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This study utilized a three-dimensional ocean general circulation model to

investigate the intensity, thickness, and width of the three-dimensional deep

western boundary current (DWBC) in the South China Sea (SCS). The numerical

results show that the DWBC begins near the inlet of the Luzon overflow, flows

westward along the northern boundary, proceeds southward along the western

boundary, and ultimately terminates at the southern boundary. The mean

DWBC’s velocity, thickness, and width is 4.78 cm/s, 1645 m, and 140 km,

respectively. Combined with the dynamic results, it is evident that the three-

dimensional structure of the DWBC appears to have been visibly weakened after

the closure of the deep Luzon overflow. Strong deep mixing has a significantly

stronger, thicker, and wider effect on the intensity, thickness, and width of the

DWBC. Both the bottom and lateral friction coefficients negatively impact the

DWBC in the SCS.
KEYWORDS

South China Sea, deep western boundary current, numerical study, three-
dimensional, dynamics
1 Introduction

The deep western boundary current (DWBC) has attracted increasing attention as the

most crucial deep ocean current since Swallow and Worthington (1957) first observed it in

the Atlantic Ocean. It has been continuously observed in the global ocean (Johnson et al.,

1991; Roemmich et al., 1996; Moore and Wilkin, 1998; Whitworth et al., 1999; Owens and

Warren, 2001; Warren et al., 2002; Meinen et al., 2004; Reid, 2005; Schott et al., 2005;

Wright et al., 2005; Schott et al., 2006; Peña-Molino et al., 2012). Johns et al. (1993) found

that there is a significant southeastward DWBC in the Northeast Brazil Sea through the
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observation of anchor current meters. The thickness of the DWBC

is greater than 2000 m and ranges from 2500 m to the bottom.

Schott et al. (2006) observed significant southward DWBC near the

Grand Banks using current meters and ADCP/LADCP. Their

results also reveal a robust and consistent DWBC, with a

maximum thickness of 3000 m and a width of 150 km. In

general, the DWBC in the world ocean is strong and persistent,

extending from the depths of 1000-2000 m to the seafloor.

The South China Sea (SCS) is the largest marginal sea in the Northwest

Pacific Ocean (Figure 1). It is a completely closed basin below 2000 m with

no water exchange with other oceans except for the deep Luzon overflow

(Qu et al., 2005; Tian and Qu, 2012). The understanding of the DWBC in

the SCS ismainly qualitative in the early due to the lack of observational data

in the deep SCS (Qu, 2002; Qu et al., 2006;Wang et al., 2019). From theU.S.

Navy generalized digital environmentmodel (GDEM) data with a resolution

of 0.25°, it was found that the deep SCS has a cyclonic circulation and is

accompanied by an obvious DWBC (Wang et al., 2011). Recently, Zhou

et al. (2017) identified the DWBC near the southwest of Zhongsha Island in

the SCS by using six anchor sections. The average velocity of the DWBC is

about 2 cm/s, and the width is about 50 km. Meanwhile, the results from

three currentmoorings demonstrate that there is a narrow, almost barotropic

western boundary current in the deep SCS (Zhou et al., 2020a). The width

and thickness of theDWBCare between 20-32 kmand 2000m, respectively.

According to Hopkins et al. (2019), the dynamics of the DWBC

in the subpolar North Atlantic may be related to topographic
Frontiers in Marine Science 02
Rossby waves and/or cyclonic eddies. Meinen et al. (2013) studied

the structure of the DWBC based on five years mooring data in the

Atlantic Ocean at 26.5°N, and suggested that some compensation of

the DWBC in the western basin must occur in the eastern basin.

Spingys et al. (2021) demonstrated that turbulent mixing plays an

important role in the DWBC. Besides, the characteristics of the

DWBC may be consistent with the atmospheric forcing in the

North Atlantic (Pickart and Smethie, 1998; Handmann et al., 2018).

Overall, the dynamical mechanism of DWBC is intricate and

requires further investigation.

In this paper, we use an ocean general circulation model to

discuss the three-dimensional characteristics of the DWBC and

investigate the potential effect on the DWBC in the SCS. The paper

is structured as follows: Section 2 presents a description of the ocean

general circulation model. Section 3 describes the dynamics of the

DWBC in the SCS. The three-dimensional features of the DWBC

are then analyzed in section 4. In section 5, the simulated results of

the factors on the DWBC are studied. Finally, a summary and

discussion are provided in section 6.
2 Model

To study the three-dimensional DWBC in the SCS, we use the

MIT General Circulation Model (MITgcm, Marshall et al., 1997) to
FIGURE 1

Spatial distribution of circulation at 3100 m layer in the SCS from the CTRL (vector, unit: cm/s), the color shaded represents the bottom topography.
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simulate the deep SCS circulation. MITgcm is a numerical model

designed for study of the atmosphere, ocean, and climate. It has a

non-hydrostatic capability and can therefore be used to study both

small-scale and large-scale processes; its adjoint capability allows it

to be applied to parameter and state estimation problems. Finite

volume techniques are employed yielding an intuitive discretization

and support for the treatment of irregular geometries using

orthogonal curvilinear grids and shaved cells in this model

(Marshall et al., 1997). On the other hand, there are several

uncertainties in MITgcm, such as atmospheric boundary

conditions (Aran et al., 2016), geology and ice (Goldberg et al.,

2020). In this study, these uncertainties are less important because

the deep SCS circulation is not closely related to the atmosphere and

sea ice.

The model domain extends from 99°E to 140°E in longitude and

5° S to 30°N in latitude with a horizontal resolution of 1/12°. A total

of 30 vertical levels vary from 5 m at the top layer to 200 m below

500 m depth. Monthly mean climatological temperature and

salinity data from GDEM (Carnes, 2009) were used to initialize

the model. Additionally, surface flux data from the European

Centre for Medium-Range Weather Forecasts (ECWMF) ERA-40

reanalysis for the period of 1996-2015 (Uppala et al., 2005) were

used to force the model. The open boundary conditions were

obtained from daily Simple Ocean Data Assimilation (SODA)

data (Smith et al., 1992).

The control run (CTRL) involved running for 100 years to reach

a steady state and then it was run for another 20 years. The

climatological mean result is presented in Figure 1. It shows that

the deep circulation in the SCS is significantly cyclonic with a

substantial DWBC, indicating that the model can be applied to the

deep SCS circulation (Wang et al., 2011; Tian and Qu, 2012; Lan

et al., 2015).
3 Dynamics of the DWBC in the SCS

This section analyzes the factors affecting the DWBC in the SCS

by using theories such as Stommel (1948); Munk (1950); Charney

(1955), and Morgan (1956) that study the upper western boundary

currents. The goal is to investigate the dynamic process of the

DWBC in the SCS. Here is the equation that takes into account

bottom friction and lateral friction (Equation 1):

du
dt

− fv = −
1
r
∂ p
∂ x

− ru + Ah
∂2 u
∂ x2

+
∂2 u
∂ y2

� �
(1A)

dv
dt

+ fu = −
1
r
∂ p
∂ y

− rv + Ah
∂2 v
∂ x2

+
∂2 v
∂ y2

� �
  (1B)

∂ u
∂ x

+
∂ v
∂ y

+
∂w
∂ z

= 0 (1C)

Where x, y, and z are zonal, meridional, and vertical coordinates

and u, v, and w are the horizontal and vertical velocity components,
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respectively; f =f0+by is the Coriolis parameter; r and p are the

density and pressure; r and Ah are the bottom and lateral friction

coefficient. The streamfunction Y is introduced after cross

differential vertical integration (Equation 2):

u = −
∂Y
∂ y

,     v =
∂Y
∂ x

  (2)

Then the quasi-geostrophic potential vorticity equation is

obtained in the form of streamfunction:

∂

∂ t
m2Y + J(Y,m2Y) + b

∂Y
∂ x

=
f0
H

w  −   rm2 Y + Ah m
4 Y (3)

In this formula, to In the Equation 3, the first term is the local

time variation term, the second term is the inertia term (nonlinear

term), J is the Jacobian determinant, and the third term is the b
term. The fourth term is the vertical upwelling term, H is the

thickness of the water column, the fifth term is the bottom friction

term, and the sixth term is the lateral friction term. After

dimensionless:

∂

∂ t
m2 Y + aJ(Y,m2Y) +

∂Y
∂ x

= bw  −   cm2 Y + d m4 Y (4)

Where a = U
bL2 = ( dlL )

2,   b = f0W
bH ,   c = r

bL = ( ds
L ),   d = Ah

bL3 = ( dM
L )3

and d 2
l = U

b ,     ds =
r
b ,   d

3
M = Ah

b . U, W, L are the dimensions of (u,

v), w, and (x, y), respectively.

Assuming that the bottom friction is very important, Equation 4

becomes:

cm2 Y +
∂Y
∂ x

= 0 (5)

The above equation to The Equation 5 is a second-order

ordinary differential equation, and the solution is:

v =
∂Y
∂ x

=
L
ds
Y0(x, y)e

−
x−xE
L (6)

The above formula shows that v increases as dS decreases, that
is, the DWBC increases as bottom friction coefficient decreases.

Similarly, when the lateral friction is important:

v =
∂Y
∂ x

=
L
dM

2ffiffiffi
3

p sin(

ffiffiffi
3

p

2
x − xE
L

)Y0(xw, y)e
−
x−xE
2L (7)

Equation 7 shows that the DWBC decreases as dM and the

lateral friction coefficient increases. Assuming that the deep layer is

strongly mixed (Tian et al., 2009; Yang et al., 2016; Wang et al.,

2021), w is the large term in this case:

∂Y
∂ x

= bw   (8)

It shows that the intensity of the DWBC increases with the

increase in the mixing (w). To better study the three-dimensional

distribution characteristics of the DWBC in the SCS, this study will

discuss its related dynamics with the MITgcm model, in

combination with the dynamic processes mentioned above.
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4 Three-dimensional features of the
DWBC in the SCS

The DWBC, as the name suggests, is a stable, strong, and

persistent current along the western boundary in the deep layers.

The DWBC in the SCS should be considered as a system (Tian and

Qu, 2012; Wang et al., 2019). Therefore, this study characterizes the

DWBC system as having negative zonal velocity north of 18°N

along the northern boundary, negative meridional velocity west of

116.5°E along the western boundary, and positive zonal velocity

south of 16°N along the southern boundary deeper than 1900 m in

the models. Based on these rules, the DWBC originates near the

inlet of the Luzon overflow and flows westward along the northern

boundary. It then turns and flows southward along the western
Frontiers in Marine Science 04
boundary at the northwestern corner of the deep SCS. After

reaching the southern boundary, the DWBC turns east and finally

ends at the southern boundary (Figure 2).

The main characteristics of the DWBC in the SCS of CTRL are

as follows: 1) Intensity, characterized by the current velocity. The

mean current velocity is 4.78 cm/s, with the maximum velocity at

the western boundary along 16-17°N, reaching up to 12 cm/s. 2)

Thickness, the difference between the depth of the lower boundary

and the upper boundary. It ranges from a minimum of 200 m,

predominantly located at the shallow boundary, to a maximum of

over 2000 m with an average thickness of about 1645 m. 3) Width,

the width of the DWBC decreases from top to bottom and ranges

from 18 km to 250 km, with an average width of 140 km.

Coincidentally, the model results of the current velocity,
FIGURE 2

Three-dimensional DWBC velocity (vector and shaded, unit: cm/s) distribution in the SCS from CTRL.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1346973
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhou et al. 10.3389/fmars.2024.1346973
thickness, and width of the DWBC are generally consistent with the

mooring observations (Zhou et al., 2017; Zhou et al., 2020a). This

further supports the feasibility of the model.
5 Factors of the DWBC in the SCS

A total of five experiments are conducted in this section to

investigate the factors affecting the DWBC in the SCS. Table 1

provides a description of each experiment. In general, the results of

all experiments indicate presence of the basic cyclonic circulation

and the DWBC in the deep SCS. Specifically, when the deep Luzon

overflow is closed, the structure of cyclonic circulation and the

DWBC are significantly weakened (Case 1, Figure 3A). The strong

mixing experiment (Case 2, strong vertical diffusion rate

experiment, Figure 3B) shows a stronger deep circulation and a

more significant DWBC. Results from the friction coefficient

experiments (Case 3-4, Figures 3C, D) suggest that the increase in

friction coefficient weakens the deep circulation, but the effect is

not significant.
5.1 Intensity

First, the influence on the intensity of the DWBC in the SCS is

discussed. Here, the intensity of the DWBC was characterized by

the averaged southward meridional velocity along the 16-17°N at

3100 m layer. The reason is that the DWBC along 16-17°N is

significant (Figure 1 and color shaded in Figures 2, 3, Zhou et al.,

2017; Zhou et al., 2020a), which is representative. The maximum

velocity distribution of the whole DWBC system in the CTRL is

calculated (Figure 4). It can also be seen that the maximum velocity

of the DWBC appears between 16-17°N along the western

boundary, with a velocity of about 12 cm/s. In this context, we

have presented the strength of the DWBC from 2100 to 4100 m

layer of each experiment (Figure 5). In general, the deeper the

depth, the greater the velocity, and the stronger the intensity of the

DWBC, which obviously shows the characteristics of bottom

intensification. The average velocity of the DWBC in the CTRL is

about 5.86 cm/s.
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The DWBC, with an average velocity of 3.53 cm/s, is apparently

weakened after the closure of the deep Luzon overflow (Figure 5).

This indicates that the deep Luzon overflow plays a critical role in

the DWBC. Once the deep Luzon overflow is closed, it means that

the driving force (source) is significantly weakened, leading to a

decrease in the intensity of the DWBC in the SCS. The strong

mixing experiment remarkably enhances the DWBC as expected,

with an average velocity of about 9.11 cm/s. Combined with the

Equation 8, this suggests that the strong mixing can significantly

enhance the DWBC in the deep SCS. The model results also show

that the DWBC is weakened by the friction coefficient, with average

velocities of 5.36 cm/s and 5.22 cm/s in Case 3 and Case 4,

respectively. On the whole, both the bottom friction coefficient

and the lateral friction coefficient cases show that a larger friction

coefficient results in a weaker the DWBC intensity is, which is in

line with the Equations 7, 8.

Further calculation of the transport of the DWBC reveals that

the intensity of the CTRL, Case 1-4 is 3.2 Sv, 1.9 Sv, 4.9 Sv, 2.9 Sv,

and 2.8 Sv, respectively, which corresponds to the results of the

intensity of the DWBC. By integrating the model results with the

Equations 6–8, the intensity function of the DWBC in the SCS can

be derived: Intensity = F (source, mixing, -lateral friction, -bottom

friction, other). This formula illustrates that the intensity of the

DWBC is tied to the source, mixing, lateral friction, and bottom

friction and has a positive, positive, negative, and negative

correlation relationship, respectively. An increase in the source,

stronger mixing, lower bottom friction, and lower lateral friction

will result in a stronger DWBC in the SCS.
5.2 Thickness

This section discusses the thickness characteristics of the

DWBC. In the CTRL, the DWBC’s upper boundary depths

(referring to the interface between the DWBC and the middle

SCS circulation, as well as the interface where the upper layer of the

DWBC flows in the opposite direction) are primarily found at the

2100 m layer (indicated by the black circle in Figure 6), and the

lower boundary depths (referring to the interface where the lower

layer of the DWBC flows in the opposite direction, or the bottom

boundary if the flow direction of the lower layer has not yet

reversed) are usually situated below 3750 m (see the warm

colored circle in Figure 6). The thickness distribution of the

DWBC is obtained from the difference between the depth of the

lower boundary and the upper boundary (the cold colored circle in

Figure 6). The average thickness of the DWBC is approximately

1645 m.

Regarding the deep Luzon overflow closure, the thickness of the

DWBC decreases with the weakening of its intensity. On average,

the thickness is about 1264 m. In some places, the DWBC’s

thickness cannot be measured due to its weakening. In the case of

strong mixing, the DWBC has strengthened significantly, but its

thickness has increased only slightly, with an average of 1702 m. As

for Case 3 and Case 4, the mean thickness of the DWBC in the SCS

is approximately 1590 m and 1585 m (Figure 7), which indicates

that the thickness remains unaffected by the friction coefficients.
TABLE 1 Details of the numerical experiment.

Case Overflow Vertical
diffusion rate

Friction
Coefficients

CTRL open calculate
from model

Ah=300 m2/s, r=1×10-3 m2/s

Case-1 close calculate
from model

Ah=300 m2/s, r=1×10-3 m2/s

Case-2 open 1.0×10-5 m2/s Ah=300 m2/s, r=1×10-3 m2/s

Case-3 open calculate
from model

Ah=300 m2/s, r=2×10-3 m2/s

Case-4 open calculate
from model

Ah=600 m2/s, r=1×10-3 m2/s
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In addition, a correlation between the water depth and the

DWBC thickness was also calculated in the CTRL. The results show

a high correlation coefficient of 0.8. In other words, there is a

significant relationship between the DWBC thickness in the SCS

and the water depth. As the water depth increases, the thickness of

the DWBC also increases. In summary, it can be concluded that the

water depth and source are the main factors impacting the DWBC

thickness in the SCS. A thicker DWBC appears as the water depth

increases and with more sources.
5.3 Width

The width of the DWBC in the SCS generally shows the

characteristics of narrowing from shallow to deep (Figure 8). The

width of the northern boundary is the widest at about 250 km, and
Frontiers in Marine Science 06
the western boundary is the narrowest with a width of less than 50

km. The average width of the DWBC is about 141 km. Following

the intensity of the DWBC, we also use the 16°N section as an

illustration to discuss the influence on the DWBC’s width.

In the Case 1, the width of the DWBC narrows significantly

with decreasing intensity and averages about 104 km (Figure 9). In

the strong mixing experiment, the width of the DWBC increases

with increasing intensity and averages about 149 km. For Case 3

and Case 4, the friction coefficients have a negative effect on the

width of the DWBC, with average widths of about 138 km and 136

km, respectively. In general, the width of the DWBC increases with

its strength.

Likewise, the function that affects the width of the DWBC in the

SCS can be derived from the aforementioned results and Equations

6-8: Width=G7 (source, mixing, -lateral friction, -bottom friction).

This function implies that the width is influenced by the source,
FIGURE 3

Spatial distribution of circulation at 3100 m layer in the SCS from Case 1-4 (A–D), unit: cm/s, the color shaded is the velocity of the significant
DWBC along the western boundary.
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FIGURE 4

Three-dimensional maximum velocity of the DWBC in the SCS from CTRL (unit: cm/s).
FIGURE 5

Intensity statistics of the DWBC along 16°Nof each layer in each case (cm/s).
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FIGURE 6

Three-dimensional upper boundary depth (the black circle), lower boundary depth (the warm color circle), and thickness (the cold color circle) of
the DWBC in the SCS from CTRL (unit: m), the dots are from Figure 4.
FIGURE 7

Mean thickness along the DWBC in each case (m), the Num is the number of dots in Figure 4 running from north to south.
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FIGURE 8

Three-dimensional width of the DWBC in the SCS from CTRL (unit: km), the dots are from Figure 4.
FIGURE 9

Width statistics of the DWBC of each case (km), the Num is the number of dots in Figure 4 running from north to south.
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mixing, lateral friction and bottom friction. When the bottom

friction and lateral friction decreases, the mixing increases, and

with more deep water sources, leading to a widening of the DWBC

in the SCS.
6 Summary and discussion

This study employs an ocean general circulation model to

simulate and analyze the three-dimensional distribution of the

DWBC in the SCS. The model results indicate that the average

velocity of the DWBC is about 4.78 cm/s, with the maximum

velocity occurring near the western boundary of 16-18°N, exceeding

10 cm/s. Additionally, the DWBC has an average thickness of about

1645 m and an average width of approximately 141 km. The effects

of the deep Luzon overflow, the mixing rates, and the friction

coefficients of the model on the DWBC are also discussed.

Generally, the deep mixing strengthens, thickens, and broadens

the DWBC. It is noteworthy that the mixing rates near bottom

seamounts and other submarine topography can be several orders

of magnitude higher than in other areas (Kunze and Sanford, 1996;

Ledwell et al., 2000; Heywood et al., 2002; Mauritzen et al., 2002;

Wang et al., 2021). This demonstrates that seamounts in the SCS

influence the DWBC by affecting deep mixing. And the deep mixing

in the SCS is primarily caused by internal tides, internal waves,

topography and so on (Qiu et al., 2024; Tian et al., 2009; Yang et al.,

2016; Ye et al.,2022). Moreover, the DWBC significantly narrower

along the western boundary compared to the northern boundary.

The Stommel and Arons theory (Stommel and Arons, 1972)

explains this phenomenon by suggesting that the submarine land

slope broadens the boundary current. Besides, the model results also

indicate that friction coefficients adversely impact the DWBC,

which is in agreement with prior studies (Stommel, 1948;

Munk, 1950).

The deep Luzon overflow also plays an important role in the

DWBC. When the Luzon overflow closes, the source reduction

significantly weakens, thins, and narrows the DWBC. In fact, the

Luzon overflow exhibits significant intraseasonal and seasonal

variability (Zhou et al., 2014; Ye et al., 2019), and has a great

influence on the DWBC in the SCS through its transportation

(Zhou et al., 2020b). As a result, the DWBC displays significant

intraseasonal and seasonal variability (Lan et al., 2015; Shu et al.,

2016; Zhou et al., 2020a).

Studies also suggest that intraseasonal and seasonal variability

may originate from the deep eddies in the SCS, upper-layer eddy

pairs, bottom-trapped topography Rossby waves, barotropic Rossby

waves and Baroclinic Rossby Waves (Zhang et al., 2013; Shu et al.,

2016; Zhou et al., 2017; Zhou et al., 2020a; Zheng et al., 2021; Quan

et al., 2022; Xu et al., 2022), etc. Furthermore, the interannual or

long-term scale variations of the DWBC are also of great scientific

significance. However, the longest available observational research

on the DWBC in the SCS is only a few years (Zhou et al., 2017;

Zheng et al., 2021). Therefore, further research on longer

observations is required.
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Although a three-dimensional DWBC in the deep SCS has been

simulated, completely simulating the deep SCS circulation using the

MITgcm still remains challenging due to our limited understanding

of the system’s complexity (Tian and Qu, 2012). To study the

DWBC dynamics in the SCS more comprehensively, we will need

more advanced model simulation capabilities, and especially

enhanced observations.
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