4 Sample collection

Surface seawaters were collected from shallow waters of Jiaozhou

Bay and open ocean of the western Pacific (Supplementary Figure S1)
FIGURE 1

P&T-GC-NPD&FID system for trimethylamine and methanol analysis in seawater. 1: Nitrogen 2: Toggle valve 3: Gas controller 4: Pressure gauge 5: Purge
syringe 6: Bubbling chamber 7: Heater block 8: Dehydration unit 9: Cold trap 10: Six port valve 11: Injection port 12: Capillary flow splitter 13: FID 14: NPD.
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during May 2022 and August 2022, respectively. Seawater samples

from Jiaozhou Bay and the western Pacific Ocean were collected

using a 5 L plexiglass water sampler and using 12 L Niskin bottles

deployed on a Seabird 911 conductivity-temperature-depth rosette

system, respectively. After collection, seawater was immediately

transferred into 60 mL serum vials and sealed with thick butyl

rubber stoppers to minimize gas loss and air contamination. All

samples were stored at −80°C immediately after sampling (< 10 min)

on board to prevent biological loss and potential degradation before

analysis (Zhuang et al., 2018b), as methylamines can be consumed

quickly without preservation (Cree et al., 2018). Samples were not

filtered before analysis as the filtering process could lead to the release

of organic volatiles or introduce contaminations (Beale et al., 2011).

Therefore, our measurements represented the total concentrations of

TMA and methanol in the environments, including dissolved and

particulate fractions. However, it should be noted that separating

dissolved and particulate phases of TMA through filtration is

necessary for quantifying the fluxes of TMA to the atmosphere,

which is an important measurement to assess the residence time in

seawater once produced. All glass bottles for sampling were soaked in

hydrochloric acid (3% v/v) for > 24 h and rinsed with double-distilled

water three times before use.
2.5 Data analysis

One-way analysis of variance (One-way ANOVA) was

performed on Origin 2023 (OriginLab Corporation, Northampton,

MA, USA) and the significance of differences during optimization

was tested with a significance level of 0.05. Sampling sites and the

distribution of trimethylamine and methanol were mapped using
Frontiers in Marine Science 04
Ocean Data View 5.3.0 (Schlitzer, Reiner, Ocean Data View,

odv.awi.de, 2022).
3 Results and discussion

3.1 Dual detection of trimethylamine and
methanol with NPD and FID

Given the different responses of volatile compounds to specific

detectors, trimethylamine and methanol were analyzed with the

NPD and FID, respectively. As such, a splitter based on capillary

flow technology was installed between the capillary column and

detectors to split carrier gas from the same column to the NPD and

FID. Accordingly, continuous online quantification of

trimethylamine and methanol could be achieved with single

injection after P&T preconcentration using a small sample

volume (~ 10 mL). This not only significantly reduced running

time but was particularly important for volume-limited samples

(e.g., pore water and microlayer samples).

The split of carrier gas into two streams would result in an over

50% reduction in the response of trimethylamine and methanol.

The decrease could be attributed to the disparity in textures between

the capillary and inertia tee-junction. This can be improved by

increasing the carrier gas flow, but high flow would also lead to the

elution of the column’s stationary phase. Therefore, optimal flow

rates were examined between 3.0 to 6.0 mLmin–1, and a final flow of

5.5 mL min–1 was used to yield a satisfactory response without

compromising the column performance. After optimization,

trimethylamine and methanol were separated with good peak

shapes and detected simultaneously with NPD and FID (Figure 2).
A

B

FIGURE 2

Chromatogram of trimethylamine (A, 12.0 nM) and methanol (B, 1.2 mM) in double-distilled water measured with P&T-GC-NPD&FID.
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3.2 Optimization of purge and trap system

To preconcentrate the target compounds more efficiently, a

series of P&T conditions were optimized. We assessed the effect of

purge parameters, such as purge flow, purge time and purge

temperature on the extraction efficiency (Zhuang et al., 2014, 2017).

Purge time and flow reflect the total gas volume used for degassing,

which help the volatiles escape to the headspace. For methanol, the

responses generally increased with purge flow from 50 to 90 mL min–1

(Figure 3A). Similarly, higher flow (> 70 mL min–1) also resulted in

elevated response for trimethylamine (Figure 3A). Considering that

higher flow would cause the loss of adsorbent in the trap and large

purging gas volume would elute the analyte compounds from the

adsorbents, we selected a flow rate of 90 mL min–1 for 10 min.

Temperature is also important for extraction and both

trimethylamine and methanol signals increased significantly from

ambient to 85°C (Figure 3B). Heating at high temperature

introduced more moisture to the cold absorbent trap. To avoid

clogging, a hollow condenser pipe at −5°C was used for dehydration

before trapping, which removed moisture from the gas stream

without significant loss of methanol. For the temperature of the

adsorbent trap, while methanol was not affected, the recovery of

trimethylamine decreased at −15°C compared to other lower

temperature (Figure 3C). Based on these facts, our samples were

heated at 85°C during purging, dried at −5°C, and finally trapped

with Tenax TA at −25°C.

We tested the effect of NaOH and NH4Cl on the recovery of

trimethylamine and methanol. As expected, the signal of

trimethylamine without NaOH was only 8.1% of those purged

with 400 µL 5 M NaOH (Figure 3D). This is because
Frontiers in Marine Science 05
trimethylamine, with a pKb value of 4.19, exists mostly in non-

volatile hydrochloride form under neutral or seawater condition

(pH ~ 8.2). The addition of NH4Cl significantly improves the

response of trimethylamine, since NH3 reduces the adsorption of

trimethylamine by competing for sites on the surface of the P&T

system (Figure 3E). Moreover, methanol response was also

improved with the addition of NaOH, which could be attributed

to the “salting-out effect” (Peng and Wan, 1998). Ultimately, 200 µL

20 mM NH4Cl and 400 µL 5 M NaOH were added to the sample to

release trimethylamine and reduce adsorption.
3.3 Analytical performances

Under the optimum conditions, we assessed the performance of

the method. A six-point calibration curve was conducted for

trimethylamine (0.5 – 7.2 nM) and methanol (24.0 – 360.0 nM),

and excellent linearity was observed with R2 > 0.99 (Figure 4). The

repeatability, calculated from the relative standard deviation (RSD) of

repeated measurements of the standard solution (n = 7) was better

than 6%, suggesting the good stability of the method (Table 1). Good

reproducibility was also observed for the seawater sample (RSD < 8%),

which was measured repeatedly seven times.

The method detection limit (MDL) was calculated according to

Equation 1.

MDL = 3:143d (1)

where d is the standard deviation of replicate measurements (n = 7)

of standards spiked with low concentrations of analytes according to

EPA. Using this method, the calculated MDL for trimethylamine and
A B

C D E

FIGURE 3

The effects of (A) purge flow, (B) purge temperature, (C) trap temperature, (D) NaOH addition and (E) NH4Cl addition on the response of
trimethylamine and methanol measured with P&T-GC-NPD&FID. In each panel, 100% relative intensity corresponds to the highest signal observed.
Error bars represent the standard deviation of triplicate measurements, and ultimate conditions are denoted with * in each panel.
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methanol was 0.3 nM and 17.6 nM, respectively (Table 1). Compared

to previous methods, this is a significant improvement on the detection

of trimethylamine and methanol with a 10 mL sample volume.

Taking the preconcentration and GC running time into account, the

total process time for each sample is 20 min (Table 2). The short

processing time, the high sensitivity of detection, the relatively low

requirement of sample volume, and the capability to analyze two C1

compounds simultaneously, make our method a suitable assay for

rapid and sensitive analysis of trimethylamine and methanol in

marine environments.
3.4 Application to natural samples

The application of the developed method for trimethylamine

and methanol analysis was evaluated using seawater samples

retrieved from Jiaozhou Bay and the western Pacific Ocean. Both

trimethylamine and methanol were detected in the seawater at all

sampling sites (Supplementary Table S2). In Jiaozhou Bay, the

concentrations of trimethylamine varied from 1.3 to 18.8 nM

(5.2 ± 4.4 nM). Methanol concentrations ranged from 26.0 to

256.2 nM, with an average of 93.2 ± 62.1 nM. These values were

comparable to the measured concentrations in coastal waters

(Table 3). The highest concentrations of trimethylamine and

methanol were observed at site D4 of the east bay mouth, which

was close to Qingdao Cruise Port (Figure 5). The elevated

concentration at this site suggested that anthropogenic activity

might influence marine productivity and also the production of

trimethylamine and methanol. In the Pacific Ocean, the
Frontiers in Marine Science 06
concentrations of trimethylamine were much lower, ranging from

0.6 to 2.3 nM (1.1 ± 0.7 nM). In seawater, trimethylamine is mainly

derived from the degradation of its precursors (trimethylamine N-

oxide, glycine betaine, carnitine) that serve as osmolytes in marine

organisms (Jameson et al., 2016). Given the dominance of biological

source for trimethylamine, it is not surprising that the abundance of

trimethylamine was higher in coastal water than in the open ocean

due to the high primary production.

By comparison, methanol concentrations in oceanic waters

(122.8 ± 48.0 nM) were comparable to those measured in

Jiaozhou Bay and were also generally within the wide range

reported in the Atlantic, and Pacific oceans (Table 3). In contrast

to trimethylamine, the sources of methanol can be more

complex, such as phytoplankton production, photochemical

decomposition of organic matter, and atmosphere deposition

(Schink and Zeikus, 1980; Yang et al., 2013; Dixon et al., 2013a;

Mincer and Aicher, 2016). In the Atlantic Ocean, methanol is

mos t l y d e r i v ed f r om b io l og i c a l p roduc t i on , wh i l e

photoproduction seemed to be negligible for gross in situ

production (Dixon et al., 2013a). Although production rates

can be higher in coastal waters, rapid consumption of methanol

in near-shore waters would maintain methanol concentration at

a low level. In the Northwest Pacific Ocean, atmospheric

deposition is also a source of methanol and it accounted for

22.7% of microbial methanol consumption in the mixed layer

(Zhou et al., 2023). Collectively, the in situ concentrations of

trimethylamine and methanol reflected the relative importance

of production and consumption processes involved in their

cycling in marine environments.
FIGURE 4

Six-point calibration curves for trimethylamine (0.5 – 7.2 nM) and methanol (24.0 – 360.0 nM). Error bars represent the standard deviation of
triplicate measurements.
TABLE 1 Linearity, repeatability, and detection limits for trimethylamine and methanol analysis by P&T-GC-NPD&FID.

Compounds
Detection limita

Repeatabilityb
Linearity

nM
Concentration

range
R2

Trimethylamine 0.3 5.4% (2.4 nM) 4.7% (24.0 nM) 0.5 – 7.2 nM 0.998

Methanol 17.6 4.7% (36.0 nM) 5.1% (1.2 mM) 24.0 – 360.0 nM 0.998
aMethod detection limits (MDLs) were determined as 3.143 times the standard deviation of replicate measurements (n = 7) of low concentration standards according to EPA.
bRepeatability was calculated from the relative standard deviation of repeated measurements of the standards (n = 7).
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TABLE 2 Comparison of different methods used for the analysis of trimethylamine and methanol in marine system.

Compounds Sample volume
Analysis
time

LODs
nM

Methods Reference

Trimethylamine

50 mL > 48 h 11 MD-GC-NPDa (Abdul-Rashid et al., 1991)

< 500 mL > 4 h 10 CD-GC-NPDb (Yang et al., 1993)

< 50 mL 15 – 30 min 3 – 5 FIGD-ICc (Gibb et al., 1995)

5 mL 25 min 20 P&T-GC-MSd (Zhuang et al., 2017)

1 L > 2.5 h 0.38 – 0.89 SPME-GC-NPDe (Cree et al., 2018)

2 mL 2 min 0.53 DA-APPI-TOFMSf (Wu et al., 2020)

10 mL 20 min 0.3 P&T-GC-NPD&FIDg This work

Methanol

2 L 2 min 12 EI-PTR-MSh (Kameyama et al., 2010)

6 mL 50 min 60 P&T-GC-FIDi (Zhuang et al., 2014)

116 mL 29 min 27 MI-PTR/MSj (Beale et al., 2011)

10 mL 20 min 17.6 P&T-GC-NPD&FIDg This work
F
rontiers in Marine Scienc
e
 07
aMicrodiffusion-gas chromatography-nitrogen phosphorus detection.
bCirculation diffusion-gas chromatography-nitrogen phosphorus detection.
cFlow injection gas diffusion-ion chromatography.
dPurge and trap in combination with gas chromatography coupled to mass spectrometry.
eSolid phase microextraction-gas chromatography-nitrogen phosphorus detector.
fDopant-assisted atmospheric pressure photoionization time-of-flight mass spectrometry.
gPurge and trap in combination with gas chromatography coupled to nitrogen phosphorus detector and flame ionization detector.
hEquilibrator inlet-proton transfer reaction-mass spectrometry.
iPurge and trap in combination with gas chromatography coupled to flame ionization detector.
jMembrane inlet-proton transfer reaction/mass spectrometer.
TABLE 3 Concentrations of trimethylamine and methanol measured in marine waters.

Compounds
Concentration

nM
Sampling sites References

Trimethylamine

< 7 Offshore, Mediterranean Sea

(Gibb et al., 1995)4 – 22 Coast, Mediterranean Sea

0 – 13 Tamar and Plym Estuaries, UK

12 ± 3 Pacific-Hawaii coast (Van Neste et al., 1987)

5 – 60 Flax Pond, USA (Yang et al., 1994)

< 4 Arabian Sea (Gibb et al., 1999)

1.6 ± 1.8 Coast, Antarctica (Gibb and Hatton, 2004)

1.4 – 6.9 Southern Ocean (Cree et al., 2018)

1.7 – 8.3 Dalian coast, China (Wu et al., 2020)

Methanol

118.4 ± 48.2 Tropical Atlantic (Williams et al., 2004)

77.9 – 325.0 Western Pacific Ocean (Kameyama et al., 2010)

48 – 361 Atlantic Ocean (Beale et al., 2013)

15 – 62 Atlantic Ocean (Yang et al., 2013)

7 – 28 Atlantic Ocean (Yang et al., 2014)

16 – 78 Plymouth coast, UK (Beale et al., 2015)

67 ± 35 Southern Ocean (Wohl et al., 2020)

< 12 – 391 Northwest Pacific Ocean (Zhou et al., 2023)
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4 Conclusion

Investigating the concentrations and distributions of

trimethylamine and methanol is a prerequisite to understand their

biogeochemical cycling in the ocean. In this study, we established a

rapid and sensitive GC approach for online and simultaneous

analysis of trimethylamine and methanol in seawater. After

preconcentration with a P&T setup, trimethylamine and methanol

were analyzed with GC equipped with dual NPD and FID. We

optimized GC and P&T conditions and obtained good performance

of linearity, repeatability and detection limit. The application of this

approach was validated using the seawater samples collected from

Jiaozhou Bay and the western Pacific Ocean, and trimethylamine and

methanol were detected at all sites with spatial variability. Overall,

this method is simple, relatively fast with high sensitivity and small

sample volume for simultaneous analysis of trimethylamine and

methanol using a GC. Furthermore, this method could be extended

for the analysis of other methylamines or alcohols with optimizations,

not only in the seawater, but possibly in air samples, which would be
Frontiers in Marine Science 08
helpful for future investigation of C1 or other volatile organics in

marine environments.
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