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Ciliates are an important ecological component in the microbial food web, but

few studies have been conducted on the spatial distribution of small-sized

planktonic ciliate communities in the East China Sea (ECS). Investigating ciliate

communities using conventional morphological approaches is particularly

difficult for the small, fragile, and naked species. Therefore, we applied DNA

metabarcoding analysis to explore the spatial pattern of small-sized planktonic

ciliate community structure within the surface, deep chlorophyll maximum

(DCM), and bottom layers. Results showed the cosmopolitan species,

Leegaardiella sp., was dominant and widespread in the ECS. The relative

abundance of the mixotrophic family Tontonnidae decreased in the deeper

layer. We characterized water masses of the ECS using environmental

variables. In nano-sized ciliate communities, non-metric multidimensional

scaling (NMDS) plots revealed a correlation with temperature, salinity, density,

and depth. The circulation patterns were similar to cluster analysis results,

suggesting that hydrographic conditions shaped small-sized ciliate

community composition.
KEYWORDS

planktonic ciliate, metabarcoding analysis, SSU rDNA, spatial distribution, East China
Sea (ECS)
Introduction

Ciliates are highly diverse unicellular eukaryotes found in various aquatic

environments. Planktonic ciliates, dominated by oligotrich, choreotrich, and tintinnid

ciliates (Alveolata, Ciliophora, Spirotrichea), vary in size from tens to hundreds of

micrometers (Lynn, 2008). In pelagic ecosystems, they are crucial components in
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microbial food webs, transferring energy to higher trophic levels

while grazing on smaller plankton, such as pico- and nanoplankton

(Azam et al., 1983; Pierce and Turner, 1992).

The East China Sea (ECS) is located in the Northwest Pacific

Ocean, one of the world’s largest and most productive marginal

seas. It is a system with complex hydrological dynamics resulting

from the interaction of various water masses (Ichikawa and

Beardsley, 2002; Lee and Chao, 2003; Yang et al., 2011; Zhu et al.,

2022). In short, Yellow Sea Current flows from the north to the

south, Changjiang diluted water (CDW) is along the coastal area,

Kuroshio intrusion passes through the east of Taiwan from the

south to the north, and Taiwan Current Warm Water (TCWW)

flows from the south to the north (Isobe, 2008; Chen et al., 2009; Liu

et al., 2021a, b; Kang and Na, 2022).

The Changjiang River generally discharges the highest in July or

August, carrying large amounts of terrestrial nutrient inputs into

the aquatic environments (Wu et al., 2019). A positive relationship

between ciliate density and increased bacteria availability in the

plume area has been reported (Chiang et al., 2003). Ciliate

communities also transfer organic carbon to higher trophic levels

by consuming phytoplankton and smaller plankton in the ECS

(Suzuki and Miyabe, 2007; Choi et al., 2012).

Until now, more detailed surveys of tintinnid communities were

studied than aloricate, oligotrich, and choreotrich ciliate

communities, as their loricae were more accessible to be identified

and stored by traditional taxonomic methods (Bachy et al., 2014;

Dolan et al., 2009; Santoferrara and Alder, 2009; Dolan and Pierce,

2013; Dolan et al., 2013, 2016; Li et al., 2018). Moreover, aloricate

ciliates are more abundant, especially in small sizes in the ECS,

which increases the difficulties in traditional research under the

microscope (Pitta and Giannakourou, 2000; Zheng et al., 2015;

Yang et al., 2020). These small-sized ciliates represent an important

grazer for picoplankton (Kim et al., 2021; Romano et al., 2021). An

alternative way to survey the biodiversity and spatial distribution of

ciliate communities is the metabarcoding approach, which can

reveal more taxa than microscopic observations, particularly in

small, fragile, and aloricate species (Bachy et al., 2013; Santoferrara

et al., 2013; Gimmler et al., 2016; Santoferrara et al., 2018; Ganser

et al., 2021). In this study, we characterized the species composition

and distribution of small-sized planktonic ciliate communities

using metabarcoding on vertical and horizontal scales. We also

revealed the relationships between planktonic ciliates and

environmental factors in this complex hydrological environment.
Materials and methods

Sample collection

Seawater samples were collected using Go-Flo bottles mounted

on a conductivity, temperature, and depth (CTD) rosette (Sea-Bird

91 Electronics, Bellevue, WA, USA). A total of 30 stations with

different depths were sampled in the ECS during a summer cruise in

July 2019 (Figure 1). Hydrographic data were measured using a

CTD profiler. The nutrient variables, including dissolved inorganic

nitrate, phosphate, silicate, and chlorophyll a (Chl a) concentration,
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were measured according to the standard methods developed by

Gong et al. (2003). The precision for the determination of nitrate,

phosphate, silicate, and Chl a were ± 0.3 µM, ± 0.5 µM, ± 0.01 µM,

and ±0.02 mg/m3, respectively.

For DNA samples, 10 L of three-layered seawater (surface, deep

chlorophyll maximum (DCM), and bottom) were pre-filtered

through a 200-mm nylon mesh, followed by filtering through a 20-

mmnylon filter (90 mm diameter, 100Millipore, Billerica, MA, USA),

and then subsequently filtered through 3-mm and 0.2-mm pore size

polycarbonate membranes (142 mm diameter, Millipore, USA) using

a peristaltic pump. The filters were immediately preserved in liquid

nitrogen and stored at −80°C until DNA extraction.
DNA extraction, amplification,
and sequencing

DNA was extracted using the DNeasy PowerWater Kit (Qiagen,

Valencia, CA, USA). The V4 region of rDNA was amplified using

TAReuk454FWD1 (5′-CCA GCA SCY GCG GTA ATT CC-3′) as
the forward primer and the modified TAReukREV3 (5′-ACT TTC

GTT CTT GAT YRA-3′) as the reverse primer (Stoeck et al., 2010).

PCR conditions were as described in Lin et al. (2022). Amplicons

were sequenced on an Illumina MiSeq platform, generating 300-bp

paired-end reads. Data have been deposited in the National Center

for Biotechnology Information (NCBI) Sequence Read Archive

(SRA) database under the project number PRJNA738614.
Sequence processing

The sequence primers were removed using cutadapt (Martin,

2011) and then underwent quality filtering and denoising using the

standard pipeline of the DADA2 package (Callahan et al., 2016)

under R software. Reads were filtered with the following

parameters: truncLen and minLen = c (240, 180), truncQ = 2,

and maxEE = c (2, 2). Taxonomic assignments of amplicon

sequence variants (ASVs) were conducted using the Protist

Ribosomal Reference Database (PR2) version 4.12.0 (Guillou

et al., 2013). Planktonic ciliate amplicons were selected

corresponding to the orders Tintinnida, Choreotrichida, and

Strombidiida, among the division Ciliophora in PR2. Ciliate

communities were subsampled with 250 reads for 100 times.
Data analysis and visualization

All statistical analyses were conducted using software R (Team,

2013). Alpha diversity indices (Shannon indexH′ and richness) and
the Bray–Curtis dissimilarities were calculated using the Vegan

package (Oksanen et al., 2019). The non-metric multidimensional

scaling (NMDS) plot was performed to visualize the patterns and

identify potential environmental drivers for the ciliate community

composition based on the log-transformed ASV abundances and

scaled environmental variables. Venn diagram was made using the

ggVennDiagram package (Gao et al., 2021). Ciliate communities
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were grouped by hierarchical cluster analysis using Ward’s

minimum variance method and square-rooting Bray–Curtis

distances with cluster package (Maechler et al., 2022). To

understand the relationship between the environment and each

cluster, differences in environmental variables among clusters were

examined using Tukey’s honestly significant difference (HSD) post-

hoc test, followed by an analysis of variance (ANOVA). Graphics

were created using the ggplot2 package (Wickham, 2016). The plots

of sampling stations, temperature–salinity (T-S) diagram, and

vertical profiles of environment variables were generated in the

Ocean Data View (Schlitzer, 2022). Small-sized planktonic ciliates

(<20 µm) indicated sequences obtained from the nano-sized

fraction. The pico-sized reads were counted for the presence of

ASVs to reveal the distribution.
Results

Hydrographic conditions

During this cruise, seawater temperature and salinity ranged

from 17.8°C to 29.7°C and 29.8 to 34.8, respectively. Four water

masses observed in the study area followed the definition by Gong

et al. (1996): TCWW, Yellow Sea Mixed Water (YSMW), CDW,

and Kuroshio water (KW) (Figure 1). The YSMW influenced the

bottom of the northern transect in the ECS, while the coastal surface

area was influenced by the low-salinity CDW (S < 31;

Supplementary Figure S1B). The KW intruded in northeastern

Taiwan, involv ing a topographic upwel l ing at St . 1

(Supplementary Figure S1). The TCWW dominated the shelf area

of most of the sampling sites (Figure 1C).
Overall diversity across three size fractions

We obtained a total of 15,980 ASVs represented by ~11,465,721

DNA reads. Alveolata contributed largely to total reads, particularly
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in nano-sized fraction (73.9%, data not shown). A total of 314 ASVs

(21,336 reads) remained as planktonic ciliates across three size

fractions after subsampling (19, 36, and 29 samples from micro-

sized, nano-sized, and pico-sized fractions, respectively). A complete

list of ciliate taxa from this dataset is reported in Supplementary

Table 1. Overall, nano- and pico-sized fractions share more

similarities than micro-sized where the Bray–Curtis distances were

closer in the NMDS plot (Supplementary Figure S2D). The alpha

diversity and species richness were lower in the micro-sized fraction

when compared to both the nano- and pico-sized fractions

(Supplementary Figure S2A). Tintinnida accounted for more than

50% of the ciliate relative abundance in the micro-sized fraction, in

which Salpingella sp., Amphorellopsis acuta, and Stenosemella pacifica

were found to be the major contributors (Supplementary Figure S3).

Strombidiida dominated in two small-sized fractions, which were

Strombidi ida_G_XX_sp. , Strombidi idae_H_X_sp. , and

Strombidiidae_G_X_sp. in the nano-sized fraction, and

Strombidiida_G_XX_sp., Spirotontonia_sp., and Tontonnidae_

B_X_sp. in pico-sized fractions (43.97% and 52.93%, respectively;

Supplementary Figures S2B, S3). Leegaardiella sp. was the most

abundant taxon across three size fractions in the ECS.
Nano-sized ciliate communities and
relationship with environmental variables

Hierarchical cluster analysis based on the Bray–Curtis

dissimilarities was performed on nano-sized ciliate communities.

These clusters were subsequently organized into two groups,

defined by a distance threshold of 1.7, resulting in one group

containing three clusters and another with two clusters (Figure 2).

In nano-sized samples, both cluster analysis and NMDS revealed a

strong correlation with depth (Figures 2, 3). The first group, which

included Clusters I, II, and IV, was influenced by the deeper water

column. Cluster IV, which comprised St. 20 and St. 21 across all

depths in the water mass of TCWW and YSMW, was dominated by

Choreotrichida. The taxonomic compositions in Cluster I were
A B C

FIGURE 1

(A) Sampling sites from this cruise. (B) The schematic map of circulation in the ECS adapted from Yang et al. (2011). (C) The T-S diagram of ciliate
samples from this cruise and water masses were defined by Gong et al. (1996). The blue, green, and orange circles represent water samples at the
surface, DCM, and bottom layer, respectively. CDW, Changjiang diluted water; TCWW, Taiwan Current Warm Water; YSMW, Yellow Sea Mixed Water;
KW, Kuroshio water. The schematic map shows the shelf current system of the ECS in summer. KBBCNT, Kuroshio Bottom Branch Current to the
northeast of Taiwan; KBC, Kuroshio Branch Current; CDW, Changjiang diluted water; TCWW, Taiwan Current Warm Water; ECS, East China Sea; T-S,
temperature–salinity; DCM, deep chlorophyll maximum.
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mostly from deeper water samples in TCWW, with only one

exception in YSMW. Although Clusters II and IV shared similar

taxonomic compositions according to the analysis of Bray–Curtis

dissimilarity, the former was mainly influenced by TCWW and KW

(Figure 2), whereas the latter was mainly influenced by YSMW. The

second group containing Clusters III and V was primarily

composed of samples collected from shallow depths, particularly

the surface layer. These shallow water samples were mostly from

TCWW and positively correlated to temperature but significantly

different in salinity (Supplementary Figure S4; Table 1). Clusters III

and V, both from shallow water, were higher in temperature and

oxygen concentration. The biological parameters indicated the

potential prey (Synechococcus, photosynthetic picoeukaryotes, and

bacteria), and only Synechococcus was higher in Cluster III

(Supplementary Figure S4).
Distribution of small-sized ciliates

The top four taxa in nano-sized fraction, Leegaardiella sp.,

Strombidi ida_G_XX_sp. , Strombidi idae_G_X_sp. , and

Strombidiidae_H_X_sp., were widespread and across all three layers

(Figures 4, 5). Lynnella semiglobulosa, Pelagostrobilidium minutum,

Rimostrombidium venilia, Strombidium capitatum, Strombidium
Frontiers in Marine Science 04
caudispina, and Strombidium triquetrum were only found in the

surface layer (data not shown).

Multiple vertical distribution patterns were observed based on

different annotated species. The presence of the mixotrophic family

Tontonnidae, Pseudotontonia simplicidens, Pseudotontonia_sp.,

Spirotontonia grandis, Spirotontonia_sp., Spirotontonia turbinata,

Tontonnidae_A_X_sp., and Tontonnidae_B_X_sp., decreased in the

deeper layer. There was an opposite pattern with the Tontonnidae,

with Tintinnidae_X_sp. and Parastrombidinopsis shimi in low

abundance/absent in the surface layer (Figure 5). Strobilidium

caudatum and Strombidium_M_sp. were found across three

layers but on the north transect (Figure 4).
Discussion

Metabarcoding

Research on microbial community composition and diversity

using metabarcoding has been more prevalent globally but relatively

scarce in the ECS (Bik et al., 2012; De Vargas et al., 2015; Gimmler

et al., 2016; Malviya et al., 2016; Noan et al., 2016; Cordier et al., 2022).

Metabarcoding has the potential to reveal large-scale patterns in

plankton diversity and community structure that were largely
FIGURE 2

Cluster analysis based on Bray–Curtis dissimilarity distances among nano-sized ciliate communities in different depth layers. The right bar represents
the water mass of each sample, where orange indicates the Taiwan Current Warm Water (TCWW), red indicates the Changjiang diluted water (CDW),
black indicates the Kuroshio water (KW), and blue indicates the Yellow Sea Mixed Water (YSMW). The right panel is the relative abundance of
taxonomic groups by classification order in the PR2 database.
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invisible in morphological analyses due to large numbers of

undescribed species and the difficulty in characterizing the species

present in the plankton community (Massana et al., 2006; Ichinomiya

et al., 2016; Morard et al., 2018; Tragin and Vaulot, 2019). Studies

focusing on aloricate ciliate communities often face challenges in the

resolution of morphological characteristics due to differences in

fixation methodologies, which results in fewer studies based on

morphology, as staining requires specific expertise (Wang et al.,

2013; Sun et al., 2019; Huang et al., 2021; Kim et al., 2021).

Identification of tintinnids could be easier and more complete for

tintinnid communities by their external loricae compared to aloricate
Frontiers in Marine Science 05
ones (Dolan et al., 2012; Dolan and Pierce, 2013; Zhang et al., 2017;

Romano et al., 2021; Wang et al., 2021b; Li et al., 2023; Mieczan et al.,

2023) However, ciliate community investigations can be more

accessible without elaborate staining procedures and subjective

observation under microscopy once the standardized pipeline of

molecular sequencing and data filtering was followed (Bachy et al.,

2013; Santoferrara et al., 2020; Burki et al., 2021). Metabarcoding

provides rigor standards comparing dissimilarities among plenty of

communities. Small-sized aloricate ciliates (<20 µm) were up to 50% in

planktonic ciliate communities in many regions, including the ECS by

morphological data (Yang et al., 2020; Wang et al., 2023a, b). Thus, this
TABLE 1 Environmental variables fit on NMDS plot using permutation tests.

Nanoplankton

NMDS1 NMDS2 r2 Pr(>r)

Temperature 0.80863 −0.58832 0.7906 0.001 ***

Salinity −0.78347 −0.62143 0.4236 0.001 ***

Density −0.991 0.13389 0.7593 0.001 ***

Fluorescence 0.89859 0.4388 0.1473 0.077

Oxygen 0.80498 −0.5933 0.6614 0.001 ***

Depth −0.99782 −0.06604 0.676 0.001 ***

NH4 −0.99792 0.06443 0.0663 0.344

NO3 −0.79614 0.60511 0.6829 0.001 ***

NO2 −0.08581 0.99631 0.0981 0.174

PO4 −0.84712 0.5314 0.7451 0.001 ***

SiO3 −0.76535 0.64362 0.7714 0.001 ***

Chl a 0.99923 −0.03923 0.1174 0.136
NMDS, non-metric multidimensional scaling; Chl a, chlorophyll a.
Significance: 0 ‘***’, Permutation: 999.
FIGURE 3

Non-metric multidimensional scaling (NMDS) plot using Bray–Curtis dissimilarity distances of nano-sized ciliate communities, overlaid with
environmental vector fitting (p < 0.05). The plot indicates five different clusters of ciliate communities, each represented by a different color. The
stress value for the plot was 0.17.
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study can improve the understanding of planktonic ciliate community

structure, particularly for small and naked species.
Ciliate sequences in pico-sized fraction

To date, many surveys by metabarcoding have shown ciliate

sequences in the pico-sized fraction (Romari and Vaulot, 2004; Wu

et al., 2017; Xu et al., 2017; Grattepanche et al., 2022; Flegontova

et al., 2023). Canals et al. (2020) indicated that these sequences

provided useful information about ciliate communities where over

94% of Ciliophora abundance from the Tara Ocean expedition in

each size fraction corresponded to operational taxonomic units

(OTUs) detected in the three fractions. There are hypotheses to

explain these sequences in the pico-sized fraction: a) cell breakage

during sequential filtration or b) membrane flexibility of ciliates to

pass the small pores on filters (Cheung et al., 2008). It is possible for

ciliates with a minute oral diameter (i.e., 2–5 µm) to pass through 3
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µm, but molecular data are lacking (Yang et al., 2020). Comparing

reads in nano- and pico-sized fraction from the same sampling sites,

only Strombidiida_G_XX_sp. differed significantly in read

abundance (Supplementary Figure S5, p < 0.05). Our results

supported ciliate sequences in the pico-sized fraction from the

cell breakages during filtration.
Overall diversity across three size fractions

Leegaardiella sp., a cosmopolitan species reported by Agatha

(2011), was dominant across three size fractions in this cruise

(Supplementary Figure S4). Additionally, with morphological

data, Leegaardiella ovalis was identified in the same region (Yang

et al., 2020). However, more sequences from the database are

needed to establish a connection between the two species. In the

micro-sized fraction, tintinnid contributed to half of the relative

abundance, which decreased as size decreased, which was similar to
FIGURE 4

Distribution of the major taxa from nano-sized fraction at the surface. The colors represent the classification order. Bubble size corresponds to the
percentage of reads relative to the total ciliate abundance in each station (absences are not shown), scaled from the minimum to the maximum in each plot.
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previous studies in both coastal and pelagic samples

(Supplementary Figure S2B; Grattepanche et al., 2016b; Canals

et al., 2020). Tintinnid loricae are larger (50–400 mm in length)

than aloricate oligotrich and choreotrich ciliates, facilitating the

retention of cells on 20-mm filters. Most tintinnid ciliates were

reported with morphological records except S. pacifica, Tintinnopsis

platensis, and Ascampbelliella acuta (Xu et al., 2013; Li et al., 2016;

Feng et al., 2018; Li et al., 2018; Sun et al., 2019; Yang et al., 2021;

Wang et al., 2021b; Yu et al., 2022; Li et al., 2023). In both nano-

sized and pico-sized fractions, dominant taxa were similar but

different in relative abundance (Supplementary Figure S3). P.

minutum was absent in the micro-sized fraction, which corresponded

to its morphological characteristics (Chen et al., 2017).
Frontiers in Marine Science 07
Horizontal and vertical distribution of
small-sized ciliates

We focused more on ASVs, which were annotated with

aloricate morphospecies (Figure 3). Dadayiella ganymedes was

found in offshore stations in the ECS and recorded on a large

scale in the western Pacific region (Li et al., 2021; Feng et al., 2022;

Li et al., 2023). Strombidinopsis acuminata, S. caudatum, P. shimi,

Strombidium_M_sp., and Varistrombidium kielum were found only

on the north transect across different layers, which might be related

to the Changjiang River discharge-induced aloricate ciliate

abundance in the summer (Chiang et al., 2003; Tsai et al., 2011;

Yu et al., 2016). The mixotrophic family Tontonnidae was found
FIGURE 5

Distribution of the major taxa from nano-sized fraction at the DCM and bottom layer. The colors represent the classification order. Bubble size
corresponds to the percentage of reads relative to the total ciliate abundance in each station (absences are not shown), scaled from the minimum to
the maximum in each plot. DCM, deep chlorophyll maximum.
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vertically and horizontally in the ECS, whereas several species were

frequently recorded in adjacent areas (Yang et al., 2020, 2021).

However, a common species, Loboea strobila, was not detected

during this cruise (Sun et al., 2019; Huang et al., 2021).
Hydrographic conditions shape small-sized
ciliate community composition

The hydrology of the ECS was intricate and influenced by

factors such as the Changjiang River outflow, Taiwan Strait, and

Kuroshio. In general, the clustering pattern in nano-sized

communities was similar to the current circulation patterns in

summer (Figure 1B; Yuan et al., 2008). Kuroshio Bottom Branch

Current to the northeast of Taiwan (KBBCNT), which is bifurcated

from Kuroshio subsurface water (KSSW), formed year-round

upwelling off northeast Taiwan with its collision on the shelf (Liu

et al., 1992; Wu et al., 2008; Kao et al., 2023). We observed

upwelling in St. 1 and St. 1A by decreasing temperature

(Supplementary Figure S1A; Chen et al., 2015). Then, KBBCNT

flowed northwestward along the 60-m isobath, carrying high‐

salinity and nutrient water and mixing with TCWW, toward the

Changjiang River mouth (Yang et al., 2011). This circulation

influenced Clusters I and II, in which Tintinnida and

Strombidiida were dominant in both clusters (Figure 2). In

addition, the TCWW flowed northward in the upper layer mixed

with Kuroshio surface water (KSW) and CDW (Ichikawa and

Beardsley, 2002). It might reflect the distribution as Cluster III.

The Changjiang River discharge carried a large amount of

terrestrial nutrients in summer, which moved northeastward,

subsequently mixing with saline ambient waters (Chen et al., 2009).

However, only St. 30 in Cluster V was classified under CDW

(Figure 1C). Considering the location of St. 19 and St. 29 and the

highest Chl a concentration measured at the surface in St. 19 (3.39 mg/

m3), which were possibly influenced by CDWand TCWW, resulting in

the lowest salinity among all clusters (Supplementary Figure S4). The

highest average Chl a value observed in Cluster V.

Strombidiida_G_XX_sp. was dominant in Cluster V, indicating

potential predation on phytoplankton (66%, Supplementary Table

S3). Moreover, the two mixotrophic genera, Spirotontonia and

Pseudotontonia, up to 12% in this cluster suggested the bottom-up

environment. Cluster IV, which was from St. 20 and St. 21, was

influenced by YSMW. Strombidinopsis sp. and S. caudatum were

distinct and abundant species that implied different niches of

YSMW, as in lower temperature and salinity (25% and 14%,

Supplementary Table S3). However, different ASVs contributed to

different clusters, which indicated the possibility of cryptic species of

different niches (data not shown). The strong correlation between the

ordination and depth (R2 = 0.68) and particularly density (R2 = 0.76),

coupled with significant differences in temperature and salinity

between clusters, implied that cluster dissimilarity was influenced by

the currents (Table 1).

The definitions of the water masses are not consistent in the ECS

(Gong et al., 2000; Ichikawa and Beardsley, 2002; Yang et al., 2011;

Quan et al., 2013; Zhou et al., 2018). Surface water in the ECS is mainly

mixed by the CDW, KSW, and TCWW, while the deeper layer is
Frontiers in Marine Science 08
influenced by KSSW, Shelf Mixing Water (SMW), and TCWW by the

Optimum Multiparameter analysis (Zhou et al., 2018). Ciliate

community composition and diversity reported differ markedly with

depth (Countway et al., 2010; Grattepanche et al., 2016a, b;

Santoferrara et al., 2023; Tucker et al., 2017; Zhao et al., 2017; Wang

et al., 2021a), water masses (Sun et al., 2020; Yang et al., 2020; Gu et al.,

2021), and geographical position (inshore/offshore) (Grattepanche

et al., 2015; Santoferrara et al., 2016; Grattepanche et al., 2016b).

While Yang et al. (2020) indicated that planktonic ciliates were

potentially reliable indicators of water masses in the ECS, this was

not universally consistent, possibly due tomethodological differences in

definitions of water masses or ciliate analysis approaches (Zhang et al.,

2015). The NMDS plot revealed a correlation with multiple

environmental variables, particularly density (Figure 3, Table 1).

Additionally, the distribution of clusters was similar to current

circulation patterns, suggesting that currents influence community

composition. Here, we presented evidence that the composition of

nano-sized ciliate communities varied with the circulation of currents.

In summary, detailed planktonic ciliate community

composition was reported by metabarcoding in the ECS. The

specified vertical and horizontal distributions of major small-sized

taxa were first revealed. We supported hydrographic conditions

shaping community structure by the similarities of cluster

distribution. Building a more comprehensive database of

reference sequences in future studies can provide more

information for ciliate communities.
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