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Introduction: Existing methods primarily focus on earth acoustic parameters

inversion under specific layered structures. However, they face challenges with

experimental data from unknown seabed stratification, hindering accurate

parameter inversion.

Methods: To address this, a novel algorithm combines Back Propagation Neural

Network (BPNN) for distinguishing seabed stratification and inverting acoustic

parameters. Simulated sound pressure data disturb seabed parameters as input,

enabling feature recognition for training the neural network inversion model.

Acoustic parameters are then estimated under identified stratification using the

sound field model.

Results: The inversion model is validated using simulation and pool shrinkage

data. Results show the neural network model effectively stratifies simulation and

experimental data, providing accurate inversion results for acoustic parameters

corresponding to distinct layers.

Discussion: The neural network model's accuracy and practicality are confirmed

through hierarchical judgment of scale test data and acoustic parameter

inversion. This approach introduces a new perspective for shallow sea acoustic

parameter inversion, offering a promising application scenario.
KEYWORDS

seabed stratification, acoustic parameters inversion, BPNN, fast field method (FFM),
scale test
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2024.1349478/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1349478/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1349478/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1349478/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2024.1349478&domain=pdf&date_stamp=2024-02-28
mailto:zhuklmpg@163.com
mailto:whsong@zjou.edu.cn
https://doi.org/10.3389/fmars.2024.1349478
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2024.1349478
https://www.frontiersin.org/journals/marine-science


Wang et al. 10.3389/fmars.2024.1349478
1 Introduction

Underwater acoustic parameters are important physical

parameters for studying acoustic propagation characteristics in

shallow seas. With the development of acoustic technology and

the popularity of machine algorithms, it is convenient and efficient

to in-vert underwater acoustic parameters using acoustic methods

(Li and Zhang, 2017). Aiming at parameters inversion, a large

number of underwater acoustic parameters inversion works have

been carried out by predecessors, and many methods for

underwater acoustic parameters in-version have been developed,

such as the acoustic parameters inversion method based on

transmission loss (Dragna and Blanc-Benon, 2017), the seafloor

sediment parameters were estimated using the genetic algorithm

and bottom reflection loss curve with wide grazing angles (Wang

et al., 2023), a solution to the problem of stratified seabed

parameters estimation using the sound field matching meth-od

with vertical angle spectra (Xue et al., 2023),three-dimensional

sediment modelling and inversion of geoacoustic parameters

using a cross-dimensional Bayesian approach with wideband

acoustic sources (Ke et al., 2013), the acoustic signal arrival time

(Wang et al., 2023), and the waveguide dispersion characteristics

(Kerzhakov and Kulinich, 2016). Among them, the most widely

used methods can be summarized as the matching field inversion of

underwater acoustic parameters by using the physical

characteristics of underwater acoustic signals combined with the

global optimization algorithm (Potty et al., 2017). Different physical

characteristics are used as the forward model, and then through

various optimization algorithms, such as Genetic algorithms (GA)

and Simulated Annealing algorithms (SA), the objective function is

solved to obtain the parameters results to be in-verted. Existing

studies focus on the inversion calculation of geoacoustic parameters

un-der specific stratification structures (Wang, 2008; Zhu et al.,

2013). The statistical characteristics of the hydroacoustic echo

signal reflected from the seabed, which produces a sudden

change, reflect the existence of the seabed boundary. That is, on

behalf of the seabed, there is a layered structure. There is no

coverage of the sedimentary layer in the base. The seabed can be

regarded as a semi-infinite seabed (Gerstoft, 1994). Such as the base

is covered by a layer of sedimentary layer. As a result of this time,

the physical characteristics of the physical characteristics of the

seabed and semi-infinite seabed have a large difference and cannot

be used to solve a similar problem of the semi-infinite seabed (Zhao

et al., 2023). And so the previous introduction of the stratified

seabed model, due to the oceanic motion and crustal movement of a

stochastic, and so the base covered by the number of sedimentary

layers is also not given to a fixed number of layers, it needs to be

reflected according to the characteristics of the signal (Zhu et al.,

2023b). When processing experimental data under unknown seabed

stratification, the inversion results of geoacoustic parameters

following the stratification cannot be accurately given. In

addition, when the existing classical optimization algorithms are

applied, the iterative optimization calculation between the input

data and the optimal solution not only consumes a lot of computing

time, but also easily falls into the optimal local solution (Zhu

et al., 2023a).
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Given the performance advantages of neural network

algorithms in data processing, many scholars have tried to apply

neural network models in classification research and parameters

inversion in recent years. Chen, Yang et al. used migration learning

and convolutional neural network to study the classification of

sediments such as sand, reef and mud (Song and Wang, 2022).

Huang has applied the Convolutional neural network (CNN) model

to the geo-physical inversion, successfully realizing the inversion of

some geological parameters, and proving that the neural network

model has strong generalization applicability in the inversion

problem (Feng et al., 2022). Wu et al. used a single-hidden layer

feedforward neural network an extreme learning machine to

perform inversion in shallow water depth remote sensing and

obtained relatively accurate inversion results (Chen et al., 2022).

Li, Wen et al. applied the back-propagation neural network (BPNN)

model to electromagnetic inversion and effective wave height field

parameters inversion. They improved the differential evolution

algorithm of the BPNN model to achieve a more efficient and

accurate inversion target (Yang et al., 2021). Due to BPNN’s

powerful nonlinear fitting capability, this algorithm can

automatically learn and identify hidden patterns and relationships

from data. When dealing with the acoustic and geological

complexities of shallow waters, it can provide highly accurate and

reliable results. Therefore, using BPNN for seabed stratification and

acoustic parameters inversion in shallow seas is worth further study

(Pang et al., 2021).

Inspired by the numerous successful applications of neural

network models in target classification and parameters inversion,

this study employs the BPNN for hierarchical structure assessment

and geoacoustic parameters inversion. Focused on the shallow-sea

sound pressure field, the research employs neural network

algorithms to establish a relational model between the predicted

sound pressure field and the acoustic parameters to be retrieved

(Wang et al., 2022). Subsequently, the model is utilized to achieve

accurate hierarchical structure assessment and geoacoustic

parameters inversion within a predefined shallow-sea

environment. The study is divided into four main sections: the

first section provides an overview of geoacoustic parameters

inversion methods based on sound pressure fields. The

subsequent section introduces the methods of hierarchical

assessment and geoacoustic parameters inversion using the BPNN

models. The third section assesses the application’s effectiveness

and the performance of the neural network models through

simulation and experimental data. Finally, the research concludes

its findings.
2 Method

2.1 Forward modeling of shallow sea
sound field

Acoustic parameters in shallow seas are important

environmental parameters that determine the distribution

characteristics of acoustic fields in shallow sea environments. The

change of acoustic parameters in the seabed will have a significant
frontiersin.org
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impact on the distribution characteristics of the acoustic pressure

field in water so that the geoacoustic parameters can be retrieved

from the measurement data of the acoustic pressure field in the

shallow sea (Kerzhakov and Kulinich, 2016).

In the model, the harmonic point source is located on the

symmetry axis of the cylindrical coordinate. In shallow sea

waveguide environments, the characteristics of seafloor sediments

play an indispensable role in influencing marine acoustic fields.

Various parameters of sediment layers affect the reflection,

transmission, and the paths and directions of sound wave

propagation at the seabed boundary. Therefore, investigating the

properties of seafloor sediments is crucial for understanding the

propagation patterns of marine acoustic fields (Li et al., 2020). In

this context, seawater is considered as a homogeneous isotropic

fluid medium, and the seafloor sediments as an elastomeric

medium. A forward modeling approach for sound field

propagation in layered seabed environments is thus established,

as depicted in Figure 1. Due to the axial symmetry of the column

coordinate system, the three-dimensional problem can be

transformed into a two-dimensional (r, z) plane for solving (Wen

et al., 2021), z=0 represents the sea surface, and the downward

direction of the sea surface is the positive direction of the z-axis of

depth, and the positive axis of r represents the propagation direction

of the sound field.

In the model, it is assumed that the seafloor is regarded as the

superposition of n layers of sediments, and the depth of seawater

layer is set as H1. The sound source with frequency f0 is located at zs
depth of seawater layer. The density and sound velocity in seawater

layer are r1 and c1, respectively. The depth of the sedimentary layer

n is denoted by hn, and the longitudinal wave sound velocity, shear

wave sound velocity, density, longitudinal wave sound velocity

attenuation and shear wave sound velocity attenuation of the

sedimentary layer are denoted by cpn、csn、rbn、apn、asn
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respectively. The above 6 types of parameters are the submarine

acoustic parameters to be retrieved in this study. Under the wave

theory, each physical quantity in the above model can be

represented by the displacement potential function f. f1 is the

displacement potential function of seawater layer. And the research

object of this article sound pressure meets p=r1w2f1 (angular

frequency w=2pf0), can be obtained by solving the displacement

potential function of fluid, the sound pressure values at various

points in the detailed theoretical derivation see literature (Li et al.,

2019). Since the displacement potential function in the seawater

layer satisfies formula 1 as follows:

1
r

∂
∂ r (r

∂2 f1
∂ z2 ) +

∂2 f1
∂ z2 + k21f1 = −4pd (r, z − zs)

0 ≤ z ≤ H1

(
(1)

The sediments of potential function fn can be represented as

follows:

1
r

∂
∂ r (r

∂ fpn
∂ r ) +

∂2 fpn
∂ z2 + k2pnfpn = 0

m�m� ysn − k2snysn = 0;Hn ≤ z ≤ Hn+1

8<
: (2)

Where d(r,z) is the original function, k represents the wave

number of each seafloor, where k=w/cm, w=2pf0, pn and sn are the

uncertainties contained in the solution, The flow function and

potential function of f and y correspond to pn and sn

respectively. Then the formal solution of formula 2 is as follows:

f1(r, z) = ∫
∞

0
Z1(z, x)J0(xr)xdx (3)

Where Z is the ordinary differential formula of depth z and x of
horizontal wavenumber, J0 is the zero-order Bessel function.

According to the derivation results of formula 3, the sound

pressure field in the water layer can be expressed as follows::

p(r, z) = r1w
2∫
∞

0
Z1(z, x)J0(xr)xdx (4)

For the solution of formula (4), the Normal Mode Method

(NMM) and Fast Field Method (FFM) can be used to solve formula

(4). For shallow sea environments, FFM converts the integral

formula in formula (4) into Fourier transform form for the direct

solution, which is more suitable for fast calculation of sound field in

shallow sea (Frederick et al., 2020). Therefore, FFM is selected in

this study to conduct a forward simulation of the sound pressure

field in the above parametric model.
2.2 BPNN inversion model of geoacoustic
parameters inversion

Due to the complexity of the marine environment, factors such

as sediment layer density, porosity, and average particle size can all

influence acoustic parameters. Consequently, establishing a precise

functional relationship between acoustic parameters and shallow

water acoustic pressure fields presents a significant challenge. To

address this challenge, a non-linear mapping approach utilizing a
FIGURE 1

Schematic diagram of the sound field model in cylindrical coordinates.
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BPNN is employed (Van Komen et al., 2020). On the other hand,

the BPNN is capable of approximating functions through the

training of input and output vectors. When feature vectors are

input into the network, they can produce results that closely

approximate the desired output values. BPNN are a type of multi-

layer feedforward neural network that employs both forward signal

propagation and backward error propagation to adjust weights and

thresholds to minimize the error function value. This iterative

process ensures that the modified network output aligns closely

with the desired output values (Xu and Pan, 2018).

Therefore, in response to the challenge of inverting seabed

bottom properties in the presence of uncertain seabed sediment

layering, a method utilizing a BPNN based on shallow water

acoustic pressure field data is proposed. Given the inherent

coupling between acoustic parameters and the potential for multi-

valued solutions, especially in multi-layer seabed environments,

training a single neural network directly poses the risk of

convergence issues and encounters difficulties due to the vast

search space (Zhou et al., 2019).

To address such complexities, this study employs a staged

supervised learning approach for multi-layer seabed acoustic

parameter inversion. The stepwise seabed layering and parameter

inversion process is depicted in Figure 2A. It involves feeding

preprocessed and standardized acoustic pressure signals into the

NET-1 network, which serves as a classifier for segregating shallow

water acoustic pressure data into various seabed layer categories.

Based on the classification outcomes, the data is directed to different

networks, facilitating targeted acoustic parameter inversion. To

accommodate current computational capabilities and practical

requirements, this paper primarily discusses scenarios involving

seabed layering, specifically semi-infinite seabed (NET-2-1), single

sediment layer (NET-2-2), and double sediment layers (NET-2-3).

In cases where NET-1 classifies the acoustic pressure data as

originating from a single sediment layer, the data is subsequently

input into the NET-2-2 network for further acoustic parameter

inversion. NET-1 is designed as a single-label classifier solely for
Frontiers in Marine Science 04
layer categorization, without any data alteration. The BPNNmodels

employed for layer categorization in semi-infinite seabed, single

sediment layer, and double sediment layer environments are

denoted as NET-2-X, where X represents the specific

environment (X=1, 2, 3). In total, four BPNN models are trained

(Qian et al., 2019).

In the two-step inversion process, the objective of the first step

is to determine the seabed type by initially inputting acoustic

pressure data into the NET-1 network. The NET model is

constructed using a single hidden layer, where neurons within the

same layer are not interconnected. In forward propagation, the

activation function f(x) links the input signal - acoustic pressure

field data pj(ri, zi) - with the hyperparameter matrix [w, b]. The

activation function f(x) selected is the Sigmoid function. The signal

flows forward from the input layer to the output layer, with w=[wkv,

wvl] where wkv represents the weight from the input layer to the

hidden layer, and wvl represents the weight from the hidden layer to

the output layer (Stoll and Kan, 1981). Additionally, bv signifies the

threshold for each neuron in the hidden layer. The backward

feedback signal is the error signal E, when the error falls within

the predetermined range, network training is terminated. The

experimental setup precision is set to 10-3. which reflects the

discrepancy between the network model’s inversion results and

the true values. For network training, the cross-entropy function

ECE is utilized. The calculation of the cross-entropy function is

performed as shown in formula (5). NET-1 functions as a single-

label classifier, generating outputs based on the categorization of

seabed layering, distinguishing between scenarios such as semi-

infinite seabed (NET-2-1), single sediment layer (NET-2-2), and

double sediment layers (NET-2-3).

ECE = −
1
Mt
o
Mt

i=1
o
Q

q=1
tiq ln yiq (5)

After determining the seabed layering structure, the subsequent

step involves the stratified inversion of acoustic parameters. In this

second phase, we draw inspiration from the application of matched-
BA

FIGURE 2

Schematic diagram of seabed stratification and parameters inversion calculation based on BPNN model: (A) Flow diagram; (B) BPNN (NET 2-1) model.
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field acoustic parameter inversion methods. For varying seabed

layering conditions, the acoustic signals are input into dedicated

BPNN models associated with shallow-water multi-layered seabed

environments, based on the classification results obtained from

NET-1. The architecture of the NET-2-X models closely resembles

that of the NET model. As an illustration, consider the NET-2-1

model, as depicted in Figure 2B. i set of acoustic pressure data from

different receiver positions (ri, zi), where (1≤i≤ I), form the input

data, denoted asp= [p1(r1, z1), …, pj(ri, zi), …, pm(rI, zI)]m×I.

Corresponding ground sound parameters Y=[cpn, csn, rbn, apn,

asn]m×5 are employed as output results for model construction

(Zhu et al., 2012).

The number of neurons in each layer can be determined based

on formula (6):

v =
ffiffiffiffiffiffiffiffi
I + l

p
+ a (6)

Where n represents the number of input layer nodes, which

corresponds to the simulated acoustic pressure data points, and a is

a constant coefficient.

The partial derivatives of weight parameters between the input

set of acoustic pressures, denoted as p, and the hidden layer are

represented as Dwjv, while the partial derivatives of weights between

the hidden layer and the ground sound parameters Y are

represented as Dwvl. The learning rate, h, is employed during the

computation. In this process, the iteration step t is continually

updated based on whether the EMSE value satisfies the

predetermined accuracy. The adjustment of parameters, wjv、wvl

is achieved through the modification of weight values, aiming to

minimize errors. The parameter descent is carried out using a

gradient descent approach (Zhang et al., 2021). The method for

modifying parameters wjv and wvl is as follows, as expressed in the

(formulas 7, 8).

wkv(t + 1) = wkv(t) + Dwkv (7)

wvl(t + 1) = wvl(t) + Dwvl (8)

The assessment of the training network’s effectiveness is based

on the Root Mean Square Error (RMSE), as described in formula

(9).

EMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Mt
o
Mt

i
½Ysim − Yinv�2

s
(9)

Where Yrea,pre=[cp, cs, rb, ap, as], a matrix comprising the

parameters to be inverted, with Yrearepresenting the simulated

values and Yprerepresenting the inverted values.

The sound pressure input undergoes a nonl inear

transformation within the network, ultimately resulting in the

geophysical parameters (Cheng et al., 2021). In this process, the

inputs and outputs of the hidden layer are denoted as Ikvand Ivl,

respectively. The final inversion result, Ypre, is computed as shown

in formula (10).

Ysim = f (Ivl) = f o
v

k=1

wvlIvl

" #
(10)
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To determine an appropriate network structure, this paper

simplifies the seafloor into two layers, thus establishing the BPNN

inversion model (Zhu et al., 2017). In this model, the input layer

receives simulated sound pressure data, denoted as “p,” which

includes a set of sound pressure data pj(ri, zi), where the range of

i extends from 1 to I. The number of neurons in the hidden layer is

set at 9, and this choice is influenced by various factors, one of

which is the empirical rule for parameter a, which is set to a = -15

in this context (Zheng et al., 2021). Furthermore, the number of

neurons in the output layer, represented as “l,” is determined based

on the number of geophysical parameters that need to be inverted.

For instance, have lNET-1 = 4, lNET-2-1 = 5, lNET-2-2 = 11, lNET-2-3 = 17.
2.3 Data generation and fitting verification

The equations should be inserted in editable format from the

equation editor. Considering the variation range of ground sound

parameters in shallow sea (Li et al., 2019), the parameters training

range of the BPNN model for ground sound parameters inversion

under a preset environment is set as shown in Table 1.

The simulated sound pressure field data is a set of horizontal

equally spaced receiving sound pressure fields under the set sound

source depth zs=20m, receiving depth zr=10m and seawater depth
TABLE 1 BPNN model training set search range.

Stratification
Geoacoustic
parameters

Search range

Sea Layer

c1(m/s) 1500

r1(g/cm3) 1.025

h1(m) 100

Single sedimentary layer
(NET 2-1)

cp2 (m/s) 1800-2200

cs2 (m/s) 900-1100

rb (g/cm3) 1.4-1.6

ap2 (dB·l-1) 0.1-0.3

as2 (dB·l-1) 0.1-0.3

h2(m) 15-25

Double sedimentary
layers(NET 2-2)

cp3 (m/s) 2700-3300

cs3 (m/s) 1350-1650

rb3 (g/cm3) 1.8-2.2

ap3 (dB·l-1) 0.1-0.3

as3 (dB·l-1) 0.1-0.3

h3(m) 25-35

Three sedimentary layers
(NET 2-3)

cp4 (m/s) 3600-4400

cs4 (m/s) 1800-2200

rb4 (g/cm3) 2.25-2.35

ap4 (dB·l-1) 0.1-0.3

as4 (dB·l-1) 0.1-0.3
frontiersin.org

https://doi.org/10.3389/fmars.2024.1349478
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang et al. 10.3389/fmars.2024.1349478
H=100m. The receiving points are spaced 2m apart, and a total of

I=720 receiving points are set. The model training samples adopted

by NET2-X are 2200 groups of sound pressure data randomly

generated in each layer within the search range in Table 1, among

which 200 groups are randomly divided into training sets and the

other 200 groups into test sets. Each group (Layered structure) of

the training set and its corresponding environmental sound

pressure are mapped into the model one by one for training.

When the error function EMSE reaches the set accuracy s=0.01,
the training is completed (Huang et al., 2018).

The verification set is generated using random values. The

changes in loss function and prediction accuracy in the training

process of NET-1 are shown in Figure 3. As can be seen from

Figure 3A, after a certain batch of training, the error of the training

curve is reduced to s, the network stops training, and the confusion

matrix further verifies that NET-1 also has a good classification

effect on the verification data, and can complete the classification

calculation of the submarine stratified structure.

In Figure 3B, the inside of each orange box represents the

number of incorrectly predicted samples, the main diagonal

represents the number of correctly predicted samples, and the

light gray rectangle box at the lower right represents the

prediction accuracy of the corresponding sample attributes,

that is, the accuracy of 95% in the training process.NET 2-X

conducts training for neural networks under three hierarchical

structures respectively. To enhance the credibility of the model,

the Mean Absolute Error (MAE) was introduced as an evaluation

metric to assess the predictive accuracy of the model. The

calculation results are shown in Table 2. Taking the NET2-1

scenario as an example, a smaller MAE value indicates better

predictive capability of the model. The calculated results

demonstrate that the inversion error of the model is small,

indicating that the BP neural network performs well in the

inversion of shallow-sea acoustic parameters. Consequently,

the constructed BP neural network model exhibits good and

stable predictive performance in the inversion of shallow seabed
Frontiers in Marine Science 06
acoustic parameters, with high computational efficiency and

reliability of the prediction results.

The changes in loss function in the training process are shown in

Figure 4. Taking NET 2-2, which corresponds to the layered structure

of the seabed as a single sedimentary layer, as an example, after the

completion of training, the EMSE value reached the setting accuracy

after 200 iterations. The error reduction process was relatively stable,

indicating that the error reduction speed and training effect of the

whole neural network in the training is considerable. Although with

the increase of inversion parameters, the number of iteration steps to

reach the accuracy setting in the NET 2-X training increased, the

target accuracy was reached within 500 iterations, which effectively

constructed BPNN model that could meet the inversion accuracy of

layered submarine acoustic parameters.

By controlling the training parameters and adjusting the

training function, the overfitting phenomenon can be eliminated

in the process of network training, and the generalization ability of

the model can be improved. The highly generalized multi-output

model can solve the multi-value problem caused by the coupling

relationship between the seabed parameters in the inversion process

to some extent, to realize the purpose of simultaneously inverting

multiple seabed acoustic parameters.
2.4 Simulation result analysis

Simulation data and experimental data are used to test the

performance of BPNN model respectively, and the network

prediction results are used in the seabed stratification calculation

and earth acoustic parameters inversion of the measured data of the

pool (Yu et al., 2020).
BA

FIGURE 3

NET-1 training analysis: (A) Loss function; (B) Visual analysis.
TABLE 2 NET 2-1Parameter setting of the inversion algorithm.

MAE cp cs rb ap as

value 2.8187 1.5010 0.0175 0.2103 0.0518
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As a classification model, NET-1 can be directly evaluated based

on the classification accuracy of the test set, as shown in formula

(11).

Ea =
Nt

N
� 100% (11)

Where, Nt is the number of correct samples for stratification and

N= m-Mt, which is the number of total test samples. As a regression

analysis problem, to quantify the error between the inversion results of

each parameters and the preset truth value, the performance function

R2 was introduced to represent the coincidence degree between the

inversion value and the true value numerically. The closer the R2 value

was to 1, the closer the inversion result was to the preset truth value

(Zhang, 2023). The calculation method is shown in Formula 12.

R2 =

No
N

i=1
YeYr −o

N

i=1
Yeo

N

i=1
Yr

 !2

No
N

i=1
Y2
e − o

N

i=1
Yr

 !2" #
No

N

i=1
Y2
r − o

N

i=1
Ye

 !2" # (12)

To verify the robustness of the training completion network, the

sound pressure of the test set generated within the search interval

and some environmental noise are added as test data. The total

number of samples in the test set is 10% of the training set.
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Figure 5 shows the layering results of NET-1 on part of the test

set. The layering accuracy Ea=99% proves that NET-1 can effectively

perform layering calculations on sound pressure field information

under different layering structures. In the figure, “x” represents the

predicted value, “o” represents the true value, and the Y-axis

represents the search range of the number of hierarchical structures.

At the same time, the NET 2-X model is trained. Taking NET 2-

2 as an example, Figure 6 shows the results of underwater acoustic

parameters inversion of NET 2-2. The solid line and “×” in the

figure correspond to the real value and predicted value of the test

data set respectively.

Figure 6 shows the degree of fitting between the predicted value

and the preset value of each parameter in the test set in the inversion

model. During verification, the fitting degree of the inversion results

of cpn, csn, rbn, and hn is maintained above 0.90, showing an

excellent inversion effect. The error variation of parameters apn

and asn is relatively large, but the R2 value of each parameter is

above 0.80, The overall error appears to be within acceptable limits.

It can be seen that the BPNNmodel constructed has good and stable

prediction performance for shallow sea floor acoustic parameters

inversion, and the prediction results have high reliability.

Figures 6A–F shows the ground sound parameter training

results of the first sedimentary layer, and Figures 6G–K shows the

ground sound parameter training results of the second sedimentary

layer. As can be seen from the figure, the training effect of the first

layer is better and the degree of fitting is higher. It can be seen from

the literature that different parameters have different influences on

acoustic propagation characteristics, especially cpn and csn have the

greatest influence on acoustic field characteristics, so the accuracy of

inversion results of these parameters is higher than other

parameters. From the fitting degree in the training process, it can

be seen that the fitting degree of cpn and csn parameters is better,

which accords with the law of sound field calculation in the forward

modeling model, which proves the applicability of the method.

A group of sound pressure data with a single true value is used

for inversion calculation. Substitute the true value sound pressure

data into the neural network models, and the classification results

are shown in Table 3. It can be seen from Table 3 that the

classification probabilities of Net 2-X model for the seabed

layered structure under the true sound pressure are: X=1,

rate=1.21×10-3; X=2, rate=0.99; X=3, rate=1.52×10-4,The data is

determined to be acoustic pressure data from a two-layer seabed.
FIGURE 5

Seabed stratification results of NET-1.
FIGURE 4

NET 2-2 loss function changes.
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After determining the bottom stratification structure, The input

data will be brought into the corresponding neural network model Net

2-X for inversion calculation and the acoustic parameters inversion

values are shown in Table 3. To verify the correctness of hierarchical

judgment, the sound field calculation model at X= 1,2 and 3 is used for

inversion discussion and comparison with X=2 respectively. Figure 7

shows the comparison between the Transmission Loss (TL) curve
frontiersin.or
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FIGURE 6

NET-2-2 Comparison between the actual and predicted values of 200 samples of single sediment. (A–K) are inversion results of 11 parameters in the
case of NET 2-2, respectively.
TABLE 3 Prediction results of Net 2-X.

Net 2-X Number of parameters Classification Rate

X=1 5 1.21×10-3

X=2 11 0.99

X=3 17 1.52×10-4
g
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calculated by setting the truth value of acoustic parameters and the TL

curve calculated by using inversion results. It can be seen from the

comparison that the distribution characteristics of the two curves are

consistent, which further proves the accuracy of the inversion results of

the subsurface acoustic parameters of the preset model based on BPNN

model (Yang, 2023).

Combining the classification results in Table 3, the parameters

inversion results in Table 4 and the comparison of TL curves under

the three hierarchical structures in Figure 8, the above results show

that when the actual model matches the inversion model exactly the

prediction is X=2, which proves that the model is the best-

parameterized model. At the same time, the TL comparison

obtained by the inversion parameters of the X=1, 2, and 3 models

also proves the above conclusion. When X=2, the parameters
Frontiers in Marine Science 09
inversion results in Table 4 are consistent with the present. The

above simulation results prove that this method can theoretically

achieve accurate inversion of seabed layered structures and seabed

geoacoustic parameters.
3 Measurements and results

3.1 Introduction of experiment

Previous studies have shown that, under the assumption that

various acoustic parameters in waveguides are unchanged, the idea

of equal ratio can be used to simulate the acoustic propagation test

in the actual ocean by using the equal ratio of high-frequency sound

sources in the laboratory, and the expression only changes the ratio,

while the propagation characteristics of the sound field remain

unchanged. Based on simulation verification of the accuracy and

applicability of the proposed method, the feasibility of the proposed

inversion method in practical application is further verified in this

section combined with the experimental data of the muffler pool

shrinkage. The experiment was carried out in a hydrating pool,

using a uniform and high-hardness polyvinyl chloride (PVC)

plate (the density of PVC was 1.20g/cm-3) as a “semi-infinite

elastic seabed”.

To verify the applicability of the inversion method, two schemes

were adopted in the experiment as follows:
1. There is only PVC plate, simulating elastic semi-

infinite seabed.

2. The way of laying fine sand on PVC plate simulates the

shallow sea waveguide environment with a single layer of

elastic sediment and an elastic version of the infinite seabed,

and the thickness of the sediment simulated by fine sand is

about 250 mm.
B

C D

A

FIGURE 7

Comparison between X=2 simulated TL curve and X=1, 2, 3inversion TL curve: (A) TL curve under true value; (B) Comparison of TL curves of Net 2-1
models and true value. (C) Comparison of TL curves of Net 2-2 and true value. (D) Comparison of TL curves of Net 2-3 and true value.
TABLE 4 Simulation parameters setting and search range.

Submarine
stratification

Parameters
True
value

Inversion
results

Single sedimentary layer

cp1 (m/s) 2000.00 2040.48

cs1 (m/s) 1000.00 1027.30

rb1 (g/cm3) 1.50 1.52

ap1 (dB·l-1) 0.20 0.19

as1 (dB·l-1) 0.20 0.20

h1(m) 20.00 20.11

Double
sedimentary layer

cp2 (m/s) 3000.00 3021.44

cs2 (m/s) 1500.00 1468.33

rb2 (g/cm3) 2.00 2.01

ap2 (dB·l-1) 0.20 0.18

as2 (dB·l-1) 0.20 0.20
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Only the stratification of the sea floor was different between the

two schemes, and other experimental factors were consistent. The

layout of experimental equipment 1 is shown in Figure 8A,

The other is shown in Figure 8B. The depth of the sound source

and the receiving hydrophone are set to 200mm, and the depth of

the fluid layer is 300mm. The speed of sound calculated in the

laboratory at room temperature is 1450.212 m·s-1. High-frequency

underwater sound waves are transmitted by a fixed location sound

source at a frequency of 155KHz and received by a single TC4038

standard hydrophone at different locations at equal intervals. To

improve the measurement accuracy, a high-precision controllable

moving platform was selected to limit the error within 2um and the

unit accuracy was 2mm. A total of 500 position points were

measured during the experiment. Each position was measured 10

times and the average value was taken as the final test data.
3.2 Model selection and inversion results

The computational process of the acoustic field measured under

two experimental schemes is illustrated in Figure 2A. Initially, the

layered structure is assessed using NET-1. The types of input data

include semi-infinite seabed and two-layer seabed, with the layering
Frontiers in Marine Science 10
results depicted in Figure 9, presented in the form of probabilities. It

is observed that the NET-1 model’s probabilistic assessment for the

two input acoustic pressure signals as semi-infinite seabed and

single sediment seabed is 99%, consistent with the scale model

experiments. Additionally, a comparison between the simulated

annealing algorithm and the classical annealing algorithm was

conducted, incorporating the respective NET 2-X (X=1,2) models.

The inversion results obtained by BPNN and SA are shown in

Table 5. In the pool experiment, PVC boards with a density of 1.20 g/cm³

were used to simulate the seabed layer, and the thickness of the fine sand

layer, representing the sediment layer, was set to 250 mm. Utilizing the

data acquired from the pool experiment, the Back Propagation Neural

Network (BPNN) inversion results indicated the simulated seabed layer

density to be 1.23 g/cm³, and the inferred thickness of the sediment layer

to be 251.13 mm. The relative errors were found to be 2.5% and 0.51%,

respectively, demonstrating good accuracy of the inversion process. In

addition, the inversion results obtained in this paper are compared with

those obtained from PVC plates simulating the same material of semi-

infinite seabed. The velocity of P-wave and S-wave in the semi-infinite

seabed is 2399.364 m/s and 1242.978m/s. The relative error is controlled

below 5%.

Considering the coupling effect of multiple parameters, to

further verify the accuracy of inversion, the comparison between
B

C

A

FIGURE 8

The equipment in the experiment: (A) Schematic diagram of the experiment under a single sedimentary layer (PVC); (B) Schematic diagram of the
experiment under a double sedimentary layer (PVC+sand); (C) Experimental equipment layout physical map.
BA

FIGURE 9

Judgment of two types of layered seabed structures: (A) NET2-1 judgment for semi-infinite seabed layering, (B) NET2-2 judgment for two-layer
seabed stratification.
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the dispersion curve of BPNN inversion and the measured

dispersion curve is shown in Figure 10. And under the two

experimental schemes, the comparison curve of propagation loss

between BPNN model and SA inversion algorithm on measured

data is shown in Figure 11.

Figure 10 shows the frequency-wave number spectrum

measured by the water tank. It can be seen from the spectrum

that the energy of the received sound pressure signal is mainly

distributed in the range of 145kHz-175kHz, and its peak value is

around 155kHz, which is consistent with the performance index of

the sound source set in the experiment. In order to verify the

effectiveness of the BPNN inversion approach and to compare the

TL computed from the inversion results for both semi-infinite and

two-layer seabed configurations with the TL measured in scale-

down experiments, the following findings were observed: For the

semi-infinite single-layer seabed scenario, the TL was generally

consistent. In the case of the two-layer seabed, taking into

account various uncertainties such as the replacement of the

sediment layer with fine sand and the homogeneity of the sand,

certain discrepancies were observed. However, the overall trend of
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the TL was closely aligned. This demonstrates that the inversion

method proposed in this article yields results for the inversion of

parameters such as longitudinal wave and shear wave velocities in

multi-layer seabed structures that are in substantial agreement with

the actual data.
3.3 Result analysis¿

Geoacoustic parameters inversion is a nonlinear and multi-

parameter optimization problem, so the inversion results obtained

by different inversion methods are not the same, but all have the

same reliable reference value. The coupling of multiple parameters

often leads to the experimental phenomenon of the same result in

different parameters combinations, so it is necessary to discuss the

sensitivity of different parameters to determine the reference weight

of the choice of results.

The applicability of multi-parameter inversion using BPNN can

be obtained from spectrum analysis and comparison with SA

algorithm. From the comparison and verification of TL curves of

the two experiments, it can be seen that when the seafloor structure

is inversion for single-layer, the inverse performance results of
FIGURE 10

Comparison between BP inversion and measured dispersion curve.
BA

FIGURE 11

BP and SA inversion TL curve compared with measured TL: (A) Comparison diagram of TL curve under experimental scheme 1; (B) Comparison of
propagation loss curves under experimental scheme 2ganxie.
TABLE 5 Scheme 2 inversion results of measured data.

Submarine
stratification

Parameters
BP
inversion
results

SA
inversion
results

Single
sedimentary
layer (Sand)

cp1 (m/s) 2074.84 2073.65

cs1 (m/s) 1090.56 1093.76

rb1 (g/cm3) 1.13 1.11

ap1 (dB·l-1) 0.99 0.10

as1 (dB·l-1) 0.10 0.10

h1(m) 251.378 249.69

Semi-infinite
layer (PVC)

cp2 (m/s) 2436.37 2440.16

cs2 (m/s) 1250.50 1255.81

rb2 (g/cm3) 1.19 1.21

ap2 (dB·l-1) 0.11 0.10

as2 (dB·l-1) 0.11 0.10
frontiersin.org

https://doi.org/10.3389/fmars.2024.1349478
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang et al. 10.3389/fmars.2024.1349478
BPNN and SA algorithm have higher accuracy; when the seafloor is

inversion for double-layer seafloor, the number of ground acoustic

parameters increases, the inversion difficulty increases, and the

multi-parameter coupling is enhanced, so there is a relatively

obvious deviation. However, in terms of the inversion results of

the two algorithms, the root mean square error of the TL curve

obtained by the experiment is 121.92 and 160.19, respectively,

compared with that of BPNN TL curve and SA TL curve.

Relatively speaking, the error of the inversion results of BPNN is

smaller and more valuable for reference.
4 Conclusions

By employing the BPNN inversion method to train an extensive

dataset of simulated information, a computational model has been

established with the capability to effectively evaluate the stratified

structure of the seabed along with its acoustic parameters. Within

this study, the BPNN inversion algorithm has been applied to the

inversion of Earth’s acoustic parameters, thus contributing to the

advancement of fields in geophysics and ocean acoustics. This

approach holds significant promise for practical applications in

the realms of seabed resource exploration, ocean environmental

investigations, marine engineering, and the exploitation of ocean

resources, among others.

Our research findings can be succinctly summarized as follows:

The Fast Field Method (FFM) was utilized to derive theoretical

predictions for the shallow-sea sound pressure field. Subsequently, a

model was established within the BPNN framework, connecting the

predicted sound pressure field with the underlying acoustic

parameters. The measured sound pressure field data were then

processed through the neural network model to obtain inversion

results. Both simulated and experimental data confirm the accuracy

of this proposed method in retrieving geoacoustic parameters.

The acoustic pressure field in water is influenced by five crucial

acoustic parameters associated with shallow seabed conditions:

bottom density, p-wave velocity, S-wave velocity, p-wave velocity

attenuation, and S-wave velocity attenuation. Our results reveal that

the accuracy of the inversion results for S-wave velocity (cp), p-wave

velocity (cs), and sedimentary layer density (rb) surpasses that of S-
wave attenuation (ap) and p-wave attenuation (as). The first three

acoustic parameters exert a more pronounced impact on the

propagation characteristics of the shallow-sea sound pressure field,

thus demonstrating a more apparent correlation with the acoustic

pressure data. This further illustrates the effectiveness of employing

the BPNN model for inversion in the context of shallow

seabed layering.

Given the practical complexities of shallow seabed conditions,

compounded by the influence of various underwater noises on

sound field distribution, actual computational results may exhibit

some deviation from real-world scenarios. Additionally, the coupling

relationships between seabed physical parameters and the sensitivity of

each parameter can impact calculation accuracy. To address these

limitations, we have optimized the BPNNmodel by adjusting its neural

network structure and introducing random noise in subsequent

research, thus enhancing the reliability of the Earth’s acoustic
Frontiers in Marine Science 12
parameter inversion model. Moreover, we have conducted an

exhaustive exploration and discussion concerning the impact of

network configuration parameters on the accuracy of inversion results.

These revisions are aimed at addressing the reviewer’s concerns

and enhancing the clarity and impact of the conclusion section.
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