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The rapid and accurate classification of aquatic products is crucial for ensuring

food safety, production efficiency, and economic benefits. However, traditional

manual methods for classifying ark shell species based on phenotype are time-

consuming and inefficient, especially during peak seasons when the demand is

high and labor is scarce. This study aimed to develop a deep learning model for

the automated identification and classification of commercially important three

ark shells (Tegillarca granosa, Anadara broughtonii, and Anadara kagoshimensis)

from images. The ark shells were collected and identified using a polymerase

chain reactionmethod developed in a previous study, and a total of 1,400 images

were categorized into three species. Three convolutional neural network (CNN)

models, Visual Geometry Group Network (VGGnet), Inception-Residual Network

(ResNet), and SqueezeNet, were then applied to two different classification sets,

Set-1 (four bivalve species) and Set-2 (three ark shell species). Our results showed

that SqueezeNet demonstrated the highest accuracy during the training phase

for both classification sets, whereas Inception-ResNet exhibited superior

accuracy during the validation phase. Similar results were obtained after

developing a third classification set (Set-3) to classify six categories by

combining Set-1 and Set-2. Overall, the developed CNN-based classification

model exhibited a performance comparable or superior to that presented in

previous studies and can provide a theoretical basis for bivalve classification,

thereby contributing to improved food safety, production efficiency, and

economic benefits in the aquatic products industry.
KEYWORDS

Anadara kagoshimensis, Tegillarca granosa, Anadara broughtonii, convolutional neural
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1 Introduction

Ark shells belong to the phylum Mollusca, class Bivalvia, order

Arcida, and family Arcidae. Among the various ark shell species,

granular ark (Tegillarca granosa (Linnaeus, 1758)), broughton’s

ribbed ark (Anadara broughtonii (Schrenck, 1867)), and half-

crenate ark (Anadara kagoshimensis (Tokunaga, 1906)) are

currently commercially important for the fishery industry (Lee

et al., 2022) and can be found throughout the Indo-Pacific region.

These ark shell species, which live burrowed into sand or mud

mainly within the intertidal zone at a depth of 1 to 2 m, play a

crucial role in the community structure of coastal ecosystems and as

critical economic resources for the fishery and aquaculture

industries (Zhao et al., 2017). They are one of the most popular

marine bivalves among consumers given their rich flavor and

substantial nutritional benefits. In fact, they provide high-quality

protein and vitamins, are low in fat, and contain a considerable

amount of iron, which helps prevent anemia (Zha et al., 2022). The

worldwide production of ark shells has been estimated to be

approximately 591,000 tons per year, representing a value of

nearly $600 million (Kong et al., 2020). In Korea, the production

of ark shells has been to exceed 12,600 tons in 2019 (https://

www.mof.go.kr/). Considering their ecological and economic

importance as marine bivalves, they have been the subject of

research efforts.

Globally, the aquaculture industry has continued to heavily rely

on human judgment, manual labor, and environmental factors, or

at most, employs partially automated or mechanized systems

(Benjakul and Saetang, 2022). In response to these challenges,

various strategies have been proposed to digitize the sector

(Simonyan and Zisserman, 2015). Particularly in the distribution

stage of aquatic resources, image recognition technology has been

employed to leverage smartphones in identifying fish species or

assessing their status based on image data (Yang et al., 2021;

Knausgård et al., 2022; Li et al., 2023). Traditional image

recognition technology has been used to perform contouring and

indexing based on the unique characteristics of the object being

classified (Deep and Dash, 2019). One of the popular techniques

used to categorize aquatic resources is the polygon approximation

algorithm, which involves selecting the start and end points of a

segment and deciding whether to include a dominant point.

Although this approach has allowed for the classification of

aquatic resources with distinct outline characteristics, such as fish,

shellfish, and starfish, it has some limitations when distinguishing

detailed species within the fish or shellfish categories (Villon et al.,

2018). Since 2010, the field of artificial intelligence has seen rapid

advancements, particularly with regard to deep learning algorithms

used in image processing (Rasheed, 2021). Considering their

superior performance and broad applicability, deep learning

algorithms have been ubiquitously employed across various

industry sectors. Numerous examples of their applications can

also be found in the fisheries industry (Yang et al., 2021; Saleh

et al., 2022). Typically, the datasets used for artificial intelligence

models that classify aquatic resources, particularly fish and shellfish,

primarily focus on resources with characteristics distinct enough to
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be identified visually by humans (Zhang et al., 2023). However, for

specific granular ark breeds that exhibit three similar phenotypes, a

targeted model development focusing specifically on these three

types could be considered more appropriate than incorporating

them into the existing shellfish classification dataset. Traditionally,

experts have relied on the shape and count of radial ribs to visually

differentiate these species. However, this approach this method is

not only challenging in achieving precise differentiation but also

labor-intensive, requiring accurate classification assessment.

Therefore, the primary objective of this study was to validate

whether genetic testing, in conjunction with genetic analysis, could

be used for the imaging-based classification and differentiation of

three distinct ark shell species. More precisely, this study employed

a deep learning model, underpinned by a convolutional neural

network (CNN) architecture, to classify the three species of ark

shells, subsequently comparing the efficacies of the applied models

to determine the most proficient one. To accomplish this, a

verification group comprising three species of ark shells and four

other bivalves was classified with the intent of developing an image

classification model. We then determined the performance of the

most efficient model and, ultimately, sought to corroborate the

differentiation of the three ark shell species through polymerase

chain reaction (PCR) testing. This approach aimed to not only

enhance the accuracy and efficiency of ark shell classification but

also contribute to the broader field of mollusk research and

biodiversity conservation.
2 Materials and methods

2.1 Sample collection and
image acquisition

Reference specimens of granular ark (Tegillarca granosa),

broughton’s ribbed ark (Anadara broughtonii), half-crenate ark

(Anadara kagoshimensis), scallop (Patinopecten yessoensis), venus

mactra (Mactra veneriformis), and venus clam (Cyclina sinensis)

were obtained from the National Institute of Biological Resource

(Incheon, Korea). The granular ark, broughton’s ribbed ark, and

half-crenate ark, scallop, venus mactra, and venus clam samples

were collected by fish farms, fish auction markets, and fish markets

across Korea. The bivalve species chosen for the experiment were of

excellent quality, with no discernible flaws or damage. We opted to

use RGB images obtained by smart phone considering their wide

availability across various stages in the bivalve industry

(Jayasundara et al., 2023). To ensure better generalization, two

smartphones, an iPhone 11 Pro Max and a Samsung Galaxy S20+,

with different camera were used. The specifications of the

smartphone camera used were as follows: dimensions (iPhone,

1,440 × 1,440; Galaxy, 1,440 × 3,200), resolution (iPhone, 96 dpi;

Galaxy, 525 ppi), ISO time (iPhone, 100; Galaxy, 100), f-stop

(iPhone, f/1.6; Galaxy, f/1.8), and exposure time (iPhone, 1/60 s;

Galaxy, 1/60 s). To ensure image consistency and prevent shadows,

a background surface was used by fixing the camera at 50 cm above

the bivalve samples during the image acquisition process.
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2.2 Identification of three ark shells

The ark shells selected for the experiment were identified using

a specific PCR method to accurately classify the samples. First, the

shells of the ark shells were removed, after which the genomic DNA

of the edible portion was extracted using DNeasy Blood & Tissue

Kit (Qiagen, Hilden, Germany) according to the manufacturer’s

instructions. Thereafter, T. granosa, A. broughtonii, and A.

kagoshimensis were detected using ultrafast PCR with specific

primers developed in our previous study (Lee et al., 2022). The

primer sequences used for ultrafast PCR are shown in

Supplementary Table 1. Based on genetic analysis, each image of

ark shell was classified according to species.
2.3 Bivalves image dataset

When preparing the image dataset for the detailed species

classification of ark shells, we initially gathered datasets for four

bivalve species, namely scallop, venus mactra, venus clam, and ark

shells that resembled ark shells in order to develop a model that

could classify these species. Within this framework, we regarded the

three species of ark shells as a single data group. The primary

dataset used for classifying these four types of bivalves was collected

from the top view of the specimens, as depicted in Figure 1. Building

upon the results derived from the bivalve classification dataset,

image data of specimens identified as ark shell were acquired for

further classification into the three detailed ark shell species, as

depicted in the following Figure 1. A distinctive physical feature of

the ark shells is the presence of radial ribs, which resemble fan-

shaped grooves (Figure 2). We aimed to examine the conventional

method of ark shell classification based on the count of these radial
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ribs. To accomplish this, the number of lines in 100 samples of each

detailed species was counted.
2.4 Development of deep learning models
for image classification

2.4.1 CNN models: visual geometry
group network

Figure 3 depicts the characteristics and inner workings of the

VGG16 model. Accordingly, the model commences with an input

layer that accommodates an image of a shape (224, 224, 3). The

architecture then utilizes 13 convolutional layers designed to extract

intricate features from the input images. Though small, the 3 × 3

filters capture localized spatial correlations present within the image

data, effectively simplifying the complexity of the image.

Nonlinearity, a critical aspect of deep learning networks, is

introduced by applying the Rectified Linear Unit activation

function after each convolution operation. This process allows the

network to model and learn more complex patterns within the data.

Max pooling, a downsampling operation, is performed along the

spatial dimensions of the image (width and height) through five

layers within the model. Not all convolutional layers are followed by

max pooling, thereby preserving certain high-resolution features.

After the final max pooling layer, the architecture encompasses two

fully connected layers, each possessing 4,096 nodes. These layers

further model nonlinear combinations of high-level features derived

from the output of the convolutional layers. Essentially, these fully

connected layers function as classifiers that can be utilized for

definitive classification. The architecture concludes with a softmax

activation layer comprising 1,000 nodes, one for each possible

image class within the model. The softmax function, which
FIGURE 1

The classification dataset intended for testing the deep learning model applied in this study. Representative images of the dataset for the entire
bivalves (scallop, venus mactra, venus clam, and ark shells: in the case of ark clam, all three detailed species are included).
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represents a probability distribution over the varied possible

outcomes, delivers the final class prediction for the given

input image.

2.4.2 CNN models: Inception-ResNet
Inception-ResNet, a distinctive architecture within the CNN

framework, seamlessly integrates the salient features of two pivotal

networks, namely Inception and ResNet (He et al., 2016; Szegedy

et al., 2017). The Inception-ResNet architecture amalgamates the

advantages of Inception (efficient processing of images at multiple

scales) and ResNet (ease of training deep networks) architectures.
Frontiers in Marine Science 04
This is achieved by introducing residual connections within the

Inception architecture. The Inception-ResNet architecture can be

characterized as a series of stacked Inception modules, each

supplemented with a shortcut connection that links the module’s

input to its output. Owing to this hybrid combination, the

Inception-ResNet architecture has been considered an

extraordinarily potent model for various computer vision tasks

that is capable of efficiently processing images across diverse scales,

courtesy of the incorporated Inception architecture, while ensuring

relative ease in training, even for significantly deep networks, due to

the integrated ResNet architecture (Figure 3).
A

B

C

FIGURE 3

The structure of (A) VGGnet-19, (B) Inception-Resnet, and (C) Squeezenet used to develop the image classification model.
FIGURE 2

Phenotype characteristics of Anadara kagoshimensis (top), Anadara broughtonii (middle), and Tegillarca granosa (bottom).
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2.4.3 CNN models: SqueezeNet
SqueezeNet was designed to reduce the number of parameters

and amount of memory required to store the model without

sacrificing accuracy (Koonce, 2021; Sayed et al., 2021), which can

be achieved through several strategies.

Use of 1 × 1 filters: These filters have fewer parameters than 3 ×

3 filters and can be used to reduce and increase the number of

channels in the network.

Decrease in number of input channels to 3 × 3 filters:

SqueezeNet decreases the number of input channels to 3 × 3

filters, which are more computationally expensive than 1 × 1

filters. This is accomplished through squeeze layers, which reduce

the depth of the network using 1 × 1 filters.

Downsampling late in the network: Downsampling is a

technique used to reduce the spatial dimensions of the data. In

SqueezeNet, downsampling is performed late in the network to

ensure that the convolutional layers have large activation maps,

which can increase the classification accuracy.

The basic building block of SqueezeNet is the Fire module,

which consists of a squeeze layer followed by an expand layer

(Figure 3). The squeeze layer reduces the number of input channels

using 1 × 1 filters, whereas the expand layer increases the number of

channels using a combination of 1 × 1 and 3 × 3 filters. Overall,

SqueezeNet is an efficient and compact network that is ideal for

circumstances in which memory and computational resources are

limited but high accuracy is still required.
2.5 Model performance evaluation method

Based on the classification objectives, the proposed models were

categorized into Classification Set-1, Classification Set-2, and

Classification Set-3. Set-1 was designed to classify four types of

bivalves (scallop, venus mactra, venus clam, and ark shells), whereas

Set-2 was specifically engineered to distinguish between three

species of the ark shells (granular ark, broughton’s ribbed ark,

and half-crenate ark). Finally, Set-3 was designed to amalgamate the

classification capabilities of Set-1 and Set-2, thereby aiming to

classify a total of six classes, encompassing the three broader

bivalve categories and the three specific ark shells species. The

development of these models holds the potential to significantly

enhance the accuracy and efficiency of bivalve species classification

tasks (Figure 1).

The evaluation of the developed models in this study is a

crucial component in ensuring their performance and

reliability. Classification accuracy is the most straightforward

evaluation metric. Accuracy is a metric that accounts for the

situation in which the model infers two classification labels and

predicts true as true and false as false, which can be expressed as

Equation (1):

Accuracy=
TP+TN

TP+FN+FP+TN
(1)

True Positive (TP) predict the answer that is actually true as

true (correct answer). False Positive (FP) predict the answer that is
Frontiers in Marine Science 05
actually false as true (wrong answer). False Negative (FN) predict

the answer that is actually true as false (wrong answer). True

Negative (TN) predict the answer that is actually false as false

(correct answer).

The F1 score is a statistic that defines the classification accuracy

and recall rate, which are combined into a single statistic. Here, the

harmonic average and not the standard average was determined.

This ensures that the F1 score has a low value, comparable to

precision and recall, which are close to 0. The equation for the F1

score is as Equation (2):

F1=2·
1

1
recall +

1
precision

=2·
precision·recall
precision+recall

(2)

The models were trained using a substantial dataset of bivalve

images and validated using a separate, unseen set of images to

ensure an unbiased evaluation. Performance was tested on not only

an individual level (Classification Set-1 and Classification Set-2) but

also a comprehensive level (Classification Set-3), providing insights

into specific and generalized model performance. Notably, the

models are not evaluated based solely on these metrics.

Qualitative analysis of the predictions, through visual inspection

of correctly and incorrectly classified images, can also contribute to

the overall assessment of the models’ performance. This

comprehensive evaluation methodology ensures the development

of reliable and robust classification models that can function

effectively in real data sample.
3 Results

3.1 Classification of three ark shells by
molecular technology

This study collected three ark shells (T. granosa, A. broughtonii,

and A. kagoshimensis), which were identified using an ultrafast PCR

method developed in our previous study to develop a deep learning

model with accurate data. The ultrafast PCR method was applied to

ark shells, with each primer showing an amplification plot for each

sample (Figure 4). The Ct values of the amplified products from

each target species were 18.51, 23.11, and 22.62 for granular ark,

half-crenate ark, and broughton’s ribbed ark, respectively. The

specific band was also amplified in the electrophoresis image

(Supplementary Figure 1). A total of 1,400 images were

categorized into three species (T. granosa, A. broughtonii, and A.

kagoshimensis) and used to validate deep learning.
3.2 CNN classification performance

3.2.1 Results for classification set-1
This study initially compared the accuracy of the classification

of the four bivalves (scallop, venus mactra, venus clam, and ark

shells) with the learning and verification accuracy of three CNN

models. The results of each deep learning model applied to

Classification Set-1 are presented in Figure 5, with the left side
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delineating the performance metrics obtained from the training

data, whereas the right side delineating the corresponding metrics

obtained from the test data. This structured presentation of results

facilitates a comprehensive and comparative analysis of the model’s

performance across training and testing phases (Figure 5A, left),

showcasing the changes in accuracy over iterations for three distinct

CNN architectures: VGGnet, Inception-ResNet, and SqueezeNet.
Frontiers in Marine Science 06
The accuracy results obtained during the training phase were as

follows: VGGnet, 94.32%; Inception-ResNet, 96.55%; SqueezeNet,

97.23% (the highest reported).

To verify the reliability of the developed model, the test set was

utilized for inference and the validation accuracy was subsequently

calculated. During this validation phase, VGGnet, Inception-

ResNet, and SqueezeNet achieved an accuracy of 91.12%, 95.41%,
A

B

C

FIGURE 5

Results of each deep learning model for (A) Classification Set-1, (B) Classification Set-2, and (C) Classification Set-3. The left and right sides
represent training data and test data, respectively.
A B C

FIGURE 4

Amplification plot for identifying (A) Tegillarca granosa, (B) Anadara broughtonii, and (C) Anadara kagoshimensis.
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and 91.03%, respectively (Figure 5A, right). These results confirmed

that all three models demonstrated promising performance, with

SqueezeNet exhibiting the highest training accuracy and Inception-

ResNet showing superior accuracy during the validation phase. This

comprehensive performance evaluation provides valuable insights

into the models’ capabilities.
3.2.2 Results for classification set-2
Classification Set-2, which was tailored to classify three detailed

ark shell species, showed changes in accuracy over iterations for the

three utilized CNN models, namely VGGnet, Inception-ResNet,

and SqueezeNet, as demonstrated by its training performance in

Figure 5B (left). The accuracy values attained by VGGnet,

Inception-ResNet, and SqueezeNet during the training phase were

93.22%, 93.51%, 97.11%, respectively, with SqueezeNet

outperforming the other two CNN models. Following the

approach undertaken with Classification Set-1, the developed

Classification Set-2 was also put through an inference process

with the test set to ascertain its validation accuracy. The accuracy

results for VGGnet, Inception-ResNet, and SqueezeNet obtained

during this validation phase were 95.05%, 94.01%, and 97.78%,

respectively. These outcomes affirm the proficiency of all three

models, with SqueezeNet demonstrating the highest accuracy

during the training phase, whereas Inception-ResNet being the

most accurate during the validation phase. This extensive

performance evaluation highlights the effectiveness of the models

while also emphasizing the potential areas for enhancement in

future iterations.
3.2.3 Results for classification set-3
Classification Set-3 was developed to classify six classes

established by combining the classification classes in

Classification Set-1 and Classification Set-2. As exhibited in

Figure 5C (left), the performance of Classification Set-3 during

training displayed an evolution in accuracy across iterations for the

three distinct CNN models, VGGnet, Inception-ResNet, and

SqueezeNet. The accuracy attained by VGGnet, Inception-ResNet,

and SqueezeNet during the training phase were 89.91%, 92.48%,

and 91.75%, respectively.

Similar to its predecessors, Classification Set-3 underwent an

inference process with the test set to establish its validation

accuracy. During the validation phase, VGGnet, Inception-

ResNet, and SqueezeNet achieved an accuracy of 90.23%, 93.67%,

and 89.16%, respectively. These results underscore the promising

performance of all three models, with SqueezeNet demonstrating

the highest training accuracy, whereas Inception-ResNet yielding

superior accuracy during the validation phase.

3.2.4 F1 score value comparison result
In the evaluation of our deep learning model, accuracy and F1

scores were considered as key performance metrics. Although

accuracy is a common measure for model performance, it can be

misleading in cases where the dataset is imbalanced given that it

does not consider the distribution of false positives and false

negatives. Therefore, we also utilized the F1 score, which is a
Frontiers in Marine Science 07
more robust measure for imbalanced datasets, given that it

considers false positives and false negatives by calculating the

harmonic mean of precision and recall. The SqueezeNet model

performed slightly better than the VGGnet and Inception-ResNet

models on Classification Set-1 and Set-2, with F1 scores of 0.91 and

0.89, respectively (Table 1). However, on Classification Set-3, the

Inception-ResNet model outperformed the other two models with

an F1 score of 0.91. Despite the relatively small differences in F1

scores, they can be significant depending on the specific application

and the requirements for model performance.
3.3 Classification of ark shells based on
radial rib count

In traditional methods, detailed species of ark shells have been

conventionally distinguished based on the count of the radial ribs.

To investigate the difference in the number of radial ribs between

the three species, the radial ribs in a sample size of 100 ark shells

were counted. The half-crenate ark had an average radial rib count

of 28.9 ± 1.92, broughton’s ribbed ark exhibited 32.01 ± 1.89 ribs on

average, and the granular ark presented an average count of 17.88 ±

1.23 radial ribs. Figure 6 illustrates the distribution of radial rib

count for each class. Notably, overlaps in distribution were noted

between the half-crenate ark and broughton’s ribbed ark, whereas

the granular ark was distinctly differentiated. Although this

distinction can be somewhat discerned visually in the images,

definitively distinguishing between the half-crenate ark and

broughton’s ribbed ark based on visual information alone

requires a high level of expertise and judgment.
4 Discussion

Over the past few decades, consumer demands on the

verification of the authenticity of aquatic products, detection of

adulteration, and implementation of stricter controls on these issues

have increased (Ren et al., 2023). Manual classification of ark shells

based on phenotype cannot satisfy the demand created by shellfish

production areas during peak seasons given the lack of labor (Ge

et al., 2022). Moreover, this problem is compounded by the

considerably limited corporate development due to rising labor

costs and soaring product prices (Feng et al., 2021). With the

demand for quality and efficiently produced aquatic products,

more efficient and accurate approaches in sorting fish and

shellfish are needed to improve the level of production

automation (Feng et al., 2021). In recent years, computer and
TABLE 1 F1 scores of the validation sets of deep learning models.

Case
(in validation set)

VGGnet
Inception-
ResNet

SqueezeNet

Classification set-1 0.84 0.88 0.91

Classification set-2 0.88 0.88 0.89

Classification set-3 0.85 0.91 0.84
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artificial intelligence technologies have developed rapidly to the

point where computer vision has been widely applied in numerous

fields of industrial production, including automotive, electrical

machinery, food, logistics, and manufacturing industries (Jalal

et al., 2020; Singh et al., 2022; Kim et al., 2023). By using

computer vision to identify, locate, and subsequently sort scallops,

production efficiency can be improved while ensuring the quality of

the aquatic products.

This approach has been applied for the automated evaluation of

aquatic products because deep learning networks have a strong

capacity for learning and can extract deeper information from

images acquired in the environment (He et al., 2016; Mukhiddinov

et al., 2022). Jayasundara et al. (2023) presented two Neural Network

architectures, to classify the quality grading of the Indian Sardinella and

the Yellowfin Tuna using images (Jayasundara et al., 2023). Moreover,

Vo et al. (2020) used the pre-trained Mask-RCNNmodel to determine

the various attributes of lobsters, such as size, weight, and color, to

achieve automated grading of the lobsters (Vo et al., 2020). More

interestingly, given the outstanding classification performance of deep

learning, researchers have applied the same to the gender classification

of aquatic animals. For example, Cui et al. (2020) proposed an

improved deep CNN model that can classify Chinese mitten crabs

according to gender using images at an accuracy of 99% (Cui

et al., 2020).

It is well established that several types of aquatic products share

very close similarities among their species, making it difficult to

distinguish them based on their morphological characteristics (Li

et al., 2023). Although the external characteristics of aquatic

products are recognizable, distinguishing them based on such is a

time-consuming process. Given the high morphological similarity

of fish species, Banan et al. (2020) developed a deep NN model for

the identification of four carp species, common carp (Cyprinus

carpio Linnaeus, 1758), grass carp (Ctenopharingodon Idella

(Valenciennes, 1844)), bighead carp (Hypophthalmichthys nobilis

(Richardson, 1845)), and silver carp (Hypophthalmichthys molitrix

(Valenciennes, 1844)) (Banan et al., 2020).
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Although deep learning technology has achieved remarkable

results in the image classification of aquatic products, species

classification still remains a major challenge, especially for

shellfish species that are very morphologically similar (Banan

et al., 2020). In general, broughton’s ribbed ark has more radial

ribs than the half-crenate ark. However, smaller specimens of

broughton’s ribbed ark may have a number of radial ribs similar

to those of the half-crenate ark. In this context, one of the

challenging aspects is that it is difficult to distinguish between the

three types of ark shells based on the number of radial ribs alone. As

shown in Figure 6, the average counts of radial ribs for the half-

crenate ark and broughton’s ribbed ark are similar, and there is an

overlap in their distributions, making visual discrimination alone

challenging. Due to this morphological similarity, distinguishing

between these ark shell species based solely on radial rib counts may

not be definitive, and it may require a high level of expertise and

judgment. Therefore, it can be concluded that a more accurate and

effective method is needed to differentiate ark shell species with

similar morphology.

For this reason, we developed a deep learning model for the

automated identification and classification of three ark shells based

on obtained images, thereby overcoming concerns regarding time

consumption and inefficiency associated with traditional

identification methods. Our experimental results showed that ark

shells and other species of bivalves were classified at an accuracy of

95.30%, while the three types of ark shells were classified at an

accuracy of 92.4%. Similar to ark shells, squid species share

considerable morphological similarities. As such, Hu et al. (2020)

proposed an efficient deconvolutional Neural Network to classify

three squid species based on images, with the test sample archiving

an accuracy of 85.7% (Hu et al., 2020). Our experimental results

showed that the classification performance of the CNN model was

comparable to or better than that presented in previous studies and

that the developed method can be applied to other bivalves that

share similar morphological characteristics among their species.

Our CNN-based model that classifies images of three ark shells can

provide a theoretical basis for bivalve classification and enable the

tracking of the entire production process of ark shells from catching

to selling with the support of big data, which is useful for improving

food safety, production efficiency, and economic benefits.
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