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This study utilized a three-dimensional ocean general circulation model to investigate the intensity, thickness, and width of the three-dimensional deep western boundary current (DWBC) in the South China Sea (SCS). The numerical results show that the DWBC begins near the inlet of the Luzon overflow, flows westward along the northern boundary, proceeds southward along the western boundary, and ultimately terminates at the southern boundary. The mean DWBC’s velocity, thickness, and width is 4.78 cm/s, 1645 m, and 140 km, respectively. Combined with the dynamic results, it is evident that the three-dimensional structure of the DWBC appears to have been visibly weakened after the closure of the deep Luzon overflow. Strong deep mixing has a significantly stronger, thicker, and wider effect on the intensity, thickness, and width of the DWBC. Both the bottom and lateral friction coefficients negatively impact the DWBC in the SCS.
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1 Introduction

The deep western boundary current (DWBC) has attracted increasing attention as the most crucial deep ocean current since Swallow and Worthington (1957) first observed it in the Atlantic Ocean. It has been continuously observed in the global ocean (Johnson et al., 1991; Roemmich et al., 1996; Moore and Wilkin, 1998; Whitworth et al., 1999; Owens and Warren, 2001; Warren et al., 2002; Meinen et al., 2004; Reid, 2005; Schott et al., 2005; Wright et al., 2005; Schott et al., 2006; Peña-Molino et al., 2012). Johns et al. (1993) found that there is a significant southeastward DWBC in the Northeast Brazil Sea through the observation of anchor current meters. The thickness of the DWBC is greater than 2000 m and ranges from 2500 m to the bottom. Schott et al. (2006) observed significant southward DWBC near the Grand Banks using current meters and ADCP/LADCP. Their results also reveal a robust and consistent DWBC, with a maximum thickness of 3000 m and a width of 150 km. In general, the DWBC in the world ocean is strong and persistent, extending from the depths of 1000-2000 m to the seafloor.

The South China Sea (SCS) is the largest marginal sea in the Northwest Pacific Ocean (Figure 1). It is a completely closed basin below 2000 m with no water exchange with other oceans except for the deep Luzon overflow (Qu et al., 2005; Tian and Qu, 2012). The understanding of the DWBC in the SCS is mainly qualitative in the early due to the lack of observational data in the deep SCS (Qu, 2002; Qu et al., 2006; Wang et al., 2019). From the U.S. Navy generalized digital environment model (GDEM) data with a resolution of 0.25°, it was found that the deep SCS has a cyclonic circulation and is accompanied by an obvious DWBC (Wang et al., 2011). Recently, Zhou et al. (2017) identified the DWBC near the southwest of Zhongsha Island in the SCS by using six anchor sections. The average velocity of the DWBC is about 2 cm/s, and the width is about 50 km. Meanwhile, the results from three current moorings demonstrate that there is a narrow, almost barotropic western boundary current in the deep SCS (Zhou et al., 2020a). The width and thickness of the DWBC are between 20-32 km and 2000 m, respectively.




Figure 1 | Spatial distribution of circulation at 3100 m layer in the SCS from the CTRL (vector, unit: cm/s), the color shaded represents the bottom topography.



According to Hopkins et al. (2019), the dynamics of the DWBC in the subpolar North Atlantic may be related to topographic Rossby waves and/or cyclonic eddies. Meinen et al. (2013) studied the structure of the DWBC based on five years mooring data in the Atlantic Ocean at 26.5°N, and suggested that some compensation of the DWBC in the western basin must occur in the eastern basin. Spingys et al. (2021) demonstrated that turbulent mixing plays an important role in the DWBC. Besides, the characteristics of the DWBC may be consistent with the atmospheric forcing in the North Atlantic (Pickart and Smethie, 1998; Handmann et al., 2018). Overall, the dynamical mechanism of DWBC is intricate and requires further investigation.

In this paper, we use an ocean general circulation model to discuss the three-dimensional characteristics of the DWBC and investigate the potential effect on the DWBC in the SCS. The paper is structured as follows: Section 2 presents a description of the ocean general circulation model. Section 3 describes the dynamics of the DWBC in the SCS. The three-dimensional features of the DWBC are then analyzed in section 4. In section 5, the simulated results of the factors on the DWBC are studied. Finally, a summary and discussion are provided in section 6.




2 Model

To study the three-dimensional DWBC in the SCS, we use the MIT General Circulation Model (MITgcm, Marshall et al., 1997) to simulate the deep SCS circulation. MITgcm is a numerical model designed for study of the atmosphere, ocean, and climate. It has a non-hydrostatic capability and can therefore be used to study both small-scale and large-scale processes; its adjoint capability allows it to be applied to parameter and state estimation problems. Finite volume techniques are employed yielding an intuitive discretization and support for the treatment of irregular geometries using orthogonal curvilinear grids and shaved cells in this model (Marshall et al., 1997). On the other hand, there are several uncertainties in MITgcm, such as atmospheric boundary conditions (Aran et al., 2016), geology and ice (Goldberg et al., 2020). In this study, these uncertainties are less important because the deep SCS circulation is not closely related to the atmosphere and sea ice.

The model domain extends from 99°E to 140°E in longitude and 5° S to 30°N in latitude with a horizontal resolution of 1/12°. A total of 30 vertical levels vary from 5 m at the top layer to 200 m below 500 m depth. Monthly mean climatological temperature and salinity data from GDEM (Carnes, 2009) were used to initialize the model. Additionally, surface flux data from the European Centre for Medium-Range Weather Forecasts (ECWMF) ERA-40 reanalysis for the period of 1996-2015 (Uppala et al., 2005) were used to force the model. The open boundary conditions were obtained from daily Simple Ocean Data Assimilation (SODA) data (Smith et al., 1992).

The control run (CTRL) involved running for 100 years to reach a steady state and then it was run for another 20 years. The climatological mean result is presented in Figure 1. It shows that the deep circulation in the SCS is significantly cyclonic with a substantial DWBC, indicating that the model can be applied to the deep SCS circulation (Wang et al., 2011; Tian and Qu, 2012; Lan et al., 2015).




3 Dynamics of the DWBC in the SCS

This section analyzes the factors affecting the DWBC in the SCS by using theories such as Stommel (1948); Munk (1950); Charney (1955), and Morgan (1956) that study the upper western boundary currents. The goal is to investigate the dynamic process of the DWBC in the SCS. Here is the equation that takes into account bottom friction and lateral friction (Equation 1):

 

 

 

Where x, y, and z are zonal, meridional, and vertical coordinates and u, v, and w are the horizontal and vertical velocity components, respectively; f =f0+βy is the Coriolis parameter; ρ and p are the density and pressure; r and Ah are the bottom and lateral friction coefficient. The streamfunction Ψ is introduced after cross differential vertical integration (Equation 2):

 

Then the quasi-geostrophic potential vorticity equation is obtained in the form of streamfunction:

 

In this formula, to In the Equation 3, the first term is the local time variation term, the second term is the inertia term (nonlinear term), J is the Jacobian determinant, and the third term is the β term. The fourth term is the vertical upwelling term, H is the thickness of the water column, the fifth term is the bottom friction term, and the sixth term is the lateral friction term. After dimensionless:

 

Where   and  . U, W, L are the dimensions of (u, v), w, and (x, y), respectively.

Assuming that the bottom friction is very important, Equation 4 becomes:

 

The above equation to The Equation 5 is a second-order ordinary differential equation, and the solution is:

 

The above formula shows that v increases as δS decreases, that is, the DWBC increases as bottom friction coefficient decreases. Similarly, when the lateral friction is important:

 

Equation 7 shows that the DWBC decreases as δM and the lateral friction coefficient increases. Assuming that the deep layer is strongly mixed (Tian et al., 2009; Yang et al., 2016; Wang et al., 2021), w is the large term in this case:

 

It shows that the intensity of the DWBC increases with the increase in the mixing (w). To better study the three-dimensional distribution characteristics of the DWBC in the SCS, this study will discuss its related dynamics with the MITgcm model, in combination with the dynamic processes mentioned above.




4 Three-dimensional features of the DWBC in the SCS

The DWBC, as the name suggests, is a stable, strong, and persistent current along the western boundary in the deep layers. The DWBC in the SCS should be considered as a system (Tian and Qu, 2012; Wang et al., 2019). Therefore, this study characterizes the DWBC system as having negative zonal velocity north of 18°N along the northern boundary, negative meridional velocity west of 116.5°E along the western boundary, and positive zonal velocity south of 16°N along the southern boundary deeper than 1900 m in the models. Based on these rules, the DWBC originates near the inlet of the Luzon overflow and flows westward along the northern boundary. It then turns and flows southward along the western boundary at the northwestern corner of the deep SCS. After reaching the southern boundary, the DWBC turns east and finally ends at the southern boundary (Figure 2).




Figure 2 | Three-dimensional DWBC velocity (vector and shaded, unit: cm/s) distribution in the SCS from CTRL.



The main characteristics of the DWBC in the SCS of CTRL are as follows: 1) Intensity, characterized by the current velocity. The mean current velocity is 4.78 cm/s, with the maximum velocity at the western boundary along 16-17°N, reaching up to 12 cm/s. 2) Thickness, the difference between the depth of the lower boundary and the upper boundary. It ranges from a minimum of 200 m, predominantly located at the shallow boundary, to a maximum of over 2000 m with an average thickness of about 1645 m. 3) Width, the width of the DWBC decreases from top to bottom and ranges from 18 km to 250 km, with an average width of 140 km. Coincidentally, the model results of the current velocity, thickness, and width of the DWBC are generally consistent with the mooring observations (Zhou et al., 2017; Zhou et al., 2020a). This further supports the feasibility of the model.




5 Factors of the DWBC in the SCS

A total of five experiments are conducted in this section to investigate the factors affecting the DWBC in the SCS. Table 1 provides a description of each experiment. In general, the results of all experiments indicate presence of the basic cyclonic circulation and the DWBC in the deep SCS. Specifically, when the deep Luzon overflow is closed, the structure of cyclonic circulation and the DWBC are significantly weakened (Case 1, Figure 3A). The strong mixing experiment (Case 2, strong vertical diffusion rate experiment, Figure 3B) shows a stronger deep circulation and a more significant DWBC. Results from the friction coefficient experiments (Case 3-4, Figures 3C, D) suggest that the increase in friction coefficient weakens the deep circulation, but the effect is not significant.


Table 1 | Details of the numerical experiment.






Figure 3 | Spatial distribution of circulation at 3100 m layer in the SCS from Case 1-4 (A–D), unit: cm/s, the color shaded is the velocity of the significant DWBC along the western boundary.





5.1 Intensity

First, the influence on the intensity of the DWBC in the SCS is discussed. Here, the intensity of the DWBC was characterized by the averaged southward meridional velocity along the 16-17°N at 3100 m layer. The reason is that the DWBC along 16-17°N is significant (Figure 1 and color shaded in Figures 2, 3, Zhou et al., 2017; Zhou et al., 2020a), which is representative. The maximum velocity distribution of the whole DWBC system in the CTRL is calculated (Figure 4). It can also be seen that the maximum velocity of the DWBC appears between 16-17°N along the western boundary, with a velocity of about 12 cm/s. In this context, we have presented the strength of the DWBC from 2100 to 4100 m layer of each experiment (Figure 5). In general, the deeper the depth, the greater the velocity, and the stronger the intensity of the DWBC, which obviously shows the characteristics of bottom intensification. The average velocity of the DWBC in the CTRL is about 5.86 cm/s.




Figure 4 | Three-dimensional maximum velocity of the DWBC in the SCS from CTRL (unit: cm/s).






Figure 5 | Intensity statistics of the DWBC along 16°Nof each layer in each case (cm/s).



The DWBC, with an average velocity of 3.53 cm/s, is apparently weakened after the closure of the deep Luzon overflow (Figure 5). This indicates that the deep Luzon overflow plays a critical role in the DWBC. Once the deep Luzon overflow is closed, it means that the driving force (source) is significantly weakened, leading to a decrease in the intensity of the DWBC in the SCS. The strong mixing experiment remarkably enhances the DWBC as expected, with an average velocity of about 9.11 cm/s. Combined with the Equation 8, this suggests that the strong mixing can significantly enhance the DWBC in the deep SCS. The model results also show that the DWBC is weakened by the friction coefficient, with average velocities of 5.36 cm/s and 5.22 cm/s in Case 3 and Case 4, respectively. On the whole, both the bottom friction coefficient and the lateral friction coefficient cases show that a larger friction coefficient results in a weaker the DWBC intensity is, which is in line with the Equations 7, 8.

Further calculation of the transport of the DWBC reveals that the intensity of the CTRL, Case 1-4 is 3.2 Sv, 1.9 Sv, 4.9 Sv, 2.9 Sv, and 2.8 Sv, respectively, which corresponds to the results of the intensity of the DWBC. By integrating the model results with the Equations 6–8, the intensity function of the DWBC in the SCS can be derived: Intensity = F (source, mixing, -lateral friction, -bottom friction, other). This formula illustrates that the intensity of the DWBC is tied to the source, mixing, lateral friction, and bottom friction and has a positive, positive, negative, and negative correlation relationship, respectively. An increase in the source, stronger mixing, lower bottom friction, and lower lateral friction will result in a stronger DWBC in the SCS.




5.2 Thickness

This section discusses the thickness characteristics of the DWBC. In the CTRL, the DWBC’s upper boundary depths (referring to the interface between the DWBC and the middle SCS circulation, as well as the interface where the upper layer of the DWBC flows in the opposite direction) are primarily found at the 2100 m layer (indicated by the black circle in Figure 6), and the lower boundary depths (referring to the interface where the lower layer of the DWBC flows in the opposite direction, or the bottom boundary if the flow direction of the lower layer has not yet reversed) are usually situated below 3750 m (see the warm colored circle in Figure 6). The thickness distribution of the DWBC is obtained from the difference between the depth of the lower boundary and the upper boundary (the cold colored circle in Figure 6). The average thickness of the DWBC is approximately 1645 m.




Figure 6 | Three-dimensional upper boundary depth (the black circle), lower boundary depth (the warm color circle), and thickness (the cold color circle) of the DWBC in the SCS from CTRL (unit: m), the dots are from Figure 4.



Regarding the deep Luzon overflow closure, the thickness of the DWBC decreases with the weakening of its intensity. On average, the thickness is about 1264 m. In some places, the DWBC’s thickness cannot be measured due to its weakening. In the case of strong mixing, the DWBC has strengthened significantly, but its thickness has increased only slightly, with an average of 1702 m. As for Case 3 and Case 4, the mean thickness of the DWBC in the SCS is approximately 1590 m and 1585 m (Figure 7), which indicates that the thickness remains unaffected by the friction coefficients.




Figure 7 | Mean thickness along the DWBC in each case (m), the Num is the number of dots in Figure 4 running from north to south.



In addition, a correlation between the water depth and the DWBC thickness was also calculated in the CTRL. The results show a high correlation coefficient of 0.8. In other words, there is a significant relationship between the DWBC thickness in the SCS and the water depth. As the water depth increases, the thickness of the DWBC also increases. In summary, it can be concluded that the water depth and source are the main factors impacting the DWBC thickness in the SCS. A thicker DWBC appears as the water depth increases and with more sources.




5.3 Width

The width of the DWBC in the SCS generally shows the characteristics of narrowing from shallow to deep (Figure 8). The width of the northern boundary is the widest at about 250 km, and the western boundary is the narrowest with a width of less than 50 km. The average width of the DWBC is about 141 km. Following the intensity of the DWBC, we also use the 16°N section as an illustration to discuss the influence on the DWBC’s width.




Figure 8 | Three-dimensional width of the DWBC in the SCS from CTRL (unit: km), the dots are from Figure 4.



In the Case 1, the width of the DWBC narrows significantly with decreasing intensity and averages about 104 km (Figure 9). In the strong mixing experiment, the width of the DWBC increases with increasing intensity and averages about 149 km. For Case 3 and Case 4, the friction coefficients have a negative effect on the width of the DWBC, with average widths of about 138 km and 136 km, respectively. In general, the width of the DWBC increases with its strength.




Figure 9 | Width statistics of the DWBC of each case (km), the Num is the number of dots in Figure 4 running from north to south.



Likewise, the function that affects the width of the DWBC in the SCS can be derived from the aforementioned results and Equations 6-8: Width=G7 (source, mixing, -lateral friction, -bottom friction). This function implies that the width is influenced by the source, mixing, lateral friction and bottom friction. When the bottom friction and lateral friction decreases, the mixing increases, and with more deep water sources, leading to a widening of the DWBC in the SCS.





6 Summary and discussion

This study employs an ocean general circulation model to simulate and analyze the three-dimensional distribution of the DWBC in the SCS. The model results indicate that the average velocity of the DWBC is about 4.78 cm/s, with the maximum velocity occurring near the western boundary of 16-18°N, exceeding 10 cm/s. Additionally, the DWBC has an average thickness of about 1645 m and an average width of approximately 141 km. The effects of the deep Luzon overflow, the mixing rates, and the friction coefficients of the model on the DWBC are also discussed.

Generally, the deep mixing strengthens, thickens, and broadens the DWBC. It is noteworthy that the mixing rates near bottom seamounts and other submarine topography can be several orders of magnitude higher than in other areas (Kunze and Sanford, 1996; Ledwell et al., 2000; Heywood et al., 2002; Mauritzen et al., 2002; Wang et al., 2021). This demonstrates that seamounts in the SCS influence the DWBC by affecting deep mixing. And the deep mixing in the SCS is primarily caused by internal tides, internal waves, topography and so on (Qiu et al., 2024; Tian et al., 2009; Yang et al., 2016; Ye et al.,2022). Moreover, the DWBC significantly narrower along the western boundary compared to the northern boundary. The Stommel and Arons theory (Stommel and Arons, 1972) explains this phenomenon by suggesting that the submarine land slope broadens the boundary current. Besides, the model results also indicate that friction coefficients adversely impact the DWBC, which is in agreement with prior studies (Stommel, 1948; Munk, 1950).

The deep Luzon overflow also plays an important role in the DWBC. When the Luzon overflow closes, the source reduction significantly weakens, thins, and narrows the DWBC. In fact, the Luzon overflow exhibits significant intraseasonal and seasonal variability (Zhou et al., 2014; Ye et al., 2019), and has a great influence on the DWBC in the SCS through its transportation (Zhou et al., 2020b). As a result, the DWBC displays significant intraseasonal and seasonal variability (Lan et al., 2015; Shu et al., 2016; Zhou et al., 2020a).

Studies also suggest that intraseasonal and seasonal variability may originate from the deep eddies in the SCS, upper-layer eddy pairs, bottom-trapped topography Rossby waves, barotropic Rossby waves and Baroclinic Rossby Waves (Zhang et al., 2013; Shu et al., 2016; Zhou et al., 2017; Zhou et al., 2020a; Zheng et al., 2021; Quan et al., 2022; Xu et al., 2022), etc. Furthermore, the interannual or long-term scale variations of the DWBC are also of great scientific significance. However, the longest available observational research on the DWBC in the SCS is only a few years (Zhou et al., 2017; Zheng et al., 2021). Therefore, further research on longer observations is required.

Although a three-dimensional DWBC in the deep SCS has been simulated, completely simulating the deep SCS circulation using the MITgcm still remains challenging due to our limited understanding of the system’s complexity (Tian and Qu, 2012). To study the DWBC dynamics in the SCS more comprehensively, we will need more advanced model simulation capabilities, and especially enhanced observations.
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This study utilized a three-dimensional ocean general circulation model to


investigate the intensity, thickness, and width of the three-dimensional deep


western boundary current (DWBC) in the South China Sea (SCS). The numerical


results show that the DWBC begins near the inlet of the Luzon overflow, flows


westward along the northern boundary, proceeds southward along the western


boundary, and ultimately terminates at the southern boundary. The mean


DWBC’s velocity, thickness, and width is 4.78 cm/s, 1645 m, and 140 km,


respectively. Combined with the dynamic results, it is evident that the three-


dimensional structure of the DWBC appears to have been visibly weakened after


the closure of the deep Luzon overflow. Strong deep mixing has a significantly


stronger, thicker, and wider effect on the intensity, thickness, and width of the


DWBC. Both the bottom and lateral friction coefficients negatively impact the


DWBC in the SCS.

KEYWORDS


South China Sea, deep western boundary current, numerical study, three-
dimensional, dynamics

1 Introduction


The deep western boundary current (DWBC) has attracted increasing attention as the


most crucial deep ocean current since Swallow and Worthington (1957) first observed it in


the Atlantic Ocean. It has been continuously observed in the global ocean (Johnson et al.,


1991; Roemmich et al., 1996; Moore and Wilkin, 1998; Whitworth et al., 1999; Owens and


Warren, 2001; Warren et al., 2002; Meinen et al., 2004; Reid, 2005; Schott et al., 2005;


Wright et al., 2005; Schott et al., 2006; Peña-Molino et al., 2012). Johns et al. (1993) found


that there is a significant southeastward DWBC in the Northeast Brazil Sea through the
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observation of anchor current meters. The thickness of the DWBC


is greater than 2000 m and ranges from 2500 m to the bottom.


Schott et al. (2006) observed significant southward DWBC near the


Grand Banks using current meters and ADCP/LADCP. Their


results also reveal a robust and consistent DWBC, with a


maximum thickness of 3000 m and a width of 150 km. In


general, the DWBC in the world ocean is strong and persistent,


extending from the depths of 1000-2000 m to the seafloor.


The South China Sea (SCS) is the largest marginal sea in the Northwest


Pacific Ocean (Figure 1). It is a completely closed basin below 2000 m with


no water exchange with other oceans except for the deep Luzon overflow


(Qu et al., 2005; Tian and Qu, 2012). The understanding of the DWBC in


the SCS ismainly qualitative in the early due to the lack of observational data


in the deep SCS (Qu, 2002; Qu et al., 2006;Wang et al., 2019). From theU.S.


Navy generalized digital environmentmodel (GDEM) data with a resolution


of 0.25°, it was found that the deep SCS has a cyclonic circulation and is


accompanied by an obvious DWBC (Wang et al., 2011). Recently, Zhou


et al. (2017) identified the DWBC near the southwest of Zhongsha Island in


the SCS by using six anchor sections. The average velocity of the DWBC is


about 2 cm/s, and the width is about 50 km. Meanwhile, the results from


three currentmoorings demonstrate that there is a narrow, almost barotropic


western boundary current in the deep SCS (Zhou et al., 2020a). The width


and thickness of theDWBCare between 20-32 kmand 2000m, respectively.


According to Hopkins et al. (2019), the dynamics of the DWBC


in the subpolar North Atlantic may be related to topographic

Frontiers in Marine Science 02

Rossby waves and/or cyclonic eddies. Meinen et al. (2013) studied


the structure of the DWBC based on five years mooring data in the


Atlantic Ocean at 26.5°N, and suggested that some compensation of


the DWBC in the western basin must occur in the eastern basin.


Spingys et al. (2021) demonstrated that turbulent mixing plays an


important role in the DWBC. Besides, the characteristics of the


DWBC may be consistent with the atmospheric forcing in the


North Atlantic (Pickart and Smethie, 1998; Handmann et al., 2018).


Overall, the dynamical mechanism of DWBC is intricate and


requires further investigation.


In this paper, we use an ocean general circulation model to


discuss the three-dimensional characteristics of the DWBC and


investigate the potential effect on the DWBC in the SCS. The paper


is structured as follows: Section 2 presents a description of the ocean


general circulation model. Section 3 describes the dynamics of the


DWBC in the SCS. The three-dimensional features of the DWBC


are then analyzed in section 4. In section 5, the simulated results of


the factors on the DWBC are studied. Finally, a summary and


discussion are provided in section 6.

2 Model


To study the three-dimensional DWBC in the SCS, we use the


MIT General Circulation Model (MITgcm, Marshall et al., 1997) to

FIGURE 1


Spatial distribution of circulation at 3100 m layer in the SCS from the CTRL (vector, unit: cm/s), the color shaded represents the bottom topography.
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simulate the deep SCS circulation. MITgcm is a numerical model


designed for study of the atmosphere, ocean, and climate. It has a


non-hydrostatic capability and can therefore be used to study both


small-scale and large-scale processes; its adjoint capability allows it


to be applied to parameter and state estimation problems. Finite


volume techniques are employed yielding an intuitive discretization


and support for the treatment of irregular geometries using


orthogonal curvilinear grids and shaved cells in this model


(Marshall et al., 1997). On the other hand, there are several


uncertainties in MITgcm, such as atmospheric boundary


conditions (Aran et al., 2016), geology and ice (Goldberg et al.,


2020). In this study, these uncertainties are less important because


the deep SCS circulation is not closely related to the atmosphere and


sea ice.


The model domain extends from 99°E to 140°E in longitude and


5° S to 30°N in latitude with a horizontal resolution of 1/12°. A total


of 30 vertical levels vary from 5 m at the top layer to 200 m below


500 m depth. Monthly mean climatological temperature and


salinity data from GDEM (Carnes, 2009) were used to initialize


the model. Additionally, surface flux data from the European


Centre for Medium-Range Weather Forecasts (ECWMF) ERA-40


reanalysis for the period of 1996-2015 (Uppala et al., 2005) were


used to force the model. The open boundary conditions were


obtained from daily Simple Ocean Data Assimilation (SODA)


data (Smith et al., 1992).


The control run (CTRL) involved running for 100 years to reach


a steady state and then it was run for another 20 years. The


climatological mean result is presented in Figure 1. It shows that


the deep circulation in the SCS is significantly cyclonic with a


substantial DWBC, indicating that the model can be applied to the


deep SCS circulation (Wang et al., 2011; Tian and Qu, 2012; Lan


et al., 2015).

3 Dynamics of the DWBC in the SCS


This section analyzes the factors affecting the DWBC in the SCS


by using theories such as Stommel (1948); Munk (1950); Charney


(1955), and Morgan (1956) that study the upper western boundary


currents. The goal is to investigate the dynamic process of the


DWBC in the SCS. Here is the equation that takes into account


bottom friction and lateral friction (Equation 1):


du
dt


− fv = −
1
r
∂ p
∂ x


− ru + Ah
∂2 u
∂ x2


+
∂2 u
∂ y2


� �
(1A)


dv
dt


+ fu = −
1
r
∂ p
∂ y


− rv + Ah
∂2 v
∂ x2


+
∂2 v
∂ y2


� �
  (1B)


∂ u
∂ x


+
∂ v
∂ y


+
∂w
∂ z


= 0 (1C)


Where x, y, and z are zonal, meridional, and vertical coordinates


and u, v, and w are the horizontal and vertical velocity components,
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respectively; f =f0+by is the Coriolis parameter; r and p are the


density and pressure; r and Ah are the bottom and lateral friction


coefficient. The streamfunction Y is introduced after cross


differential vertical integration (Equation 2):


u = −
∂Y
∂ y


,     v =
∂Y
∂ x


  (2)


Then the quasi-geostrophic potential vorticity equation is


obtained in the form of streamfunction:


∂


∂ t
m2Y + J(Y,m2Y) + b


∂Y
∂ x


=
f0
H


w  −   rm2 Y + Ah m
4 Y (3)


In this formula, to In the Equation 3, the first term is the local


time variation term, the second term is the inertia term (nonlinear


term), J is the Jacobian determinant, and the third term is the b
term. The fourth term is the vertical upwelling term, H is the


thickness of the water column, the fifth term is the bottom friction


term, and the sixth term is the lateral friction term. After


dimensionless:


∂


∂ t
m2 Y + aJ(Y,m2Y) +


∂Y
∂ x


= bw  −   cm2 Y + d m4 Y (4)


Where a = U
bL2 = ( dlL )


2,   b = f0W
bH ,   c = r


bL = ( ds
L ),   d = Ah


bL3 = ( dM
L )3


and d 2
l = U


b ,     ds =
r
b ,   d


3
M = Ah


b . U, W, L are the dimensions of (u,


v), w, and (x, y), respectively.


Assuming that the bottom friction is very important, Equation 4


becomes:


cm2 Y +
∂Y
∂ x


= 0 (5)


The above equation to The Equation 5 is a second-order


ordinary differential equation, and the solution is:


v =
∂Y
∂ x


=
L
ds
Y0(x, y)e


−
x−xE
L (6)


The above formula shows that v increases as dS decreases, that
is, the DWBC increases as bottom friction coefficient decreases.


Similarly, when the lateral friction is important:


v =
∂Y
∂ x


=
L
dM


2ffiffiffi
3


p sin(


ffiffiffi
3


p


2
x − xE
L


)Y0(xw, y)e
−
x−xE
2L (7)


Equation 7 shows that the DWBC decreases as dM and the


lateral friction coefficient increases. Assuming that the deep layer is


strongly mixed (Tian et al., 2009; Yang et al., 2016; Wang et al.,


2021), w is the large term in this case:


∂Y
∂ x


= bw   (8)


It shows that the intensity of the DWBC increases with the


increase in the mixing (w). To better study the three-dimensional


distribution characteristics of the DWBC in the SCS, this study will


discuss its related dynamics with the MITgcm model, in


combination with the dynamic processes mentioned above.
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4 Three-dimensional features of the
DWBC in the SCS


The DWBC, as the name suggests, is a stable, strong, and


persistent current along the western boundary in the deep layers.


The DWBC in the SCS should be considered as a system (Tian and


Qu, 2012; Wang et al., 2019). Therefore, this study characterizes the


DWBC system as having negative zonal velocity north of 18°N


along the northern boundary, negative meridional velocity west of


116.5°E along the western boundary, and positive zonal velocity


south of 16°N along the southern boundary deeper than 1900 m in


the models. Based on these rules, the DWBC originates near the


inlet of the Luzon overflow and flows westward along the northern


boundary. It then turns and flows southward along the western

Frontiers in Marine Science 04

boundary at the northwestern corner of the deep SCS. After


reaching the southern boundary, the DWBC turns east and finally


ends at the southern boundary (Figure 2).


The main characteristics of the DWBC in the SCS of CTRL are


as follows: 1) Intensity, characterized by the current velocity. The


mean current velocity is 4.78 cm/s, with the maximum velocity at


the western boundary along 16-17°N, reaching up to 12 cm/s. 2)


Thickness, the difference between the depth of the lower boundary


and the upper boundary. It ranges from a minimum of 200 m,


predominantly located at the shallow boundary, to a maximum of


over 2000 m with an average thickness of about 1645 m. 3) Width,


the width of the DWBC decreases from top to bottom and ranges


from 18 km to 250 km, with an average width of 140 km.


Coincidentally, the model results of the current velocity,

FIGURE 2


Three-dimensional DWBC velocity (vector and shaded, unit: cm/s) distribution in the SCS from CTRL.
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thickness, and width of the DWBC are generally consistent with the


mooring observations (Zhou et al., 2017; Zhou et al., 2020a). This


further supports the feasibility of the model.

5 Factors of the DWBC in the SCS


A total of five experiments are conducted in this section to


investigate the factors affecting the DWBC in the SCS. Table 1


provides a description of each experiment. In general, the results of


all experiments indicate presence of the basic cyclonic circulation


and the DWBC in the deep SCS. Specifically, when the deep Luzon


overflow is closed, the structure of cyclonic circulation and the


DWBC are significantly weakened (Case 1, Figure 3A). The strong


mixing experiment (Case 2, strong vertical diffusion rate


experiment, Figure 3B) shows a stronger deep circulation and a


more significant DWBC. Results from the friction coefficient


experiments (Case 3-4, Figures 3C, D) suggest that the increase in


friction coefficient weakens the deep circulation, but the effect is


not significant.

5.1 Intensity


First, the influence on the intensity of the DWBC in the SCS is


discussed. Here, the intensity of the DWBC was characterized by


the averaged southward meridional velocity along the 16-17°N at


3100 m layer. The reason is that the DWBC along 16-17°N is


significant (Figure 1 and color shaded in Figures 2, 3, Zhou et al.,


2017; Zhou et al., 2020a), which is representative. The maximum


velocity distribution of the whole DWBC system in the CTRL is


calculated (Figure 4). It can also be seen that the maximum velocity


of the DWBC appears between 16-17°N along the western


boundary, with a velocity of about 12 cm/s. In this context, we


have presented the strength of the DWBC from 2100 to 4100 m


layer of each experiment (Figure 5). In general, the deeper the


depth, the greater the velocity, and the stronger the intensity of the


DWBC, which obviously shows the characteristics of bottom


intensification. The average velocity of the DWBC in the CTRL is


about 5.86 cm/s.
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The DWBC, with an average velocity of 3.53 cm/s, is apparently


weakened after the closure of the deep Luzon overflow (Figure 5).


This indicates that the deep Luzon overflow plays a critical role in


the DWBC. Once the deep Luzon overflow is closed, it means that


the driving force (source) is significantly weakened, leading to a


decrease in the intensity of the DWBC in the SCS. The strong


mixing experiment remarkably enhances the DWBC as expected,


with an average velocity of about 9.11 cm/s. Combined with the


Equation 8, this suggests that the strong mixing can significantly


enhance the DWBC in the deep SCS. The model results also show


that the DWBC is weakened by the friction coefficient, with average


velocities of 5.36 cm/s and 5.22 cm/s in Case 3 and Case 4,


respectively. On the whole, both the bottom friction coefficient


and the lateral friction coefficient cases show that a larger friction


coefficient results in a weaker the DWBC intensity is, which is in


line with the Equations 7, 8.


Further calculation of the transport of the DWBC reveals that


the intensity of the CTRL, Case 1-4 is 3.2 Sv, 1.9 Sv, 4.9 Sv, 2.9 Sv,


and 2.8 Sv, respectively, which corresponds to the results of the


intensity of the DWBC. By integrating the model results with the


Equations 6–8, the intensity function of the DWBC in the SCS can


be derived: Intensity = F (source, mixing, -lateral friction, -bottom


friction, other). This formula illustrates that the intensity of the


DWBC is tied to the source, mixing, lateral friction, and bottom


friction and has a positive, positive, negative, and negative


correlation relationship, respectively. An increase in the source,


stronger mixing, lower bottom friction, and lower lateral friction


will result in a stronger DWBC in the SCS.

5.2 Thickness


This section discusses the thickness characteristics of the


DWBC. In the CTRL, the DWBC’s upper boundary depths


(referring to the interface between the DWBC and the middle


SCS circulation, as well as the interface where the upper layer of the


DWBC flows in the opposite direction) are primarily found at the


2100 m layer (indicated by the black circle in Figure 6), and the


lower boundary depths (referring to the interface where the lower


layer of the DWBC flows in the opposite direction, or the bottom


boundary if the flow direction of the lower layer has not yet


reversed) are usually situated below 3750 m (see the warm


colored circle in Figure 6). The thickness distribution of the


DWBC is obtained from the difference between the depth of the


lower boundary and the upper boundary (the cold colored circle in


Figure 6). The average thickness of the DWBC is approximately


1645 m.


Regarding the deep Luzon overflow closure, the thickness of the


DWBC decreases with the weakening of its intensity. On average,


the thickness is about 1264 m. In some places, the DWBC’s


thickness cannot be measured due to its weakening. In the case of


strong mixing, the DWBC has strengthened significantly, but its


thickness has increased only slightly, with an average of 1702 m. As


for Case 3 and Case 4, the mean thickness of the DWBC in the SCS


is approximately 1590 m and 1585 m (Figure 7), which indicates


that the thickness remains unaffected by the friction coefficients.

TABLE 1 Details of the numerical experiment.


Case Overflow Vertical
diffusion rate


Friction
Coefficients


CTRL open calculate
from model


Ah=300 m2/s, r=1×10-3 m2/s


Case-1 close calculate
from model


Ah=300 m2/s, r=1×10-3 m2/s


Case-2 open 1.0×10-5 m2/s Ah=300 m2/s, r=1×10-3 m2/s


Case-3 open calculate
from model


Ah=300 m2/s, r=2×10-3 m2/s


Case-4 open calculate
from model


Ah=600 m2/s, r=1×10-3 m2/s
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In addition, a correlation between the water depth and the


DWBC thickness was also calculated in the CTRL. The results show


a high correlation coefficient of 0.8. In other words, there is a


significant relationship between the DWBC thickness in the SCS


and the water depth. As the water depth increases, the thickness of


the DWBC also increases. In summary, it can be concluded that the


water depth and source are the main factors impacting the DWBC


thickness in the SCS. A thicker DWBC appears as the water depth


increases and with more sources.

5.3 Width


The width of the DWBC in the SCS generally shows the


characteristics of narrowing from shallow to deep (Figure 8). The


width of the northern boundary is the widest at about 250 km, and
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the western boundary is the narrowest with a width of less than 50


km. The average width of the DWBC is about 141 km. Following


the intensity of the DWBC, we also use the 16°N section as an


illustration to discuss the influence on the DWBC’s width.


In the Case 1, the width of the DWBC narrows significantly


with decreasing intensity and averages about 104 km (Figure 9). In


the strong mixing experiment, the width of the DWBC increases


with increasing intensity and averages about 149 km. For Case 3


and Case 4, the friction coefficients have a negative effect on the


width of the DWBC, with average widths of about 138 km and 136


km, respectively. In general, the width of the DWBC increases with


its strength.


Likewise, the function that affects the width of the DWBC in the


SCS can be derived from the aforementioned results and Equations


6-8: Width=G7 (source, mixing, -lateral friction, -bottom friction).


This function implies that the width is influenced by the source,

FIGURE 3


Spatial distribution of circulation at 3100 m layer in the SCS from Case 1-4 (A–D), unit: cm/s, the color shaded is the velocity of the significant
DWBC along the western boundary.
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FIGURE 4


Three-dimensional maximum velocity of the DWBC in the SCS from CTRL (unit: cm/s).

FIGURE 5


Intensity statistics of the DWBC along 16°Nof each layer in each case (cm/s).
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FIGURE 6


Three-dimensional upper boundary depth (the black circle), lower boundary depth (the warm color circle), and thickness (the cold color circle) of
the DWBC in the SCS from CTRL (unit: m), the dots are from Figure 4.

FIGURE 7


Mean thickness along the DWBC in each case (m), the Num is the number of dots in Figure 4 running from north to south.
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FIGURE 8


Three-dimensional width of the DWBC in the SCS from CTRL (unit: km), the dots are from Figure 4.

FIGURE 9


Width statistics of the DWBC of each case (km), the Num is the number of dots in Figure 4 running from north to south.
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mixing, lateral friction and bottom friction. When the bottom


friction and lateral friction decreases, the mixing increases, and


with more deep water sources, leading to a widening of the DWBC


in the SCS.

6 Summary and discussion


This study employs an ocean general circulation model to


simulate and analyze the three-dimensional distribution of the


DWBC in the SCS. The model results indicate that the average


velocity of the DWBC is about 4.78 cm/s, with the maximum


velocity occurring near the western boundary of 16-18°N, exceeding


10 cm/s. Additionally, the DWBC has an average thickness of about


1645 m and an average width of approximately 141 km. The effects


of the deep Luzon overflow, the mixing rates, and the friction


coefficients of the model on the DWBC are also discussed.


Generally, the deep mixing strengthens, thickens, and broadens


the DWBC. It is noteworthy that the mixing rates near bottom


seamounts and other submarine topography can be several orders


of magnitude higher than in other areas (Kunze and Sanford, 1996;


Ledwell et al., 2000; Heywood et al., 2002; Mauritzen et al., 2002;


Wang et al., 2021). This demonstrates that seamounts in the SCS


influence the DWBC by affecting deep mixing. And the deep mixing


in the SCS is primarily caused by internal tides, internal waves,


topography and so on (Qiu et al., 2024; Tian et al., 2009; Yang et al.,


2016; Ye et al.,2022). Moreover, the DWBC significantly narrower


along the western boundary compared to the northern boundary.


The Stommel and Arons theory (Stommel and Arons, 1972)


explains this phenomenon by suggesting that the submarine land


slope broadens the boundary current. Besides, the model results also


indicate that friction coefficients adversely impact the DWBC,


which is in agreement with prior studies (Stommel, 1948;


Munk, 1950).


The deep Luzon overflow also plays an important role in the


DWBC. When the Luzon overflow closes, the source reduction


significantly weakens, thins, and narrows the DWBC. In fact, the


Luzon overflow exhibits significant intraseasonal and seasonal


variability (Zhou et al., 2014; Ye et al., 2019), and has a great


influence on the DWBC in the SCS through its transportation


(Zhou et al., 2020b). As a result, the DWBC displays significant


intraseasonal and seasonal variability (Lan et al., 2015; Shu et al.,


2016; Zhou et al., 2020a).


Studies also suggest that intraseasonal and seasonal variability


may originate from the deep eddies in the SCS, upper-layer eddy


pairs, bottom-trapped topography Rossby waves, barotropic Rossby


waves and Baroclinic Rossby Waves (Zhang et al., 2013; Shu et al.,


2016; Zhou et al., 2017; Zhou et al., 2020a; Zheng et al., 2021; Quan


et al., 2022; Xu et al., 2022), etc. Furthermore, the interannual or


long-term scale variations of the DWBC are also of great scientific


significance. However, the longest available observational research


on the DWBC in the SCS is only a few years (Zhou et al., 2017;


Zheng et al., 2021). Therefore, further research on longer


observations is required.
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Although a three-dimensional DWBC in the deep SCS has been


simulated, completely simulating the deep SCS circulation using the


MITgcm still remains challenging due to our limited understanding


of the system’s complexity (Tian and Qu, 2012). To study the


DWBC dynamics in the SCS more comprehensively, we will need


more advanced model simulation capabilities, and especially


enhanced observations.
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