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Swimming behavior as a
potential metric to detect
satiation levels of European
seabass in marine cages
Dimitra G. Georgopoulou*, Charalabos Vouidaskis
and Nikos Papandroulakis

Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research,
AquaLabs, Thalassocosmos, Heraklion, Greece
Aquaculture is anticipated to contribute to two-thirds of the world’s fish

consumption by 2030, emphasizing the need for innovative methods to

optimize practices for economic viability, social responsibility, and

environmental sustainability. Feeding practices play a pivotal role in

aquaculture success and the feeding requirements are dynamic, influenced by

factors like fish size, environmental conditions, and health status necessitating

ongoing improvements in feeding practices. This study addresses a critical gap in

feeding control systems in sea cages. It introduces a continuous, real-time

monitoring system for analyzing the feeding behavior of European seabass,

employing advanced AI models (YOLO and DEEPSORT) and computer vision

techniques. The investigation focuses on key parameters, including speed and

the newly defined feeding behavior index (FBI), to evaluate swimming responses

under varying feeding scenarios exploring meal frequency, feeding time, and

feeding quantity. The findings reveal a sensitivity of fish speed and the feeding

behavior index (FBI) to different feeding scenarios, elucidating distinct behavioral

patterns in response to varying frequencies, times, and quantities of feeding, such

as increased activity in the morning relative to later times and the emergence of

asymmetric activity patterns when fish are underfed or overfed. Notably, this

study is one of the few in the field, presenting the development of a continuous,

real-time monitoring system for feeding control in sea cages. Simultaneously, it

explores reference curves and threshold values to enhance the overall efficacy of

feeding control measures.
KEYWORDS

precision farming, aquaculture, feeding behavior, animal welfare, stressors, hunger
levels, tracking, collective behavior
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1 Introduction

Aquaculture is expected to supply two-thirds of the world’s fish

by the year 2030, underscoring the need for continuous

improvement (FAO, 2022). Feeding plays a pivotal role in

determining the success of aquaculture, with significant influence

on various aspects such as operational costs, fish growth rates,

overall health and welfare of the aquatic organisms, and the

environmental footprint of the industry. It’s important to note

that feeding requirements in aquaculture are far from static; they

can be notably impacted by factors like the fish size, the

environmental conditions, and the health status of the reared

group (Sun et al., 2016; Zhang et al., 2020). Thus, innovative

methods to optimize feeding practices become imperative in

achieving the triple bottom line of economic viability, social

responsibility, and environmental sustainability within the realm

of aquaculture.

Efficient feeding can be achieved by monitoring both behavioral

and water quality parameters. On one hand, water quality parameters,

such as temperature, oxygen and pH, can impact the metabolism of the

fish and consequently their appetite (Kramer, 1987; Zhou et al., 2018b;

Volkoff and Rønnestad, 2020; Assan et al., 2021). On the other hand,

changes in metabolism are associated with changes in activity. The

variations in activity levels can therefore serve as indicators of appetite,

revealing the feeding needs (Chen et al., 2023; Conde-Sieira et al., 2018;

Zhou et al., 2018b, Zhou et al., 2019). Studying activity can, thus, enable

efficient feed utilization, preventing overfeeding and associated

environmental implications, while avoiding stress and health issues

from underfeeding. In addition, tailoring feeding practices based on

fish behavior can lead to lower production costs and promote well-

being. A comprehensive understanding of fish behavior can therefore

empower responsible feeding practices, benefiting fish welfare and the

environment, making it vital for sustainable aquaculture practices.

Fish display distinct and diverse behavioral responses to

external stimuli and internal requirements. Numerous research

studies have delved into these behavioral adaptations when it

comes to feeding. Hansen et al. (2015b) demonstrated that

differences in the internal states of fish within shoals influenced

their individual spatial positions, with hungrier individuals tending

to position themselves at the forefront of the group. Hunger also

impacts activity patterns, as insufficient food prompts animals to

engage in increased locomotor behavior associated with searching

and exploration (Miyazaki et al., 2000; Priyadarshana et al., 2006;

Hansen et al., 2015a) and greater overall swimming and turning

speeds compared to well-fed fish (Hansen et al., 2015a; Killen et al.,

2017). It can also increase the aggression between individual fish for

food (Huntingford et al., 2012a, Huntingford et al., 2012b).

Satiation levels are, therefore, tightly linked to specific behavioral

expressions in aquatic environments.

Long efforts have been made to identify indicators, including

behavioral, that can detect satiation levels and regulate feeding for

different species. Initial studies attempt this using visual

observations or indirect behavioral metrics. Brännäs and Alanärä

(1993) for example, have recorded the biting activity of the arctic

charr (Salvelinus alpinus) in tanks, while Fast et al. (1997) the feed

consumption using cell loads to understand the satiation level of
Frontiers in Marine Science 02
Chinese catfish (Clarias fuscus). Others have applied hydro-acoustic

sensors for detecting feed pellets in sea cages for feeding control

(Juell, 1991; Juell and Westerberg, 1993; Juell et al., 1993). Fang and

Chang (1999) used a reflective type of photoelectric sensor to detect

the gathering behavior of the fish. In other studies, an infrared

photoelectric sensor was used to observe the collective behavior of

Cyprinus carpio (Zhao et al., 2017), and developed an intelligent

feeding control system for eel breeding (Chang et al., 2005). Parra

et al. (2018) designed and deployed Low-Cost Sensors for

monitoring the water quality and fish behavior in aquaculture

tanks during the feeding process.

Acoustic telemetry systems have also been adopted by the

aquaculture industry and have been proven valuable for

understanding biological processes (Hussey et al., 2015; Abecasis

et al., 2018; Føre et al., 2018; Schwinghamer et al., 2019; Villegas-

Rıós et al., 2020; Svendsen et al., 2021). These systems could enable

feeding control as they can wirelessly transmit real-time data,

enabling fish farmers to promptly respond to changes in group

behavior, such as during feeding (Thorstad et al., 2013; Føre et al.,

2018) However, their invasive deployment may influence fish

attributes, potentially leading to erroneous data (Hussey et al.,

2015; McKenna et al., 2021; Georgopoulou et al., 2022; Runde

et al., 2022). Moreover, the expense and limited deployment (An

et al., 2021) to a few individuals result in a small, potentially

unrepresentative sample size for farm-wide monitoring,

restricting current use to feeding control.

Demand or self-feeders have also been developed to enable fish

to feed according to their appetite (Alanärä et al., 2001; Noble et al.,

2007a, Noble et al., 2007b, 2008). Self-feeders activate when fish

trigger them, releasing food from a dispenser (Alanärä et al., 2001).

These feeders aim to enhance feeding in aquaculture by aligning

feed delivery with fish appetite, leading to improved growth and

reduced feed wastage (Talbot et al., 1999; Noble et al., 2007b).

Additionally, their implementation could potentially decrease

competition, thereby enhancing fish welfare (Noble et al., 2008).

Despite the positive performance outcomes observed in several

cases (de Mattos et al., 2022), the use of self-feeders comes with

challenges. Their operation depends on specific individuals and

social hierarchies, which may result in growth inhomogeneity

within a stock (Arechavala-Lopez et al., 2020. Moreover,

deploying self-feeders in open cages poses challenges, especially in

larger cages with a high number of individuals. Fish in marine cage

environments often exhibit variable appetites due to factors such as

changes in water temperature, environmental conditions, and the

health status of the fish. While social learning and training

theoretically hold the potential to address these inhomogeneities,

there has been no successful demonstration of social learning as an

effective tool for aquaculture to date (Macaulay et al., 2021). While

many small-scale experimental studies report promising results, few

have successfully translated to commercial scale, highlighting a gap

between theoretical concepts and practical application. Caution is

warranted against extrapolating results from small-scale studies to

commercial situations.

In the past decade, there has been a recent surge in scientists

proposing methods to quantify fish behavior using computer vision

techniques (Xu et al., 2006; Niu et al., 2018; Zhou et al., 2018a;
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Georgopoulou et al., 2021) and only recently, from 2016, they have

applied more elaborated methodologies, such deep learning

(Macaulay et al., 2021). These techniques offer an automated,

non-invasive, and cost-effective means to record behavioral

parameters. To describe these behaviors, images captured are

converted to statistical results using computer vision models, and

then some behavioral parameters are estimated. Categorically, these

methods can be distinguished based on several criteria: the species

under study, the adopted methodology (ranging from simple

computer vision techniques to more sophisticated machine

learning models such as convolutional neural networks-CNN),

the applicable system (e.g., recirculating aquaculture systems-

RAS, cages), the specific research questions they aim to address

[e.g. feed behavior, abnormal behavior such as aggressive behavior,

disease states, environmental factors, stress, and daily swimming

behavioral variations (Yang et al., 2021)], and the type of behavioral

parameters studied. These parameters can be direct, such as the

swimming speed, direction, spatial distribution, and turning angle

(An et al., 2021), or indirect, such as the changes in the water surface

due to higher activity and the loss of feed pellet due to low activity.

Here, we focus on the methodologies that specifically have been

applied for feeding monitoring and control. An et al. (2021), Li et al.

(2020), Niu et al. (2018), Wang et al. (2021), Yang et al. (2021) and

Zhou et al. (2018b) offer a thorough investigation and discussion on

computer vision techniques used for monitoring fish behavior in

other contexts.

In the realm of applicable systems, a concentrated effort has

been directed toward recirculating aquaculture systems (RAS) but

usually the studies involve a limited number of individuals (Foster

et al., 1995; Parsonage and Petrell, 2003; Xu et al., 2003, 2006;

Papadakis et al., 2012; Lee et al., 2013; Liu et al., 2014; Papadakis et

al., 2014; Al-Jubouri et al., 2017; Zhou et al., 2018b, Zhou et al.,

2018a; Han et al., 2020; Wang et al., 2021; Kong et al., 2022). Some

of these investigations have developed methodologies centered on

indirect metrics, such as counting uneaten pellets using simple

computer vision techniques (Foster et al., 1995; Parsonage and

Petrell, 2003). More recently, others have proposed a feeding

control method in RAS, which involves integrating pellet count

using more elaborated methodologies, i.e., a feed pellet counting

module using convolutional neural networks (CNNs) (Wang

et al., 2022).

Turning to methodologies directly monitoring the fish behavior

(Papadakis et al., 2012; Lee et al., 2013; Papadakis et al., 2014; Zhao

et al., 2017; Al-Jubouri et al., 2017; Zhou et al., 2018b, Zhou et al.,

2018a; Han et al., 2020; Kong et al., 2022), Lee et al. (2013)

introduced the Sustainable Aquaculture Feed System (SAFS),

utilizing simple computer vision techniques to detect fish presence

around the feeding area and evaluate their appetite. Another

approach by Liu et al. (2014) involved defining an index for

measuring the feeding activity of Atlantic salmon shoals in an

RAS through the subtraction of two consecutive frames. Alzubi

et al. (2016) employed a combination of traditional computer vision

and more elaborated support vector machine to analyze fish activity

and determine iffish were actively fed. Zhao et al. (2017) proposed a

method characterizing fish groups’ appetite based on their
Frontiers in Marine Science
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dispersion, interaction force, and the degree of change in the water

flow field. More recently, there has been a growing body of work

developing methodologies based on CNNs to classify feeding-

related activity into different classes (Han et al., 2020; Kong et al.,

2022). Wang et al. (2022) used a multi-task CNN that contained

also a feeding activity classification module, that could binary

classify fish group into active or inactive.

In contrast, fewer studies have addressed systems applicable to

sea cages, with a tendency towards indirect measures of fish

appetite, such as detecting feed loss using cameras (Hu et al.,

2021) or monitoring surface activity during feeding (Ubina et al.,

2021; Hu et al., 2022; Pradana and Horio, 2022). Maløy et al. (2019)

considered both temporal and spatial flow by combining a three-

dimensional CNN (3D-CNN) and an RNN to form a new dual deep

neural network. The 3D-CNN and RNN were used to capture

spatial and temporal sequence information, respectively, thereby

achieving recognition of both feeding and nonfeeding behaviors

in salmon.

In general, previous work focused on developing feeding

monitoring tools in RAS, with a limited number of fish and more

controlled environments. In addition, they controlled a small

number of parameters and did the analysis for short-time

intervals. As a result, there is a significant lack of long-term

experiments specifically designed to be applied in industrial

aquaculture settings, particularly in cages. In these conditions, the

feeding frequency and quantity of feed are typically determined

based on feeding tables and farmers’ experience, with limited

adaptability to actual fish feeding needs (Benhaïm et al., 2012;

Wang et al., 2017). Furthermore, the use of automatic feeders

without any control may result in cases of both, over-feeding and

underfeeding (Ang, 1998; Petrell and Pee Ang, 2001; Liu

et al., 2014).

Considering the above, we have developed a system capable of

continuous, real-time monitoring of European seabass feeding

behavior in sea cages using single vision underwater cameras. The

system allows for the automated detection and tracking of

individual fish, as well as the identification of their feeding

actions and progression. Within this framework, we have

introduced two parameters for control purposes: the speed and

the feeding behavior index (FBI). While other parameters, such as

polarization and fish turns, were also considered we focus on

assessing how these two behavior-based indicators, speed and

FBI, respond across various feeding scenarios including feeding

frequency, feeding quantity, and feeding duration. Building on

previous research, we anticipate two key findings: Firstly, the fish

are likely to exhibit increased activity leading up to feeding events,

suggesting an anticipatory response. Secondly, as the fish approach

satiation, a decline in their activity levels is expected.

The current work is organized in the following sections: first, we

describe the methodology we used to develop the continuous real-

time tracking system and to extract the behavioral parameter. Then,

we discuss the experimental design of the different feeding

scenarios. Next, we present the results of the fish behavior

parameters for the different feeding scenarios. Last, we discuss

possible methodologies that could help us achieve feeding control.
frontiersin.org
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2 Methodology

2.1 System development

2.1.1 Experimental animals and site
A group of more than 10,000 E. seabass (Dicentrarchus labrax,

220 ± 30 g body weight) at a stocking density of 5.2 kg m−3 was

reared in a circular polyester cage of 40m in diameter and 9m depth,

having a cylinder-shaped net up to 8m depth and a closing cone of

1m. The cage (Figure 1) was located at the pilot scale farm of HCMR

(certified as an aquaculture facility from the national veterinary

authority; code GR94FISH0001) at Souda Bay, Crete. The stock was

obtained from the Mesocosm hatchery of the HCMR. Following

larval rearing and pre-growing, juveniles of apx 2g mean weight

were transferred to the pilot scale farm, after 120 days post hatching.
2.1.2 Automatic feeder
An automatic feeder was located at the center of the cage. It

comprised of a microcomputer (rpi, Rasberry4 - model B) that was

used as a node which was controlling a simple motor (feeding

motor, 12V). To enable remote control of the feeder the MQTT

communication protocol (messaging protocol for the transmission

of data from sensors) was used. During the trial, the feeder was

activated at specific times (see below) and for specific duration

according to the experimental protocol that is explained below.

2.1.3 Monitoring system
A submerged network camera (Fyssalis v3.1; Figure 1)

capturing at 10 fps was used for monitoring and video recording

during daylight hours. The image resolution was 1280 x 720 pixels.

The camera was positioned at 4 m depth using a gyroscopic gimbal

stabilizer to ensure upwards positioning. The videos were collected

using RTSP streaming and were analyzed locally at the institute’s

facilities. Different types of behavior captured with the camera are

shown in Figure 2.

2.1.4 Video Analysis
The swimming behavior analysis was performed at two different

levels, the individual level, and the group level (Figure 3). At the

individual level, we trained previously existing models, as explained

in the next paragraph, for the detection and tracking of individual

fish in the cage. At the group level, we used computer vision
Frontiers in Marine Science 04
techniques to extract group level swimming performance

parameters, such as the feeding behavior index (FBI). We used

Python (v3.9) for both video and data analysis.

2.1.4.1 Individual-level video analysis

We used YOLOv5 (Jocher et al., 2022) in python (Van Rossum

and Drake, 1995; version 3.9) to detect the fish in the videos, after

training the model with 1,000 annotated images of individual fish of

only one species, i.e. of European seabass (see Supplementary Figure

for the performance parameters of the training). To associate each

detected fish between frames, i.e., to track the fish, we applied the

DEEPSORT algorithm (Wojke et al., 2017) excluding the

appearance-based association parameter. All training and video

analysis were performed on a Desktop computer with the following

specifications: Intel Core i7-8700 3.2 GHz CPU, 32GB RAM and

NVIDIA GeForce 3060Ti GPU. The fish’s speed (as body lengths/

sec) was calculated using the extracted trajectories.

2.1.4.2 Group-level video analysis
2.1.4.2.1 Crowding estimation - feeding behavior index

We took advantage of the particular behavior exhibited by E.

seabass during feeding where the fish create a dense group at the

feeding area (see Supplementary Video) to define the FBI as a

parameter that shows variation in the group density around the

feeding area and helps us determine when feeding takes place. More

specifically, to calculate it we first corrected for the uneven

illumination of the image by subtracting the current image with the

background image (which is calculated as the average of the last 200

image frames and is re-calculated every 15 minutes; Figure 4A). Next,

we converted the image into the HSV color space, and we segmented

the image into the foreground pixels containing the fish and the

background (Figure 4B). The range of threshold values was chosen

after manual investigation (H: 0-0; S: 0-0; V: 0-140; Figure 4C). The

total density of the crowd was calculated as Densitytotal =  
#  white   pixels

total   #   of   pixels (Figure 4D). During feeding, fish tend to form a very

dense core that does not cover all image area and in the edge of it the

fish are sparsely distributed (see Supplementary Video). This core

could be centered at any of the image areas. Thus, we next split the

segmented image into four equal rectangles (R1, R2, R3 and R4) and

calculated the density at each of them (Figures 4C, D). We detected

significant crowding when any of the regional densities (Density R1,

R2, R3, R4) were higher than 0.845 (a manually defined threshold,

decided after investigation) as is shown in Figure 4E. Then feeding
FIGURE 1

Experimental site and camera setup.
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behavior index was then calculated as FBI =   Total  Density
Maximum  Density, where

the maximum density was the maximum density detected until that

time frame (Figure 4F). To detect feeding event, the condition must

last for at least 80 frames (8 seconds). The opposite condition must be

held to detect relaxation after feeding (Figure 4G).
2.2 System testing

The experimental protocol was approved by the Ethics

Committee of the IMBBC and the relevant veterinary authorities

(Ref Number 32257 09-02-2021) in accordance with legal

regulations (EU Directive 2010/63).

2.2.1 Experimental procedure
We were recording the fish for a duration of approximately a year,

and we followed different feeding scenarios as shown in Figure 5. We

controlled for three different feeding parameters: the feeding frequency

(feed distribution once, twice or three times per day), the feeding time

(morning, noon or afternoon) and the feeding quantity (normal
Frontiers in Marine Science 05
feeding based on feeding tables, reduced feeding at 50% from

normal, overfeeding at 150% of the normal and no feeding).

Morning feeding took place between 08:00 and 08:30, as this is the

normal feeding schedule in the farm. When the frequency of feeding

was two meals per day, then the morning feeding was at 08:00 and the

second meal was delivered either in the noon at 14:30 or in the

afternoon feeding at 16:00.When 3meals were provided, this was done

during morning, noon and afternoon at the same time as mentioned

earlier. On days with multiple feed delivery the overall quantity

remained the same. Each feeding treatment lasted for a period of 7-

10 days (any variability on the actual days of the treatment was due to

weather conditions and husbandry practices). The feed used was

standard 6mm pellets for E. seabass (Zoonomi S.A).
2.3 Data analysis

2.3.1 Polynomial fit
As the speed and FBI data are noisy and to ensure an analysis

independent of noise, we fit each individual signal with a
FIGURE 3

Flowchart of the algorithm.
FIGURE 2

Variation in the swimming patterns of the European seabass crowd in cages: i) Polarized behavior, ii) Milling behavior, iii) Swarm behavior (Tunstrøm
et al., 2013).
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FIGURE 4

Schematic representation of the steps followed for the estimation of the FBI. (A) Correct uneven illumination (B) Prepare and color threshold (C)
Split into 4 equal rectangles (R1, R2, R3, R4), (D) Calculate total density and density of white pixels for each rectangle, (E) Detect START of feeding,
(F) Calculate the Feeding behavior Index (FBI) - Crowding estimation, (G) Detect STOP of feeding.
FIGURE 5

Experimental timeline and planning.
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polynomial curve of degree 10 using the Polynomial.fit() function in

Python. This enabled us to keep the signal while removing the noise.

All the analysis (except the GMM clustering) was done on the

smoothed data.

2.3.2 Asymmetry
To compare the speed and FBI across different feeding scenarios

we considered the start of the feeding as a reference axis. This was

used to test changes in motion and FBI relative to the start of the

feeding in an effort to detect symmetric behaviors of the fish around

the feeding time. We, therefore, defined the asymmetry parameter

as:

A(t) = f (t) − f ( − t)

Where f(t) is the signal of interest (the speed or the FBI) at time

t (t ∈ ½0,∞)). If this difference is positive, this means that the fish’s

activity is higher at time “t” after feeding compared to time “-t”.

2.3.3 Duration of excitation
To estimate the excitation period during feeding, we calculated

the total time in which the speed or the FBI was over its average

value, after feeding started. The resulted duration was normalized

for all experimental cases after being divided by the total feeding

duration for comparison purposes and therefore this metric

is unitless.

2.3.4 Statistical analysis
We calculated the average and median value for both, the raw

and the asymmetry values of the FBI and speed. As our data were

not normally distributed, we run Kruskal-Wallis (Kruskal and

Wallis, 1952) tests to find any statistical difference between

treatments and post hoc Dunn test where necessary (Dunn, 1961)

for pairwise comparisons. More specifically, we tested the following:

1) does the average speed and FBI differ significantly for different

feeding times and, 2) feeding quantities? 3) Does the asymmetry of

the speed and FBI differ significantly for different feeding times and

4) feeding quantities? 5) Does the duration of the excitation of the

speed and FBI change for different feeding times and 6)

feeding quantities?

2.3.5 Additional analysis for the FBI signal
The FBI was automatically grouped into four different clusters

to get insight into the feeding behavior changes in time. We used the

function GaussianMixture(), that implements the expectation-

maximization (EM) algorithm for fitting mixture-of-Gaussian

models, from the scikit-learn library of Python.
3 Results

3.1 Feeding time, feeding frequency

Figure 6 presents the fish speed under the different feeding

scenarios (variable feeding times and feeding frequencies). Both,

feeding time (F-statistic = 3.78, p-value = 0.02) and feeding
Frontiers in Marine Science 07
frequency (F-statistic = 8.73, p-value< 0.001) significantly affected the

speed and the two independent variables showed significant interaction

(F-statistic = 4.68, p-value< 0.001, Supplementary Table 1).

The speed was significantly higher in the morning and noon

compared to afternoon (Figure 7A; Statistic = 3.63, p-value = 0.056,

marginal significance and Statistic = 6.80, p-value = 0.009,

respectively). In addition, the speed was significantly higher in the

morning when fish were receiving one meal per day (Figures 6, 7B),

compared to the morning speed during multiple feedings (Feeding

twice: Statistic = 7.72, p-value = 0.005; Feeding three times: Statistic =

19.02, p-value< 0.001).

By observing Figure 6 we see that when the frequency of feeding

was three meals per day, the fish presented an asymmetrical motion

around the feeding time (Statistic = 12.77, p-value = 0.002; Figure 6).

The asymmetry of the speed was significantly stronger when fish were

fed in the morning than when fed at noon (Statistic = 12.51, p-value<

0.001) or in the afternoon (Statistic = 8.32, p-value = 0.004). In general,

the asymmetry of the speed was on average positive (mean = 0.02 ±

0.06; total range: -0.17 to 0.25), and negative values appeared mainly in

the afternoon feeding although were close to zero (mean = 0.0008).

In addition, the duration of the increased activity during feeding

was also affected by the different feeding times (Statistic = 39.76, p-

value< 0.001). The duration of the excitation decreases significantly

if fish are fed at noon (0.5 ± 0.22; Statistic = 22.38, p-value< 0.001)

or at afternoon (0.44 ± .25; Statistic = 31.43, p-value< 0.001) in

comparison to the morning (0.68 ± 0.27). In contrast, the feeding

frequency did not affect the duration of the excitation.

Regarding the feeding behavior index (FBI), we found

significant differences between the different feeding times

(Figure 8, Statistic = 9.73, p-value = 0.008), but not between

different feeding frequencies (Statistic = 1.57, p-value = 0.46). The

FBI was minimum during noon feeding and significantly higher

during morning (Statistic = 3.73, p-value = 0.05) and afternoon

feeding (Statistic = 4.27, p-value = 0.04), when fish were fed once.

We found differences in the asymmetry for different feeding

frequencies (Statistic = 12.25, p-value = 0.002) with the asymmetry

to be significantly higher when the feeding frequency was two times

(Statistic = 6.29, p-value = 0.01) and three times (Statistic = 11.86, p-

value< 0.001) in comparison with one meal per day.
3.2 Feeding quantity

Feeding quantity affected both speed and FBI. In Figure 9 the

changes in speed and how it varies around feeding times for the

different feeding quantities are shown. There is a clear change in

the fish activity relative to the start of the feeding. More specifically

for the normal feeding, there is a gradual increase of the speed from

0.5 bd/sec to 0.6 bd/sec (mean speed is 0.54 ± 0.11 bd/secs) before

feeding starts followed by a gradual decrease afterwards. In contrast,

during the reduced feeding, there is a prolonged increased activity

before feeding, and this increase remains for some time after feeding

commences before a decrease is observed. The speed during

reduced feeding (0.61 ± 0.1 bd/sec) was higher than the one when

normal feeding is applied (0.54 ± 0.11 bd/sec; Statistic = 4.48, p-

value = 0.03). However, it was not significantly different from the
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A B

FIGURE 7

(A) Boxplot of the distribution of the speed (filtered data) for different times of day. Significant differences are indicated by letters. (B) Boxplot of
distribution of the average speed (filtered data) for different feeding times and feeding frequencies (black color for one meal per day, dark grey for
two meals per day and light grey for three meals per day). Statistically significant differences between frequencies each time of day are indicated by
letters and between different times in a day with different numbers.
FIGURE 6

Speed variation (raw data) in time, for different feeding times and frequencies, while keeping the feeding quantity constant. The green vertical lines
show the start of feeding while the horizontal bars the duration of feeding. The dashed horizontal lines are reference lines to help comparison
between the different scenarios.
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overfeeding (0.57 ± 0.12 bd/sec; Statistic = 1.30, p-value = 0.25) and

no feeding case (0.56 ± 0.15 bd/sec; Statistic = 0.10, p-value = 0.75).

During overfeeding fish present a quite different pattern in their

motion being active during feeding and relaxing only after feeding

stops in contrast to the case of no feeding, where fish display an

increased activity around the expected feeding time. The duration of
Frontiers in Marine Science 09
excitation for the speed did not present any difference between the

conditions tested (Statistic = 1.85, p-value = 0.6).

There is a distinct pattern of asymmetry for fish speed between

the different feeding quantities (Figure 10). When fish are fed with

normal quantities, the asymmetry is stable and close to 0, suggesting

that the fish’s activity is symmetric around feeding time. In contrast,
FIGURE 9

Speed in time (raw data) for different feeding quantities. The green dashed vertical line shows when feeding starts and the green horizontal bar the
duration of feeding. The dashed horizontal lines are reference lines to help comparison between the different scenarios.
FIGURE 8

Feeding behavior index (raw data) in time, for different feeding times and frequencies, while keeping the feeding quantity constant. The green
vertical lines show the start of feeding while the green bars the duration of the feeding. The dashed horizontal lines are reference lines to help
comparison between the different scenarios.
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when fish are fed reduced quantities or are overfed, an asymmetry

in their activity around feeding times is observed, being different

between the two feeding scenarios. In particular, when fish received

reduced quantities, showed an increased activity prior to feeding

while during overfeeding the increased activity is expressed after

feeding. There is no specific pattern of asymmetry when fish receive

no feed. There are no statistically significant differences however in

the average asymmetry between different treatments (Statistic =

1.57; p-value = 0.67).

The changes of the FBI (Figure 11) around feeding times also

vary for the different feeding scenarios. In general, the fish

immediately respond to the start of feeding and a sharp increase

of the FBI is observed. During the reduced feeding, the increase is

sharper, and the FBI signal is larger than normal feeding, while

during the overfeeding, the signal is smaller. Although we see

differences in the data, we could not show statistically for the raw

FBI (Statistic = 5.66, p-value = 0.13) or the asymmetry of FBI

(Statistic = 5.67, p-value = 0.13).

The duration of excitation for the FBI signal is variable for the

different feeding scenarios (Figure 12). During normal and reduced
Frontiers in Marine Science 10
feeding the excitation lasts longer (0.67 and 0.70, respectively) than

during the overfeeding (0.57), while the minimum was during no

feeding (0.55). Despite the observed differences there was no

statistically significant difference between the tested conditions

(Statistic = 5.11, p-value = 0.16).

Taking as reference the normal feeding scenario, we determined

distinct FBI clusters applying the Gaussian Mixture Model

clustering (Figure 13). Four clusters were identified, the pre-

feeding (black color), two feeding clusters (red and grey) and a

post-feeding one (blue). The first of the two feeding clusters refers to

the period immediately after feeding commences (red) and lasts

almost half of the total feeding period, while the second one (grey)

lasts until the end of feeding (grey). In comparison to normal

feeding, during overfeeding, the post-feeding cluster appears 10

mins before the feeding stops. In contrast, during reduced feeding

the second feeding cluster is prolonged several minutes after feeding

stopped. Finally, during fasting, the pre-feeding cluster lasts longer,

covering partly the expected feeding period.
4 Discussion

In the present study, our objective was to address the lack of

feeding control systems in sea cages. For this, we developed a system

capable of continuously monitoring the feeding behavior of

European seabass within the cages. To achieve this, we employed

a combination of AI models (YOLO and DEEPSORT) along with

computer vision techniques. To test our system and the sensitivity

of the parameters to feeding we conducted a long-term experiment

with variable feeding scenarios. We examined two different

behavioral parameters, the group speed, and the feeding

behavioral index. All tested parameters varied for different

feeding scenarios suggesting they could be used for feeding

control. Our findings suggest that fish exhibit distinct behavioral

patterns in response to various feeding situations, and for both, the

speed and feeding behavior index, can identify threshold values that

correspond to satiation levels, facilitating controlled feeding. To our

knowledge, this is the first study to have developed a continuous,
FIGURE 10

Average asymmetry of the speed (filtered data) for different feeding
quantities (different colors).
FIGURE 11

The feeding behavior index (FBI, raw data) in time for different feeding quantities. The green vertical line shows when feeding starts and the green
horizontal bar the duration of feeding. The dashed horizontal lines are reference lines to help comparison between the different scenarios.
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real-time monitoring system for feeding control in sea cages and

discusses reference curves that can facilitate feeding control.

Our monitoring system exhibits both advantages and

limitations. On one hand, we successfully developed an online

system capable of individual-level fish tracking. However, we

observed that the tracking performance decreases with increasing

shoal density, particularly during feeding. To address this, further

annotation is required to improve tracking in such scenarios. To

monitor behavior in high densities, we developed a group-level

behavioral metric, the feeding behavior index (FBI). Although the

FBI remains unaffected by fish density, it is negatively impacted by
Frontiers in Marine Science 11
varying lighting conditions. While we partially addressed this issue

by removing the background, additional refinement is necessary. We

also tried our individual-level tracking system for different species,

i.e., the gilthead seabream and the salmon, and without extra

annotation, we could successfully track them in different farms

(unpublished data). This is because our camera points upwards

and the annotation includes fish that have very high contrast with

the background, with a dark silhouette. Therefore, fish from different

species look similar enabling flexibility for the selection of species.

Speed showed significant sensitivity, both quantitatively and

qualitatively to the different feeding scenarios. Our findings show,
FIGURE 12

Boxplot of the duration of excitation of the feeding behavior index (expressed in ratio, filtered data) for different feeding quantities.
FIGURE 13

Clustering of the FBI for different feeding quantities (raw data). Black color: the pre-feeding, red color: feeding cluster immediately after feeding
starts, grey color: feeding cluster at the later stages of feeding, blue color: post-feeding cluster.
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in accordance with previous works (Miyazaki et al., 2000;

Priyadarshana et al., 2006; Hansen et al., 2015a, Hansen et al.,

2015b), that fish increase their speed in response to higher hunger

levels. More specifically, there was higher speed in the morning in

comparison with noon and afternoon, higher speed if the fish are

fed once in comparison with multiple feedings, and higher speed in

reduced feeding in comparison with normal feeding. Other studies,

i.e., of Riddell and Webster (2017), in a different setup offer

contrasting findings, as they show that hunger is not necessarily

correlated with the time that individuals find and approach prey

patches. This deviation could be explained by the differences in the

species studied, their social structure and the small number of fish

in the group (Hansen et al., 2020) and additionally by the fact that

in our case the fish group has been habituated to receive feed in

specific times at a specific area of their environment. During no

feeding we did not see a significantly increased speed, during the

whole day outside the feeding times something that we would

potentially expect. One explanation for this could be that the

prolonged hunger acts as a chronic stressor and the group adapts

to conserve energy (Lankford et al., 2005). Although we see a

difference in the speed between reduced feeding and overfeeding,

this was not significant. This could be either because the level of

hunger for individuals of the body size used in the trial was not

perceived as chronic stress, or due to the duration of each trial that

did not last for more than 10 days, a period that probably is not

sufficient for the applied restriction on feed to be considered as a

chronic stressor for E. seabass for which longer periods are needed

(Santos et al., 2010). Further experiments are required with longer

trials of different feeding quantities.

We detected significant differences in the speed asymmetry

between different times only when the frequency of feeding was

three times daily and not in other feeding frequencies. This could

show that the time interval between consecutive feeding events can

affect the response of the fish on feeding. Fish that feed more

frequently have on average lower speed and probably weaker

anticipation for food. Weaker anticipation would be seen as a

more symmetrical behavior around feeding times. As the normal

feeding schedule for this fish stock was to feed once per day, the fish

showed a more symmetrical behavior in the morning. The fact that

we did not detect respective significant differences when the

frequency was two meals per day could suggest that the effect of

the time interval between feeding events on the fish behavior could

also be important and needs to be tested. Depending on the

digestion rate (which also depends on temperature, feed

composition and oxygen availability), stomach may not empty

sufficiently for the fish to feel hungry again, until several hours

have passed from their last meal (Adamidou et al., 2009; Gilannejad

et al., 2019). The hypothalamus is responsible for controlling

appetite and integrates information from different sources, i.e.,

the endocrine signals, the nutrient levels and the presence/

absence of food in the gastrointestinal gut (Rønnestad et al.,

2017). The differences seen could also be explained by the

circadian rhythms and the environmental variability (Assan et al.,

2021), something that should be tested in the future. Previous

studies on different species demonstrated that the feeding frequency

can be optimal under specific scenarios there must be an optimal
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feeding frequency (Paspatis et al., 2000; Hassan et al., 2021; Priya

et al., 2021) in which the fish do show minimal stress levels, optimal

energy expenditure and higher satiation levels.

The frequency of feeding has a significant impact on the fish’s

behavioral response. While it is a common practice to feed fish once

daily, this approach may lead to heightened excitation levels during

feeding time, potentially indicating increased energy expenditure,

elevated stress levels, or more instances of abrasion, negatively

affecting the fish’s welfare (Rønnestad et al., 2017; Assan et al.,

2021). This could suggest that providing multiple meals in a day

would be better for the fish. However, it’s important to note that

these observations are speculative, as it remains challenging to

directly link the higher speed to the fish’s actual satiation level

(Adamidou et al., 2009; Gilannejad et al., 2019). Further research

could be therefore suggested to sample fish stomachs and/or blood

for satiety markers. Our hypothesis arises from comparing the

speed between different feeding frequencies and feeding times, but

as well between normal and reduced feeding quantities, where we

observed a substantial increase in activity when fish are underfed.

Nevertheless, we must carefully define welfare in fish and identify

reference behaviors, deviations from which could serve as indicators

of hunger. Further studies are required for this.

The feeding behavior index (FBI) also showed sensitivity to

different feeding scenarios. The average FBI showed a minimal

plateau at noon and was high during morning and afternoon. The

asymmetry of the excitation increased in multiple feedings,

something that could be explained as in the case of speed

asymmetry. From our analysis we observe that the excitation lasts

longer when fish are underfed and thus, feel hungry. However, the

opposite happens when fish are fasting. During this period, the fish

show excitation for shorter times, suggesting that during long-term

fasting fish adapt their behavior and the energy expenditure

(Gilannejad et al., 2019). To our knowledge, there are no similar

studies that use a similar index.

We have not identified any existing work that introduces the

Fish Behavioral Index (FBI) in cages in the manner presented here.

While there are studies that quantify population activity and its

progression by detecting changes in the water surface (Atoum et al.,

2015), none directly quantifies changes in fish density within cages.

Another set of studies (Zhou et al., 2018b) introduces a similar

index, the Feeding Behavior Quantification Factor (FIFFB),

reflecting fish aggregation. However, these studies employ

Delaunay triangulation in a more controlled and static

environment, specifically in Recirculating Aquaculture Systems

(RAS). In contrast, our presented metric, the FBI, is distinct and

designed for dynamic environments such as cages. Further research

(Zhao et al., 2016) has quantified shoal dispersion using a statistical

joint histogram related to motion vectors derived from optical flow

analysis. However, this metric differs from the FBI, and its

applicability is limited to static environments, specifically RAS

systems. In summary, our approach with the FBI in cages is novel

and distinct from existing methods, offering a valuable contribution

to understanding fish behavior in dynamic aquatic settings.

The two variables tested here, the speed and the FBI, showed

some differences in their sensitivity to the variable feeding scenarios.

The FBI showed a minimal plateau at noon while it was high during
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morning and afternoon. The speed variable is dynamic and

although here it is studied at the group-level, is directly affected

by the metabolic state of the fish and the fish energy requirements

and reservoirs. In contrast, the FBI is a spatial variable that shows

the crowding behavior of the group, and although dynamic, it is not

directly linked to the metabolic state of the fish. The fact that the

FBI showed a minimal plateau during noon, and higher activity

during morning and afternoon suggests that this is an indicator that

expresses the specific dual (diurnal/nocturnal) feeding behavior of

seabass, i.e., during morning and dusk mostly than during the day.

We also showed that the activity expressed by the FBI can be

grouped into four different clusters of behaviors, one pre-feeding

cluster, two feeding clusters (the first that shows the feeding behavior

at the initial period of the feeding and the second the behavior during

the relaxation of the feeding) and the post feeding cluster. In addition,

we showed that the duration of these feeding clusters could be

affected by the different feeding quantities. This methodology could

therefore be used in the future to achieve automatic detection of the

satiation state of the fish and could help to control feeding better.

Other potential tools that could help us predict and control feeding

would be the detection of the transition point between the feeding

and post feeding clusters. We have preliminary unpublished results,

that show that the use of changepoint analysis and the prediction of

the future value of FBI using neural networks could be very useful for

the early detection and adjustment of feeding needs of the fish.

Despite not yet achieving real-time feeding control, our work

encompasses the development and presentation of valuable tools

for inferring fish satiation levels. Consequently, there are two feasible

approaches to controlling feeding: asynchronous and synchronous.

The first involves evaluating today’s feeding and adjusting the

quantity for the following day accordingly. Alternatively, we can

anticipate the evolution of the control parameter using neural

networks and make feeding adjustments when the prediction

indicates that a specific threshold has been reached.

Until now, we showed that our system can reveal important

information on the feeding state at the group-level. As shown

previously, disparities in the internal condition of fish can serve

as a significant source of heterogeneity within animal groups

(Wilson et al., 2019; Jolles et al., 2020). It would be, therefore,

very interesting to see if this heterogeneity of the internal satiation

state of the fish is also expressed at the group-level. If this is the case,

then, by designing appropriate experiments, we could work to

identify specific behavioral parameters that can quantify the

percentage of the hungry fish in the cage. Previous laboratory

studies have already shown that differences in the hungry/satiated

ratio can impact also the collective behavior of the fish (Wilson

et al., 2019). However, these studies are controlled and with a

limited number of individuals. Findings such the above but at large

scales in farms, would be very valuable for the optimization of the

feeding and the improvement of the welfare of the fish.

Changes in the main parameters of the farm environment (e.g.,

water temperature, dissolved oxygen concentration, pH value, and

ammonia nitrogen compounds) can directly affect the appetite and

food intake of fish (Stoner et al., 2006; Remen et al., 2016). For
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example, when fish eat, the concentration of local dissolved oxygen

may decrease. Uneaten pellets deposit on the bottom of the water also

causes changes in dissolved oxygen and ammonia nitrogen

compound concentrations (Skøien et al., 2016; Li et al., 2017).

Although the influence of these parameters on the feeding behavior

was not part of the current study and are highly influenced by the

hydrodynamics in the farm, especially in cage aquaculture, we believe

it is necessary to study these in the future. Previous studies have

shown that fish have different energy demands at different

temperatures (Krumschnabel and Wieser, 1994; Krumschnabel

et al., 1997; Volkoff and Rønnestad, 2020). Therefore, differences in

the environmental conditions could potentially demand adaptation

of the reference curves and the satiation thresholds.

To conclude, our work focused on developing tools for the real-

time monitoring and analysis of the European seabass behavior at sea

cages, providing preliminary results from a feeding experiment, to

show the tools’ potential. Data on the feeding behavior variations of

European seabass are scarce at sea cages. For this, our work has a

significant contribution on the field of behavioral monitoring of the

Mediterranean species in sea cages. Further data collection of long-time

experiments and different feeding parameters is required to enhance

the findings of our experiment. Although the system is developed for

the European seabass, it is also tested and shows promising results for

the gilthead seabream and also salmon. Additionally, we successfully

identified distinct behavioral characteristics of the fish under various

conditions, including normal, reduced feeding, over-feeding, and

fasting. Up to now, we have not achieved full control of the feeding

process. Nonetheless, we provided reference values and curves. Moving

forward, our next objective is to explore additional feeding scenarios to

further enhance the system’s capabilities.
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