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Transcriptome analysis
reveals ABA involved in the
detoxification mechanism
of macroalga Gracilariopsis
lemaneiformis to
cadmium toxicity
Xiaojiao Chen, Yueyao Tang, Xue Sun, Hao Zhang
and Nianjun Xu*

Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo
University, Ningbo, Zhejiang, China
Introduction: Cadmium (Cd) is a significant threat environmental pollutant in the

marine ecological environment offshore. The macroalga, Gracilariopsis

lemaneiformis, of significant economic value, is widely cultivated along China’s

coastline. Yet, little is known about the molecular mechanisms underlying Cd

tolerance in macroalga.

Methods: Here, we examined the transcriptome of G. lemaneiformis exposed to

Cd to identify the responses to Cd stress.

Results and discussion: Our findings revealed that Cd led to the retardation of

growth rate in G. lemaneiformis, accompanied by a notable reduction in the

content of photosynthetic pigments and a decrease in the expression of genes

associated with the photosynthetic system and nitrogen metabolism. When

exposed to Cd, there was a rapid increase in Cd levels through the

upregulation of genes encoding GlZIP6 and GlIRT1. Additionally, the

expression of Cd efflux transporters, GlZIP1 and GlABCG22, and the ABCC7

transporter for compartmentation to the vacuole, was induced to mitigate Cd

toxicity. Cd also activated crucial genes involved in the ABA biosynthesis and

enhanced ABA content, thereby inducing ABA signaling pathway. Furthermore,

exogenous ABA reduced the growth inhibition of G. lemaneiformis under Cd

stress. Redox homeostasis was adjusted to adapt to Cd toxicity, with thioredoxin,

glutaredoxin cycle and ascorbate-glutathione cycle identified as playing

significant in maintaining reactive oxygen species homeostasis. Moreover,

transcription factors such as several MYBs, signal transmission factors G
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protein and heat shock proteins (sHSPs, HSP 40, HSP 90, HSP101) were involved

in the detoxification of Cd. Collectively, this study provided a comprehensive

understanding of the molecular mechanisms underpinning the of responses of

macroalga G. lemaneiformis to Cd exposure.
KEYWORDS

Cd stress, macroalga, ABA, RNA-Seq, Gracilariopsis lemaneiformis
1 Introduction

Cadmium (Cd), an inherently toxic heavy metal and non-

essential element, engenders deleterious repercussions on plant

development (Haider et al., 2021), as well as animal and human

health (Kumar and Sharma, 2019). In recent years, there has been a

marked increase in industrial discharges and marine aquaculture

operations, leading to heightened concentrations of Cd, a persistent

environmental contaminant. Numerous studies have indicated that

Cd is the primary polluted metal with high hazard indices to aquatic

ecosystem along China’s coast (Yu et al., 2022; Zhang et al., 2022a).

For example, elevated levels of Cd have been detected in the water

environment and sediments in electronic waste recycling areas in

South China (Houessionon et al., 2021). Additionally, sedimentary

deposits in the East China Sea coastal area (Zhang et al., 2022a),

South China Sea (Xiao et al., 2022), and Bohai Bay (Yu et al., 2022)

have all been contaminated by Cd.

The red alga, Gracilariopsis lemaneiformis (G. lemaneiformis), is

a prominent economic macroalga cultivated in China’s coastal

region. It serves as the primary source of agar and is also a

cornerstone resource for pharmaceuticals (Zou et al., 2004).

Additionally, it is widely used as an effective bait for various

piscine species and abalones (Zhu et al., 2017). G. lemaneiformis

has been found to absorb Cd and significantly reduce Cd

concentration in sediment (Wang et al., 2014; Luo et al., 2020;

Luo et al., 2021). The bioconcentration factors of Cd in

G. lemaneiformis can reach to 1000 times (Wang et al., 2014).

Consequently, G. lemaneiformis holds considerable potential for in-

situ bioremediation of Cd in coastal areas. To date, research has

primarily focused on the impact of Cd on the growth, absorption,

and accumulation of Cd in G. lemaneiformis. Beyond the evident

growth effects, recent studies on the Cd toxicity have highlighted

complex cellular and molecular variations in higher plants and

microalgae (Rahman et al., 2022; Zhang et al., 2023a). A majority of

these studies have explored changes using OMICS strategies such as

transcriptomics, metabolomics, ionomics, proteomics, and

genomics when plants and microalgae are exposed to Cd stress

(Rahman et al., 2022). Transcriptomic strategies are frequently

employed to determine the significance of transcripts under

environmental stressors in plant species (Rahman et al., 2022).

The molecular study on the transcriptome regulatory profile was

performed under Cd toxicities and results revealed the stress-
02
responsive genes, key metabolic pathways under Cd stress, and

crucial genes involved in these metabolic reactions (Chen et al.,

2021; Yu et al., 2023). Furthermore, the transcriptome analysis

uncovered the detoxification mechanism and genes involved in

detoxification, such as hormones, transcription factors, antioxidant,

heavy metal transporters, plant hormones and calcium signals to Cd

toxicity (Ramegowda et al., 2020; Chen et al., 2021).

Previous research has demonstrated that Cd has negatively impacts

the on growth and development of G. lemaneiformis by reducing

pigment content (Xia et al., 2004). To gain a deeper understanding of

the molecular regulatory networks and tolerance mechanisms in

macroalgae to Cd, we examined these processes at the transcriptional

level. The study aimed to investigate G. lemaneiformis’s stress response

to Cd and identify the key genes involved in the detoxification

processes. In the current study, we screened for a Cd concentration

that caused moderate stress, measured Cd accumulation at various

time points, and conducted a comparative transcriptome to investigate

the genes responsive to Cd.
2 Materials and methods

2.1 Culture conditions

In this study, G. lemaneiformis strain 981 was collected from

Ningde aquaculture base (Fujian, China (26°65′N, 119°66′E). Upon
arrival at the laboratory, the attached sediment and coexisting algae

adhering to G. lemaneiformis were eliminated thorough washing

with sterile seawater. Subsequently, the robust G. lemaneiformis

were cultivated under controlled conditions in an incubator for a

duration of one week. The rhizoids with similar branching and

length (13 ± 1 cm with the rhizome tip) were used for experiment

and cultured at 23°C with a photoperiod of 12 h light: 12 h darkness

and a light intensity of 50 mmol photons m-2s-1 light intensity.
2.2 Determination of relative growth rate,
pigments, and glutathione content

The relative growth rate (RGR) was detected at 1, 2, 4 and 6 d

post-Cd treatment with utilizing concentration of 50, 100, and 200

µM. The RGR was calculated using the formula established by Zou
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and Gao (2014): RGR (%) = Ln (Wt/W0) ×100. Here, Wt represents

the fresh weight at the corresponding time point, while W0

represents the initial time point. Each treatment had three

biological replicates.

The content of photosynthetic pigments and glutathione (GSH)

content was determined at 6 d after Cd treatment inG. lemaneiformis.

Photosynthetic pigments, phycoerythrin (PE) and phycocyanin (PC),

were extracted with 50 mM PBS (pH 6.8). The extraction solution

was centrifuged, and the absorbance was measured at 455, 564, 592,

618, and 645 nm by a spectrophotometer according to Sampath-

Wiley and Neefus (2007) and Chen et al. (2022a). Chlorophyll a (Chl

a) and carotenoids (Car) were extracted using methanol (5 mL) with

0.1 g G. lemaneiformis overnight in dark at 4°C. Then, the extracts

were centrifuged at 10,000 rpm for 15 min at 4°C and measured at

480, 510, 652, 665, and 750 nm using full wavelength

spectrophotometer according to the procedures described by Ji

et al. (2019). GSH content quantified using colorimetric assay kits

from Comin Bio. (Suzhou, China). In detail, approximately 0.1 g

fresh sample extracted with 1 mL 50 mM PBS (pH 6.8) at 4°C and

centrifuged at 8,000 rpm for 10 min at 4°C. Then, the supernatant

reacted with 5,5’-dithiobis-2-nitrobenoicacid (DTNB) and measured

at 412 nm by a spectrophotometer. Every physiological indicator each

treatment had three biological replicates.
2.3 Determination of Cd content and
bioconcentration factors

Cd level was quantified at 1, 3, 6, 12, 24 h, 3 d and 6 d after 75

µM of Cd treatment. Each time point had three biological replicates.

In detail, the collected samples were rinsed thoroughly for 6 cycles

with deionized water and dried in an oven at 80°C for 24 h. Then,

the desiccated sample (0.1 g) was ground for nitric acid digestion.

The quantification of Cd content was executed via an inductively

coupled plasma mass spectrometry (ICP-MS, iCAP RQ, Thermo

Fisher Scientific, CA, USA) (Zhao et al., 2022).

The bioconcentration factor (BCF) is determined by the ratio q/c,

which signifies degree of enrichment level of a specific chemical in

living organisms (Foster, 1976). The term “q (mg/kg DW)” represents

the concentration of Cd content found in G. lemaneiformis, while “c

(mg/L)” signifies the dissolved Cd concentration within a solution.
2.4 ABA quantification

Abscisic acid (ABA) measurement was performed using high-

performance liquid chromatography-electrospray ionization-

tandem mass spectrometry (HPLC-ESI-MS/MS) according to

Shao et al. (2019) with some modifications. G. lemaneiformis

samples (1.0 g fresh weight) were ground in liquid nitrogen and

extracted at 4°C overnight with methanol containing 0.2% formic

acid (FA) that had been spiked with internal standards. The extracts

were centrifuged 1,4000 rpm at 4°C, and the resulting supernatants

were dried under N2. The obtained pellet was then resuspended

with 200 mL of 50% methanol (1:1, v/v), centrifuged before HPLC-

ESI-MS/MS analysis. The mobile phases consisted of solvent A
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(0.04% [v/v] formic acid (FA) in water) and solvent B (0.04% [v/v]

FA in acetonitrile). Samples were placed in an automatic sampler at

4°C with an injection volume of 4 mL. The column temperature was

maintained at 45°C, and a flow rate of 400 mL/min was employed.

The linear gradient was programmed as follows: 0-10 min,

transitioning from 2 to 98% solvent B (v/v), 10-11.1 min,

transitioning from 98 to 2% solvent B (v/v), and 11.1-13 min,

hold at 2% solvent B. A Qtrap 5500 System (AB Sciex) was used for

mass spectrometry in negative ion mode and multiple reaction

monitoring modes. Data was analyzed using Multiquant

3.03 software.
2.5 RNA sequencing and analysis of
differentially expressed genes

Total RNA was extracted from G. lemaneiformis samples (0.1 g

fresh weight) using the RNeasy Plant Mini Kit (Qiagen, Hilden,

Germany). Each treatment had three biological replicates. RNA-seq

was performed by BGI (Shenzhen, China). SOAPnuke (https://

github.com/BGI-flexlab/SOAPnuke) was used to remove reads

containing adapter sequences or more than 10% unidentified

nucleotides and low-quality reads to obtain clean read databases.

The clean data were mapped to the reference transcripts, which

combined the transcripts from genomic annotation and full-length

transcripts obtained by SMRT-Seq (Chen et al., 2022b), by Bowtie2

(https://bowtie-bio.sourceforge.net/bowtie2/index.shtml).

Expectation Maximization (RSEM) tool was applied to calculate the

transcript abundance of each gene in each sample based on fragments

per kilobase per million reads (FPKM) (Li and Dewey, 2011).

The differentially expressed genes (DEGs) was identified based

on the criterion of |log2 [fold-change (FC)]| ≥ 1 and an adjusted P

value (Q value) ≤ 0.001. The Gene Ontology (GO) (https://

www.geneontology.org/) term and Kyoto Encyclopedia of Genes

and Genomes (KEGG) (https://www.genome.jp/kegg/) pathway

significantly enriched in DEGs were obtained by performing GO

and KEGG enrichment analysis, respectively. A Q value ≤ 0.01 was

used to determine if a GO term was significantly enriched, while a P

value ≤ 0.05 was used to determine if a KEGG pathway was

significantly enriched.

The Swiss-Prot (http://web.expasy.org/compute_pi/), Cell-PLoc

2.0 (http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/), and

InterPro (http://prosite.expast.org/) databases were utilized to

predict the molecular weight, subcellular localization, and

domains of genes, respectively.
2.6 Quantitative real-time RT-PCR analysis

For the validation of transcriptome results, six DEGs were

randomly selected for qRT-PCR analysis. The method of qRT-

PCR was according to our previous study (Chen et al., 2022a).

Gene-specific primer pairs are listed in Supplementary Table S1. As

the internal reference gene, actin was employed, and the relative

expression of the target gene was calculated by the 2-DDCt method

(Livak and Schmittgen, 2001).
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2.7 Statistical analysis

The presentation of data was achieved as mean ± standard

deviation (SD), with n = 3 replicates. The Univariate General Linear

Models procedure of SPSS Statistics 22.0 was applied to analyze the

statistical significance of the data. One-way ANOVA and Duncan’s

multiple range tests were used to separate treatment averages at P

<0.05 and P <0.01.

3 Results and discussion

3.1 Impact of Cd stress on growth and
pigments content of G. lemaneiformis

With the escalation of Cd concentration ranging from 50 to 500

mM, a substantial reduction in the RGR of G. lemaneiformis was

observed (Supplementary Figures 1A, B). The algal biomass

exhibited complete discoloration and lethality at a Cd

concentration of 500 mM (Supplementary Figure 1A). At 50 mM
of Cd, the RGR exhibited a decline from 12.8% on the 1st day to

47.0% on the 6th day. Furthermore, the branching pattern of G.

lemaneiformis displayed shorter and fewer branches compared to

the control (Supplementary Figure 1). At a Cd concentration of 100

mM, the RGR registered a decrease of 63.5% on the 6th day,

accompanied by the emergence of white branches. Notably, the

growth was significantly suppressed at 200 mM Cd concentration,

resulting in a 93.5% decline in RGR by the 6th day. This

phenomenon was similar to previous studies by Xia et al. (2004),

the RGR in 50, 100, 200 mM Cd-treatments decreased by 7.0%,

46.3% and 89.4% for 96 h.

Moreover, at the same Cd concentrations of 50-200 mM, the

content of photosynthetic pigments, PE, PC and Chl a, exhibited

marked diminishment by 24.6-38.4%, 32.3-53.4% and 6.5-13.7%

after 6 d of Cd treatment, respectively (Supplementary Figures 1C–

E). In contrast, the content of GSH significantly increased in a dose-

dependent manner within the range of 50–200 mM Cd by 11.7–37

folds (Supplementary Figure 1F). Glutathione, the heavy metal

chelating agent, chelates with Cd already located inside cells for

detoxification (Fang et al., 2020; Das et al., 2021). In many studies,

Cd has proved to induce an increase in GSH content (Gao et al.,

2022), in consistent with our result.

To avoid a severe growth inhibition of G. lemaneiformis, the

IC50 value corresponding to a 50% reduction in RGR was selected

for further studies at 6 d after stress. By virtue of linear

interpolation, the determined IC50 value of Cd was 75 mM.
3.2 Cd accumulation in G. lemaneiformis

In this section, we investigate the accumulation of Cd in G.

lemaneiformis . The accumulation process is crucial to

understanding the impact of environmental pollutants on aquatic

ecosystems and the potential for bioaccumulation. To clarify the

dynamics of Cd uptake in G. lemaneiformis, the accumulation of Cd

in the algal was determined (Table 1). The Cd content increased
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rapidly within 12 h and reached a maximum at day 3, suggesting

that G. lemaneiformis can quickly absorb Cd. The BCF of G.

lemaneiformis ranged from 4.86 to 28.46 during the experimental

period. In particular, the accumulation of Cd accounted for 54%

and 93% of its maximum capacity at 1 and 3 d after Cd stress,

respectively. Wang et al. (2014) reported that the maximum

absorption of low concentration Cd (1, 5, 10, and 20 mg/L) in G.

lemaneiformis was between 20-30 days and the BCF was 463- 1113.

Our results revealed that G. lemaneiformis can quickly absorb Cd at

high concentration for bioremediation.
3.3 Transcriptome analysis and gene
functional annotation

To clarify the responsive gene to Cd, we performed

transcriptomes analysis of G. lemaneiformis at 1 and 3 d after Cd

stress. After removing adaptors, N>10 and low-quality reads, the

clean reads were aligned to reference transcripts with an overall

mapping rate of 91-92%. In a result, 22,806 transcripts were

expressed. Among these, 13,800, 12,088, 18,856, 320 and 125

transcripts were annotated to GO, KEGG, RefSeq non-redundant

proteins (NR), Transcription factors (TFs) and Plant Resistance

Gene (PRG) public databases, respectively. Approximately 82.9% of

these transcripts were annotated in at least one database.
3.4 Identification and validation of
differentially expressed genes

For comparison, 1967 (998 up and 969 down) and 3369 (1850

up and 1519 down) DEGs were identified at 1 and 3 d after Cd

stress, respectively (Supplementary Figures 2A, B). This result

showed that the gene response was enhanced in G. lemaneiformis

with the increase of Cd accumulation. Moreover, 1192 (592 up and

474 down) of the DEGs were co-regulated at 1 and 3 d after

treatment (Supplementary Figure 2C). The qRT-PCR results were

consistent with those of RNA-Seq (Supplementary Table S1), which

verified the reliability of RNA-Seq.
TABLE 1 Content of Cd (mg/kg DW) accumulated in G. lemaneiformis
under Cd treatment.

Times
after treatment

Content of Cd
(mg/kg)

BCF Ratio#

0 0.45 ± 0.03

1 h 40.84 ± 4.14 4.86 17%

6 h 70.92 ± 2.74 8.44 30%

12 h 101.35 ± 5.16 12.07 42%

1 d 129.17 ± 10.55 15.38 54%

3 d 221.52 ± 26.13 26.37 93%

6 d 239.03 ± 20.10 28.46 100%
fr
# Indicates the ratio of Cd content at the corresponding time to that at 6 d.
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3.5 GO, KEGG enrichment of DEGs

GO enrichment analysis of DEGs revealed that numerous GO

terms were influenced by Cd. The molecular function, including

“pigment binding”, “antioxidant activity”, “transmembrane

transporter activity”, biological regulation such as “response to far

red light” and “photosynthesis”, “ROS biosynthetic process”,

“cellular oxidant detoxification” were observed at 1 and 3 d in

response to Cd stress. Furthermore, cellular component including

“plastoglobule”, “plastid thylakoid membrane” and “photosynthetic

membrane” were also implicated (Figure 1). The GO terms

“detoxification”, “antioxidant activity”, and “signal transducer
Frontiers in Marine Science 05
activity”, which may play key roles in abiotic stress and

“membrane” were also found in kenaf in the response to Cd

exposure (Chen et al., 2021).

KEGG pathway analysis revealed that DEGs at 1 and 3 d were

predominantly associated with metabolism processes, including energy

metabolism and carbohydrate metabolism, as well as cellular processes

such as “peroxisome” and “transporter” and “MAPK signaling

pathway–plant” (Table 2). These data suggested that genes related to

photosynthesis system, antioxidant activity, transmembrane

transporter activity, energy metabolism, carbohydrate metabolism,

and MAPK signaling pathway – plant play a crucial role in the

response to Cd exposure in G. lemaneiformis.
B

C

A

FIGURE 1

The top20 of GO enrichment terms of DEGs after Cd treatment at 1 d (A), 3d (B) and co-expressed at 1 and 3 d (C).
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3.6 Specific differentially expressed genes
in response to Cd

3.6.1 DEGs involved in signal transduction and
ABA biosynthesis pathway

In MAPK signal-plant pathway, we found that many pathways

generated by signaling molecules and stress-induced were affected

by Cd stress. However, most of genes involved in these pathways

were down-regulated by Cd, for example, FLS2 involved in fg22-

mediated disease resistance, NDPK2 mediated by H2O2, CAM4

mediated by wounding (Figures 2A, B). Whereas, Cd activated

genes encoding serine/threonine-protein kinase SRK2 (SnRK2)

involved in ABA signaling pathway (Figures 2A, B). Moreover,

the expression of downstream genes encoding ABA responsive

element binding factor (ABF) and MKK3 was enhanced by 1.1-

1.4 folds and 1.2-1.5 folds, respectively by Cd (Supplementary Table

S3). Furthermore, expression of key genes encoding 15-cis-

phytoene desaturase (PDS), prolycopene isomerase (crtISO) and

zeaxanthin epoxidase (ZEP) involved in ABA biosynthesis pathway

was also induced by Cd (Figure 2C; Supplementary Table S3).

As the enhanced expression of genes related to the ABA

synthesis pathway was observed in G. lemaneiformis after Cd

stress, ABA content quantified 1 day post-stress using UPLC-MS.

The MS data and retention times of ABA are detailed in

Supplementary Table S2. Notably, the presence of Cd led to a

34.5% remarkable increase in ABA content (Figure 2D).

Considering the content of hormones and expression profiles,

we conducted that ABA might be play a positive role in response to

Cd stress in G. lemaneiformis. To further verify the effect of ABA on

growth of G. lemaneiformis under Cd stress, different

concentrations of ABA were applied to G. lemaneiformis under 75

µM Cd stress. At 10 µM, ABA reduced the inhibition of Cd on the

growth of G. lemaneiformis and increased the contents of PE and

PC (Figures 2E–G). A number of reports have demonstrated that

ABA is closely related to perception and mediation of Cd stress

(Rasafi et al., 2020). For instance, in rice seedlings and lettuce, there

is a rapid enhancement of ABA content under Cd stress (Hsu and

Kao, 2003; Tang et al., 2020), and in Arabidopsis thaliana

exogenous application of ABA has been shown to significantly

decreased Cd content and alleviated Cd toxicity (Meng et al., 2022).

Wang et al. (2022) reported that gene involved in ABA signaling

pathway can enhance Cd resistance ability of T. hispida by

regulating the production of ROS under Cd stress. Our results

revealed that ABA and ABA signal may be involved in the induction

of protective mechanisms against Cd toxicity in G. lemaneiformis.

3.6.2 DEGs involved in antioxidant system
GO enrichment analysis revealed that “antioxidant activity” and

“cellular oxidant detoxification” was involved in the response to Cd.

The antioxidant system may play key roles in Cd stress in plants
TABLE 2 The KEGG pathway of DEGs after Cd treatment at 1 d, 3d and
co-expressed at 1 and 3 d.

Level 1 Level 2 Pathway Name p-value

1d DEGs

Metabolism

Energy
metabolism

Photosynthesis -
antenna proteins

0

Nitrogen metabolism 1.61E-08

Amino
acid metabolism

Arginine and
proline metabolism

0.001620093

Tryptophan
metabolism

0.039183466

Metabolism of
cofactors
and vitamins

Porphyrin and
chlorophyll
metabolism

0.010109623

Carbohydrate
metabolism

Ascorbate and
aldarate metabolism

0.022687861

Cellular Processes
Transport
and catabolism

Peroxisome 2.22E-04

Environmental
Information
Processing

Membrane
transport

ABC transporters 2.57E-04

Signal
transduction

MAPK signaling
pathway - plant

0.007485428

3d DEGs

Metabolism

Energy
metabolism

Photosynthesis -
antenna proteins

6.36E-12

Nitrogen metabolism 1.70E-07

Carbohydrate
metabolism

Amino sugar and
nucleotide
sugar metabolism

0.011918623

Glyoxylate and
dicarboxylate
metabolism

0.012830692

Cellular Processes
Transport
and catabolism

Peroxisome 4.97E-04

Phagosome 7.73E-04

Environmental
Information
Processing

Signal
transduction

MAPK signaling
pathway - plant

0.004885049

1d and 3d co-regulated

Metabolism

Energy
metabolism

Photosynthesis -
antenna proteins

3.33E-16

Nitrogen metabolism 9.29E-09

Metabolism of
cofactors
and vitamins

Porphyrin and
chlorophyll
metabolism

0.001713765

Cellular Processes
Transport
and catabolism

Peroxisome 1.16E-04
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(Zhang and Reynolds, 2019). In plants, the antioxidant defense

system mainly consists of superoxide mutase (SOD), which

converts oxygen radicals (O2−) into hydrogen peroxide (H2O2),

and L-ascorbate peroxidase (APX), peroxidase (POD), and catalase

(CAT), these three enzymes remove toxic H2O2 (Zhang and

Reynolds, 2019). Furthermore, the sulfur-containing antioxidant

including thioredoxin (Trx), ascorbate (AsA) -GSH cycle and

glutaredoxin cycle, etc., may also involve in the detoxification of

Cd (Smiri et al., 2011; Zhang et al., 2020; Zhang et al., 2023a). A

total of 6 (3 upregulated and 3 downregulated) and 12
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(8 upregulated and 4 downregulated) DEGs associated with

antioxidant activity were identified at 1 and 3d after Cd stress,

respectively (Figure 3). Among them, expression of 2 SOD encoding

genes (SOD3 and EC-SOD) and 2 of 3 CAT encoding genes (CAT-B,

CAT) was down-regulated, while APX encoding gene (APX4) and

two thioredoxin (Trx) encoding genes (TRX2.1 and TRX2.2) were

up-regulated (Figures 3A, C). Trxs are disulfide reductases

containing a conserved active redox center thioredoxin domain

(WCGPC), which also exist in GlTRX2.1 and GlTRX2.2

(Supplementary Table S4). Moreover, expression of three genes
B

C

D E

F G

A

FIGURE 2

The expression profiles of Cd-responsive genes involved in MAPK signaling pathway-plant (A, B), ABA pathway (C) and the effect of Cd on ABA
content (D), and the effect of ABA on the RGR (E), PE (F), PC (G) in G. lemaneiformis under Cd stress. Each circle beside the name of genes
represents the abundance change of corresponding DEGs at 1 d (left) and 3 d (right), respectively. The red arrows next to the metabolite represent a
significant increase in the content of metabolite. The different letters on the 2 columns indicate significant differences between different
concentrations of treatments (P < 0.05).
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encoding thioredoxin-like disulfide reductases (TRLs) were up-

regulated at 3 d after Cd stress (Figures 3A, C). GlTRLs possess a

thioredoxin domain and TPR-like_helical domain (Supplementary

Table S4), which catalyze the transfer of electrons from a reduced

substrate to the disulfide bridge of Trx (Figure 3A). Trxs distribute

the reductant to selected targets via a dithiol-disulfide exchange,

resulting in the structural and functional modification of a target

protein (Balsera and Buchanan, 2019). Zhang et al. reported that the

thioredoxin-like protein CDSP32 improves cadmium tolerance by

alleviating Cd-induced photosynthetic inhibition (Zhang et al.,

2020) and modulating antioxidant system in tobacco leaves

(Zhang et al., 2023b).

The Glutaredoxin (Grx) cycle, comprised of Grxs, GSH, and

glutathione reductase (GR), is crucial for maintaining intracellular

redox homeostasis (Ogata et al., 2021). Grxs are a multifunctional

family of glutathione-dependent disulfide oxidoreductases. In G.

lemaneiformis, expression of Grx encoding gene (GLX2) was

upregulated at 3 d after Cd stress (Figures 3B, C). The ascorbate-

glutathione cycle is acknowledged as a cellular redox buffer which

donates electrons to various oxidized compounds in plants (Decros

et al., 2023). Expression of genes encoding L-galactose

dehydrogenase (GLDH) and glutathione synthetase (GS) was

upregulated; these enzymes catalyze the conversion of L-galactose

to ascorbate and g-glutamylcysteine to GSH, respectively.

Expression levels of APX, which detoxifies excess toxic ROS H2O2

to H2O, were also upregulated (Figure 3B). These data suggested

that the Grx cycle and ascorbate-glutathione cycle alleviates Cd

toxicity by scavenging ROS. Glutathione have been proposed as Cd-

binding chelator (Sears, 2013). The upregulation of these genes

encoding Trxs, Grxs and GSS showed that sulfur antioxidants may

play important roles in controlling oxidative stress in G.

lemaneiformis exposed to Cd.
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3.6.3 DEGs involved in Cd transports
In plants, Cd transporters mainly include natural resistance-

associated macrophage protein (Nramp), heavy metal-transporting

ATPase (HMA), iron regulated transporter protein (IRT), zinc

transporter protein (ZIP), ATP-binding cassette (ABC) and

yellow stripe-like (YSL) families (Hu et al., 2022; Tao and Lu,

2022). Up to now, Nramps, ZIP5/6/9 and IRT1/2 are found to be

involved in the uptake of Cd from the soil to roots in plants (Tao

and Lu, 2022). In G. lemaneiformis, YSL transporters do not exist,

and the expression of GlNramps and GlHMA was not altered by Cd.

Similarly, Nramps were not differentially expressed under Cd stress

in algae C. reinhardti (Zhang et al., 2023a). In G. lemaneiformis, the

expression of transporter genes GlIRT1 and GlZIP6 was

significantly enhanced by Cd (Figure 3). This suggested that G.

lemaneiformis actively engages in the uptake and transportation of

Cd upon exposure.

Plants possess several detoxification mechanisms to mitigate Cd

toxicity including efflux, chelation binding to metallothioneins/PCs

and compartmentation to vacuole. In rice, ZIP1, ABCG36 and

HMA9 mediate Cd efflux, and ABCG8 mediates Cd efflux in

Arabidopsis thaliana (Tao and Lu, 2022). In G. lemaneiformis, Cd

induced the expression of genes encoding GlZIP1 and GlABCG22

for Cd efflux (Figure 4). Particularly, expression of GlZIP1 was

upregulated more than 2-fold at both 1 and 3 d after Cd stress

(Figure 4), and that in C. reinhardti increased by more than 5 times

(Zhang et al., 2023a). However, expression of genes coding for

phytochelatins or metallothioneins did not elevated by Cd. HMA3

and ABCC subfamily transported Cd into vacuole for sequestration

in plants (Tao and Lu, 2022). In G. lemaneiformis, the expression of

multidrug resistance protein 7 (MRP 7, ABCC subfamily) was

significantly upregulated at 3 d after Cd stress (Figure 4). Cd is

also can bind the dimer of GSH (Zhang et al., 2022b), which is
B

CA

FIGURE 3

The expression profiles of Cd-responsive genes involved in thioredoxin pathway (A, C) and Glutaredoxin cycle, ascorbate-glutathione cycle
(B, C). Italics represent genes, red and green represents up-regulation and down- regulation, respectively.
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consistent with the increase of GSH content in our result, and then

transported to vacuole in form of chelates. These results indicated

that G. lemaneiformis through synthesis of GSH, then combined Cd

transport into the vacuole and improve Cd efflux to reduce the

Cd damage.

3.6.4 Cd negatively affected energy metabolism
KEGG analysis revealed an enrichment of energy metabolism

processes, including photosynthesis - antenna proteins and

nitrogen metabolism under Cd stress. In the process of

photosynthesis - antenna proteins, the genes encoding

allophycocyanin (APC), phycocyanin (PC) and light-harvesting

chlorophyll protein complex (LHC) were affected under Cd stress

(Supplementary Table S5). In total, 27 and 22 transcripts were

differentially expressed at 1 and 3 d, separately. Of these, 27 and 21

transcripts encoding ApcB-C, CpcA-C, Lhca1 and Lhca4 were

down-regulated at 1 and 3 d after Cd stress, respectively (Table 3;

Supplementary Table S5). This is consistent with a decrease in

photosynthetic pigments PE, PC and Chl a content. In the nitrogen

metabolism pathway, 9 (1 up and 8 down) and 13 (4 up and 9

down) transcripts encoding nitrate/nitrite transporter (NRT),

nitrate reductase (NAD(P)H), ferredoxin-nitrite reductase,

glutamine synthetase, glutamate synthase (ferredoxin) and

glutamate dehydrogenase (NAD(P)+) were differentially expressed

at 1 and 3 d, respectively (Supplementary Table S5). In addition, Cd

destroys chloroplast structures, such as the photosynthetic
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membrane (Table 3; Supplementary Table S5), which is consistent

with results reported in plants (Parmar et al., 2013). These findings

indicated that Cd downregulated the expression of genes involved

in the energy metabolism pathway to inhibit the growth of

G. lemaneiformis.

3.6.5 Transcription factors, G-proteins and heat
shock proteins are involved in the response to
Cd stress

Many studies have shown that transcription factors are involved

in the response to Cd in plants. In G. lemaneiformis, most DEGs

related to the “transcription factor” including MYB, TBP-binding

protein (TBP) and SNF7 were significantly upregulated under Cd

stress, suggesting that TFs participate in response to Cd (Figure 5A;

Supplementary Table S6). Among them, 3 transcripts encoding

MYB transcription factors were significantly upregulated by Cd at

both 1 and 3 d. The transcription factor MYBs is one of the most

widely distributed families in plants and participate in responses to

stresses by binding to the cis-elements of MYB in the promoter of

target genes (Wang et al., 2021). Overexpression of AtMYB4 and

SbMYB15 resulted in increased tolerance to Cd (Sapara et al., 2019;

Agarwal et al., 2020). In addition, “G-Protein” was also significantly

upregulated under Cd stress (Supplementary Table S7). G proteins

function as molecular switches to participate in the transmission of

various extracellular stimulus signals and responses to abiotic

stresses in plants (Zhang et al., 2021). Studies have shown that

overexpression of AGG3 can increase tolerance to Cd (Alvarez

et al., 2015).

HSPs act as molecular chaperones for a variety of target proteins

in response to heavy metal stress and play a crucial role in

maintenance of protein homeostasis (Fragkostefanakis et al.,

2015). In our results, expression of transcripts encoding HSPs

including 6 sHsp, 4 Hsp 40, 1 Hsp 90-5 and 1 Hsp 101 was

upregulated by Cd (Figure 5B). Particularly, sHSP was greatly

induced by Cd, and the multiple was generally between 3-6 times.

SHSPs, the first line of stress defense (Haslbeck and Vierling, 2015),

can bind denatured proteins, stabilize them, and prevent an

aggregating of denatured proteins without depending on ATP,
FIGURE 4

The DEGs of Cd uptake, efflux and vacuole sequestration genes in response to Cd at 1 and 3 d in G. lemaneiformis.
TABLE 3 The number of DEGs involved in energy metabolism in
response to Cd in G. lemaneiformis.

KEGG pathway Cd vs CK 1d Cd vs CK 3d

up down up down

Photosynthesis -
antenna proteins

0 27 1 21

Nitrogen metabolism 2 9 3 11

photosynthetic membrane 1 14 0 6
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then the denatured proteins are refolded by either the HSP70

system or the HSP40/HSP70 system (Figure 5B). The highly

conserved C-terminal region of sHsp is the a-crystallin domain

(ACD domain) (Haslbeck and Vierling, 2015), which present in all

these DEGs of sHsp (Supplementary Table S8). In Closterium

ehrenbergii, expression of sHSP10 and sHSP17.1 was significantly

upregulated under heavy metal stress (Abassi et al., 2019).

Expression of small heat shock protein OsMSR3 in Arabidopsis

enhanced tolerance to Cd stress (Cui et al., 2013). HSP40s together

with HSP70s constitute a versatile chaperone machinery for stress

responses (Qiu et al., 2006). However, HSP70s were not induced by

Cd in G. lemaneiformis. Hsp40 proteins contain the J domain

through which they bind to Hsp70s (Qiu et al., 2006), and the J

domain exist in the DEGs of GlHsp40s (Supplementary Table S8).

In Venerupis philippinarum, the expression of VpHSP40 induced by

Cd (Li and Dewey, 2011) and the Hsp40-like protein provided

tolerance to Cd toxicity (Thakur et al., 2021). Together, these results

indicated that HSPs might improve the tolerance to Cd in

G. lemaneiformis.
4 Conclusions

In summary, our work revealed the response of macroalgae to

Cd at the molecular level. Both transcriptome and physiological

results showed that Cd was toxic to macroalgae and triggered

growth and photosynthesis inhibition. Our results showed that

ABA levels and the expression of genes related to ABA

biosynthesis and signaling pathway was induced in the presence

of Cd. And application of ABA alleviated Cd toxicity, suggesting

that ABA played a key role against Cd stress in G. lemaneiformis. In

addition, several ABC and ZIP transporters responding to Cd were

identified. Specifically, thioredoxin, glutaredoxin cycle and
Frontiers in Marine Science 10
ascorbate-glutathione cycle played important roles in maintaining

ROS homeostasis. Furthermore, MYBs transcription factors, signal

transduction factor G-protein and HSPs were involved in

detoxification to Cd stress, these genes could be good Cd-

responsive marker genes. Taken together, our results identified

novel genes and pathways for improving Cd accumulation in

algae and provided new insights into the detoxification

mechanisms of macroalgae under Cd stress.
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