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Spatial distribution and diversity
of the heterotrophic flagellates
in the Cosmonaut Sea, Antarctic
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Guangfu Luo2, Zhibo Lu4* and Jianfeng He2*

1College of Civil Engineering and Architecture, Zhejiang University of Water Resources and Electric
Power, Zhejiang, Hangzhou, China, 2Ministry of Natural Resources Key Laboratory for Polar Science,
Polar Research Institute of China, Shanghai, China, 3Ocean Institute, Northwestern Polytechnical
University, Jiangsu, Taicang, China, 4College of Environmental Science and Engineering, Tongji
University, Shanghai, China
As predators of bacteria and viruses and as food sources for microzooplankton,

heterotrophic flagellates (HFs) play an important role in the marine micro-food

web. Based on the global climate change’s impact on marine ecosystems,

particularly sea ice melting, we analyzed the community composition and

diversity of heterotrophic flagellates, focusing on the Antarctic Cosmonaut Sea.

During the 36th China Antarctic research expedition (2019-2020), we collected

seawater samples, subsequently analyzing HFs through IlluminaMiSeq2000

sequencing to assess community composition and diversity. Notable variations

in HFs abundance were observed between the western and eastern sectors of the

Cosmonaut Sea, with a distinct concentration at a 100-meter water depth.

Different zones exhibited diverse indicators and dominants taxa influenced by

local ocean currents. Both the northern Antarctic Peninsula and the western

Cosmonaut Sea, where the Weddell Eddy and Antarctic Land Slope Current

intersect, showcased marine stramenopiles as dominant HFs species. Our

findings offer insights into dominant taxa, spatial distribution patterns among

heterotrophic flagellates, correlations between taxa distribution and

environmental factors, and the exploration of potential indicator taxa.
KEYWORDS

heterotrophic flagellates, biodiversity, Cosmonaut Sea, Antarctic, climate change
community ecology
1 Introduction

Global warming and sea ice melt alter polar habitats and marine protozoan

communities. It is predicted that 79% of endemic species in Antarctic waters will face a

reduction in suitable temperature habitat in this century because of global climate change

(Griffiths et al., 2017), including Heterotrophic flagellates (HFs). HFs are widely distributed

in the global oceans, occurring in all the world’s major seas, including the Arctic Ocean and
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the Southern Ocean. They have different taxonomic compositions

and characteristics in different geographic regions (Sohrin et al.,

2010). They are central in marine food webs, controlling

phytoplankton biomass and consuming most bacterial biomass

(del Campo and Ruiz-Trillo, 2013). Moreover, their feeding rate

directly impacts the ecosystem’s material cycling and nutrient

regeneration, which can significantly affect the plankton

community structure (Seenivasan et al., 2013).

Although all levels of the marine microbial food web may be

affected by climate change (Fortier et al., 2006; Falk-Petersen et al.,

2007; Laidre et al., 2008), microphytoplankton are particularly

sensitive to environmental change (Li et al., 2009). The biomass

of HFs is concentrated in this particle size range (Rodriguez-

Martinez et al., 2013). Heterotrophic flagellates can control the

phytoplankton biomass (Verity et al., 2002) and target bacteria

(Christaki et al., 2021), viruses, and colloids for feeding (Arndt et al.,

2000; Sherr and Sherr, 2002). However, the complexity and

importance of HFs taxa have not received sufficient attention in

the literature (Monier et al., 2013; Lovejoy, 2014). Phytoplankton

are important food sources for some HF taxa. The miniaturization

of phytoplankton has, in some cases, been found to have a more

significant impact on microscopic unicellular predators (like

flagellates) than other large predators in the micro food web (Li

et al., 2009; Worden et al., 2015). This implies that the

miniaturization shift of phytoplankton taxa could directly affect

the community structure and biodiversity of HFs in the context of

climate change. Numerous studies have reported that the global

distribution of HFs is environmentally driven and is not subject to

any dispersal constraints (neither distance nor isolation) (Azovsky

et al., 2020), with different community structures in different

geographic regions (Sohrin et al., 2010). Although there is high

regional diversity, the low global diversity and regional endemism

need further investigation.

There has been limited research on the spatial distribution and

diversity of HFs in polar seas and ice zones. Nevertheless, in recent

years, the Cosmonaut Sea has received much attention. It is in the

western part of the Antarctic Entebbe Land (Hunt et al., 2007), with

a longitude range of 30°E to 60°E. It represents an area of significant

variability in the annual sea ice extent (Comiso and Gordon, 1987).

There are relatively substantial regional differences in the Antarctic

Sea variability between sectors under the influence of climate

change (Convey and Peck, 2019), with regional ablation and sea

ice in the different seas. Large fluctuations in the sea ice distribution

in the Cosmonaut Sea are also present in winter and summer. As a

region in the Southern Ocean with less research information, the

current state and future ecosystem trends in the Cosmonaut Sea

also deserve further investigation. Previous studies have not focused

on HFs or microscopic protists that exist as predators in micro food

webs, so we attempted to explore this.

In this study, we surveyed the abundance and biodiversity of

HFs taxa in the Antarctic Cosmonaut Sea using samples from

China’s 36th Antarctic Scientific Expedition. After sequencing the

community diversity of the microplankton using Illumina, ten taxa

were selected for analysis. This study will address the dominant taxa

and differences in the spatial distribution of heterotrophic flagellates

in the Antarctic Cosmonaut Sea seawater. In contrast, the
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correlation between taxa distribution and environmental factors

will be explored, and the possibility of some taxa as indicators will

be further explored. The differences in the distribution of the

dominant HFs taxa in the sea were also investigated to provide a

basis for further exploration of the possible trends in the

community structure of the HFs under the influence of

climate change.
2 Materials and methods

2.1 Sample collection

During China ’s 36th Antarctic Scientific Expedition

(CHINARE), from December 6, 2019, to January 6, 2020, there

were a total of 56 stations in nine sections of the Cosmonaut Sea

(62–70°S, 35–78°E; Figure 1), and 24 Niskin bottles Sea-Bird

Electronics 911 plus CTD (Bellevue, USA) was used to collect the

seawater samples. Each station collected the samples at different

water depths, from the surface to the seabed, and simultaneously

observed various physical and chemical parameters, such as the

seawater temperature, salinity, and nutrient salts. Samples of the

biological community composition and biodiversity were

also obtained.

The biodiversity samples were taken back to the laboratory to

filter out the microbial film samples using 0.2 mm polycarbonate

membranes (all membranes are from Whatman, UK, 47 mm in

diameter), stored at -80 °C, and transported to the laboratory to

determine the microbial diversity. For the property analysis, after

the second filtration, the water sample was retained for nutrient

analysis. During the sampling process, a total of 11 variables were

measured to explain the variation in the abundance of the HFs,

including the water depth, temperature, salinity, total Chlorophyll a

(Chl a), dissolved oxygen (DO), ammonium, phosphate, silicate,

nitrate, nitrite, and total nitrogen. The DO, ammonium, phosphate,

silicate, nitrate, nitrite, and total nitrogen were analyzed using a

four-channel continuous flow Technicon AA3 Auto-Analyzer

(Luebbe, 1997). The Chl a was measured with a 10AU field

fluorometer (Turner Designs, Sunnyvale, CA, USA) after filtering

part of the water samples with a GF/F glass fiber filter membrane.

The abundance of the bacteria and eukaryotic plankton was

determined by flow cytometry using a BD FACSCalibur™ flow

cytometer for detection.
2.2 PCR and Illumina MiSeq sequencing

The seawater samples from the Cosmonaut Sea were sequenced

based on the eukaryotic plankton diversity lineage using the

Illumina MiSeq ultra-high-throughput sequencing platform. The

total genomic DNA samples were extracted using the OMEGA Soil

DNA Kit (M5635-02; Omega Bio-Tek, Norcross, GA, USA). The

quantity and quality of the extracted DNA were measured using a

NanoDrop NC2000 spectrophotometer (Thermo Fisher Scientific,

Waltham, MA, USA) and agarose gel electrophoresis, respectively.

Then, polymerase chain reaction amplification of the eukaryotic 18S
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ribosomal RNA (rRNA) gene V3–V4 region was performed using

the forward primer 547F (5′-CCAGCASCYGCGGTAATTCC-3′)
and the reverse primer V4R (5′-ACTTTCGTTCTTGATYRA-3′).
After the quantification step, the amplicons were pooled in equal

amounts, and pair-end 2 × 250 bp sequencing was performed using

the Illumina MiSeq platform with the MiSeq Reagent Kit v3 at

Shanghai Personal Biotechnology Co. Ltd (Shanghai, China). The

detailed conditions and laboratory analysis are specified in a

previous study (Chen et al., 2021). The classify-sklearn naïve

Bayes taxonomy classification probe (Bokulich et al., 2018) was

used to classify and assign the non-single amplicon sequence

variants (ASVs) and label the original data according to the

UNITE Release 8.0 (fungal) database (Koljalg et al., 2013).

Specific taxonomic groups were screened out, with 10 main target

analysis taxa.
2.3 Diversity and community
structure analysis

The samples were subjected to ultra-high throughput

sequencing and database matching for classification and name

annotation, the HFs taxa were screened based on existing studies,

and the screened data were used for biodiversity calculations. The

samples from nine sections of the Cosmonaut Sea with a total of 56

stations were divided into zones according to the reported current

distribution. Sections C2 and C3 were divided into zone A, section

C4 into zone B, sections C5, C6, and C7 into zone C, section C8 into

zone D, and sections C9 and P1 and station C8–08 into zone E. The

analysis of the samples was conducted according to these five

zones (Figure 1).
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An alpha biodiversity analysis was performed using R (v4.1.3)

(http://www.R-project.org/), and alpha diversity indices based on

the ASV levels were calculated, including the Chao1 richness

estimates, observed species, Shannon diversity index, Simpson

index, and goods coverage (Table 1). The results of a Principal

Coordinate Analysis (PCoA) of the HFs communities were

generated using the vegan package and ggplot2 package. Then,

ArcGIS pro 3.0 (Zheng et al., 2023) was used to generate the

sampling station maps and bubble sector maps of the HFs

community distribution at different water depths. The Ocean

Data View software (Schlitzer, 2021) was used to generate the

overall abundance and a-diversity index of the HFs for different

water depths, the difference maps of each environmental factor in

the different sections, and the bubble maps of the difference in

abundance for each clade of MASTs at different water depths.

To explore the correlation between the environmental factors

and HFs taxa, a redundancy analysis (RDA) was performed using

CANOCO 5.2 software (Microcomputer Power, Ithaca, USA) to

investigate the relationship between the differences in the HFs

community structure and environmental variables across the

samples and assess community variation (based on the relative

abundance of all the operational taxonomic units/ASVs) and the

environmental variables (temperature, salinity, nutrients, Chl a,

eukaryotic plankton, and bacteria) at the sampling sites. A linear

regression analysis was used to determine the relationship between

the two variables. Pearson and Spearman correlations between the

HFs taxa and environmental factors were visualized using the psych

package in R (v4.1.3) and vegan. An indicator species analysis (Ind

Val) was performed using the indicspecies package in the R (v4.1.3)

software to identify indicator species in each study area (Dufrene

and Legendre, 1997).
FIGURE 1

Location of the sampling stations and currents.
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3 Results

3.1 Geographical
distribution characteristics

Data on the temperature, salinity, Chl a, and various nutrients

were obtained during the sampling process for the samples at

different water depths. A total of 11 variables were examined to

explain the differences in the HFs community structure and

abundance. The longitudinal differences in the environmental

factors were plotted for each section (Supplementary Figure S1).

The seawater temperature in the Cosmonaut Sea decreased and

then increased with depth in the range of 0 to 200 m. At the same

time, the water temperature below 200 m was relatively constant. The

seawater salinity appeared to rise significantly with increasing depth,

and the surface ocean salinity was lower when compared with the

deeper water layer. The horizontal distribution trends of the DO and

Chl a were similar, with relatively higher concentrations of DO and

Chl a at the stations with higher latitudes. The concentration of DO

was relatively high at the surface ocean, and at some stations, the DO

peaked at a water depth of 25 m and gradually decreased with

increasing water depth. However, there was a slight increase in DO

concentration in the deep seawater samples at more than 300 m

depth. The Chl a was basically concentrated within the upper 100 m,

and the peak was concentrated at a depth of 25 m to 75 m.

Comparatively, the Chl a concentration was higher in the mid-sea

of the Cosmonaut Sea than in the other regions.

Most of the stations showed a trend of an increasing phosphate

concentration with increasing water depth, and some of the stations

reached a peak at around 200 m in depth. The silicate and
Frontiers in Marine Science 04
phosphate concentrations were similar, with a clear trend of

increasing concentration with increasing water depth, and the

peak occurred in the deep layer below 1500 m. Nitrate

concentrations were notably higher than those of nitrite and

ammonium salts. At the majority of stations, nitrate levels

exhibited a slight increase within the 100–200 m depth range,

followed by a decrease as water depth increased. The highest

concentrations of nitrite and ammonium were primarily found in

the 0–100 m range. Specifically, the nitrite peak occurred at depths

between 0–50 m, while the ammonium peak was more concentrated

in the 50–100 m range. Both nitrite and ammonium demonstrated a

gradual decline and eventually leveled off.
3.2 Alpha-biodiversity analysis of
heterotrophic flagellates

A total of 642 species were screened from all the samples, with

95.6% of the samples with a good coverage of above 90% and 87.7%

of the samples with a coverage above 97%. In terms of the overall

abundance at each station (Figure 2), the abundance in areas A and

B was significantly higher than that in the other seas, while the

abundance of the HFs showed a trend of increasing and then

decreasing from the surface ocean with the increase in the water

depth. The HFs were mainly distributed within the top 100 m, and

the peak abundance at most stations appeared at 25-75 m in depth.

With the increase in the water depth, the abundance of the HFs in

the near-bottom samples in zone E showed a significant increase.

The high values of Shannon’s index and Simpson’s diversity index

were concentrated in zone E. Most occurred in the water depth

range of 200–2000 m, and the number of species observed in this

area was also more than that in the other areas. Furthermore, the

biodiversity indices in zones A and B were relatively low. However,

the diversity of the HFs in the near-land stations in zone A was

similar to that in zone E. Meanwhile, most of the high values of the

ACE index and Chao1 index were found at stations in the P1

section, which is relatively close to the Antarctic continental region.

This indicates that the HFs diversity and species distribution

uniformity were higher in the eastern Cosmonaut Sea than in the

western sea. The diversity of the HFs was higher in the near-land

waters than in the distant waters. Overall, the overall abundance of

the HFs was higher in the western Cosmonaut Sea, in the shallow

layer starting from the surface ocean to 100 m in depth, than in the

eastern sea, and they were rarer in the mid-sea.

The overall abundance, community structure composition, and

dominant taxa of the HFs differed with depth. A principal

coordinate analysis of all the samples (Figure 3) showed that the

HFs community confidence ellipses at water depths of 0 to 50 m

deviated significantly (p < 0.05) from the depths of 75 m and 100 m.

The community confidence ellipses of the samples at water depths

greater than 100 m had a large overlap. This indicates a significant

similarity between the HFs communities in the water column at

depths of 0–50 m, with depths of 75–100 m being the overlap

region, and a large difference in the samples at depths greater than

100 m. There was also a significant similarity between the HFs

communities at depths greater than 100 m.
TABLE 1 Comparison of the main dominant and indicator taxa
differences in the heterotrophic flagellates in the Cosmonaut
Sea, Antarctic.

Zone Indicator taxa Dominant taxa

A Cryomonadida Cryomonadida

MAST-9 MAST-1C

MAST-9

B Cryomonadida Cryomonadida

MAST-1C

MAST-9

C Cryomonadida Cryomonadida

MASTs MASTs

MAST-3 MAST-9

D MASTs MASTs

MAST-1C Opalozoa

MAST-9 MAST-1C

E MASTs MASTs

MAST-1C MAST-3

MAST-7 MAST-1C
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3.3 Taxonomy composition of
heterotrophic flagellates

A total of 10 HFs taxa were screened in this study. The more

common taxa, such as Cryomonadida, MASTs, and Picozoa, were

distributed in all the sections and depths (Figure 4). Cryomonadida,

Marine stramenopiles (MASTs), and Opalozoa were relatively more

abundant overall, and Cryomonadida was detected in all the

samples. The abundance of Cryonmonadida and the MASTs

tended to decrease with increasing depth, while a slight increase
Frontiers in Marine Science 05
was observed in the near-shelf samples. However, the abundance of

Opalozoa was relatively low in the shallow layer (25–100 m). It was

not even detected at some of the stations. At the same time, it was

abundantly distributed in the deep layer and near the seafloor, with

an overall trend of increasing with depth.

The other relatively common HFs taxa were Picozoa,

choanoflagellates, Apusomonadidae, and Telonemia, which were

relatively less abundant. Except for Apusomonadidae, which was

detected only at some stations and depths, the other three HFs were

distributed in all the sections and depths. Picozoa was observed in
B

A

FIGURE 2

Comparison of the abundance and diversity indices of the ASVs based on the 18S ribosomal RNA (rRNA) gene library at different water depths:
(A) difference plots of the overall abundance at different water depths; (B) difference plots of the a diversity-Shannon index at the different
water depths.
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78.5% of the samples, mainly in the east-west area, and

concentrated in the water layer between 75 m and 300 m. The

choanoflagellates were observed in 71.6% of the samples, mainly in

the east-west area of the Cosmonaut Sea, with peaks at 100 m and

150 m. Then, Telonemia was mainly found on the east side of the

Cosmonaut Sea, with a relatively high abundance in the shallow

layer. Telonemia was observed in 57.0% of the samples.

Apusomonadidae was concentrated in the western part of the

Cosmonaut Sea, mainly at 150 to 200 m in depth and near the

seafloor. The overall abundance was relatively low for

Palpitomonas, Ancryomonadida, and Jakobida. Additionally,

Palpitomonas was mainly distributed in the eastern Cosmonaut

Sea, mostly in the surface ocean samples. Ancryomonadida was

concentrated at the stations on the western side of the Cosmonaut

Sea near the Antarctic continental region. The occurrence in the

samples from 0 to 200 m in depth was rare, except for a small

number of detections in the individual seafloor samples, and they

were not found in all the samples over 300 m. Jakobida was found in

the samples at all water depths, mainly in the near Antarctic

continental waters.

The dominant taxon on the west and mid-sea was

Cryomonadida, with some stations being dominated by MASTs.

On the east side, the dominant taxon was MASTs. At depths greater

than 100 m, Cryomonadida decreased substantially, and from

200 m in depth, the dominant position of Cryomonadida was

occupied by MASTs and Opalozoa. Beyond 200 m, deep-sea

samples were only collected in sections C8, C9, and P1 and

station C7-06 on the eastern side, and the results showed that

MASTs still dominated in the deep-sea layer. While Opalozoa also
Frontiers in Marine Science 06
occurred in a high proportion at several stations, and the proportion

of Picozoa and choanoflagellates also increased.

To compare the differences in the distribution of the HFs in the

study area and whether each taxon could serve as an indicator

species for the area, the indicator value (Ind Val) was used to

determine the indicator taxa for each sea area. Based on the

indicator value (Table 1), the indicator taxon/taxa in zone A were

Cryomonadida and MAST-9, in zone B was Cryomonadida, in zone

C were Cryomonadida, MASTs, and MAST-3, in zone D were

MASTs, MAST-1C, and MAST-9, and in zone E were MASTs,

MAST-1C, MAST-7, MAST-8, MAST-3, MAST-2, Palpitomonas,

Telonema, and Cryomonadida.
3.4 Taxonomy composition of
marine stramenopiles

Marine stramenopiles, as an important taxon of HFs, were

targeted using 13 clades in this study. MAST-1, a common clade of

MASTs, was detected in most samples and accounted for more than

50% of the total MASTs in nearly half of the samples. The

distribution of MAST-1 in the global waters also varied greatly,

with a significantly higher density in the Antarctic Peninsula than

that in the other global oceans (Massana et al., 2006; Massana,

2011). MAST-1C had a relatively high overall abundance,

accounting for more than 50% of that of MAST-1 in 72% of the

samples. The abundance of MAST-1C was higher in the east and

west areas of the Cosmonaut Sea than that in the mid-sea, and its

distribution directly affected the overall distribution of the MASTs
frontiersin.or
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Results of the Principal Coordinate Analysis (PCoA) analysis of the heterotrophic flagellate communities in the samples at different water depths.
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(Figure 5). Moreover, the distribution of MAST-1A was

concentrated in the east side of the Cosmonaut Sea, and high

values were also observed at individual stations in the west side of

the near-continental sea, being concentrated in the samples from 0

to 100 m in depth. The abundance of MAST-1A decreased in the

samples at a water depth of over 100 m, but it was also distributed in

large numbers in the near-shelf samples. MAST-1B was

concentrated in the water layer from 100 m to 300 m, with only a

few or no detections in the samples from the other depths. Then,

MAST-1D was the least abundant clade of MAST-1 and was mainly

distributed in deeper waters below 1000 m.

MAST-3 and MAST-9 were the second most abundant clades

after MAST-1. MAST-3 was concentrated in the 50 m to 100 m
Frontiers in Marine Science 07
deep water layer, with a high relative abundance in the near-shelf

samples. MAST-9 was concentrated in the 75 m to 200 m deep

water layer and near-shelf samples, with a relatively higher

abundance in the mid-sea. MAST-7 was more abundant in the

samples from 50 m to 150 m. Additionally, MAST-8 was more

evenly distributed, with high values occurring at the stations in both

the shallow and deep ocean layers. MAST-2 was relatively rare and

was mainly distributed in the surface and near-shelf samples. In

previous studies, MAST-4 was hardly found in the polar ocean,

most of which was distributed in tropical, subtropical, and

temperate waters (Massana et al., 2006; Massana, 2011; Massana

et al., 2015). In this study, MAST-4 was detected in the deep-sea

samples from the eastern side of the Cosmonaut Sea at about
B C D E

F G H I J

K L M

A

N

FIGURE 4

Community structure of the heterotrophic flagellates at different water depths in the nine sections of the Antarctic Astronaut Sea. The bubble size
represents the relative abundance of the heterotrophic flagellates at the station, and the sector area represents the proportion of the taxon in the
heterotrophic flagellate community at the station. as represents the maximum water depth (bottom) of the sample that was collected at the station.
(A–N) corresponds to the HFs distribution at different seawater depths.
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2000 m and occurred sporadically in the surface ocean samples.

MAST-12 was mostly found in samples from 25 to 100 m in depth,

and MAST-11 and MAST-23 were only detected in a few samples.
3.5 Effects of environmental factors and
biological interactions on
community structure

A Spearman correlation matrix analysis (Figure 6) revealed

significant correlations between most HFs taxa in the Cosmonaut

Sea and 11 environmental factors at the p < 0.01 level. However,

some correlations were weak, indicating that environmental factors
Frontiers in Marine Science 08
influenced different taxa to varying extents. Notably, salinity

exhibited a significant negative correlation with Cryomonadida

and a significant positive correlation with MAST-9. Conversely,

DO had a significant positive correlation with Cryomonadida and a

significant negative correlation with MAST-9. MAST-9 was the

taxon most responsive to temperature variations, displaying an

opposing trend to the generally negative correlation observed with

other HFs taxa. Water depth correlated significantly and negatively

with Cryomonadida, while Chl a and silicates across all grain sizes

were significantly and positively correlated with this taxon. Among

the 11 environmental factors, nitrite showed significant correlations

with several HFs taxa. It was negatively correlated with MAST-1A,

MAST-1B, MAST-2, MAST-7, and MAST-8, but positively
B C D E

F G H I J

K L M

A

N

FIGURE 5

Community structure differences in the heterotrophic flagellate marine stramenopile (MAS) taxa at the different water depths in the nine sections of
the Antarctic Astronaut Sea. The bubble size represents the relative abundance of the MASTs at the station site, and the sector area represents the
proportion of the taxa among the various clades of MASTs at the site. as represents the maximum water depth (bottom) of the samples that were
collected at the station site. (A–N) corresponds to the HFs distribution at different seawater depths.
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correlated with Cryomonadida. Overall, Cryomonadida emerged as

a distinct taxon, exhibiting correlations with environmental factors

that were generally opposite to those of other taxa.

Six of the HFs taxa were moderately significantly correlated

with at least two of the other taxa. Cryomonadida was more specific

when compared to the other taxa, as it was negatively correlated

with the taxa with which it was correlated. Specifically, it was weakly

negatively correlated with nine taxa (including five clades of

MAST), with the strongest correlations with MAST-1A and

Telonema. Compared with the other taxa, stronger correlations

were observed between choanoflagellates, Picozoa, and Telonemia,

which were also moderately positively correlated with Palpitomonas

a nd MAST - 1A and we a k l y n e g a t i v e l y c o r r e l a t e d

with Cryomonadida.
4 Discussion

4.1 Dominant group differences and
potential indications

Taxa with a higher relative abundance are not necessarily

indicative taxa, but rather indicator taxa that can show the

specificity of some of the HFs taxa in the region. In the study

area, the main dominant and indicator taxa overlapped well, but

there were some differences (Supplementary Table S1). For

example, in zones A and B of the Cosmonaut Sea, where MAST-

1C was the clade of MASTs with the highest relative abundance, the
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distribution of the MASTs in the zone was more balanced when

compared with that of the other taxa. The dominant and indicator

taxa overlapped in most areas, and the east and west sides of the

Cosmonaut Sea had obvious differences in the dominant and

indicator taxa, with Cryomonadida as the dominant and indicator

taxa in Zones A and B, and MASTs and their clades in Zones D and

E. Zone C, which is in the middle of the sea, served as an

intermediate zone for the shift in dominance between

Cryomonadida and MASTs. Some taxa were present in most

regions as indicator taxa, such as Cryomonadida, Telonemia, and

some clades of the MASTs.

In the tropical and subtropical oceans, most of the dominant

HFs taxa in the surface layer belonged to MASTs, Picozoa, and

Opalozoa, and in the deep sea, Opalozoa and Diplonemea

comprised most of the HFs signal (Obiol et al., 2021). This agrees

with the results of this study on the differences in the distribution of

the HFs dominant taxa at the different water depths, except that

Diplonemea was detected in only a few samples from the

Cosmonaut Sea so that they may be more adapted to a higher

temperature environment. This is also similar to the global

distribution of the MAST subgroup MAST-4, which is rarely

found in polar oceans (Massana et al., 2006; Lovejoy and Potvin,

2011; Lovejoy, 2014; Thaler and Lovejoy, 2015). Comparatively,

MAST-1 has shown greater adaptability in polar oceans. Although

it is the main dominant subgroup of MASTs in temperate and

subtropical waters, it also co-occurs with other subgroups to a

certain extent (Massana et al., 2006). The choanoflagellates also

revealed a clear separation into warm and cold-water clusters,
FIGURE 6

Clustering matrix of the correlations between the environmental factors and various groups of heterotrophic flagellates; the color, size, and gradient
of the symbols indicate the Spearman’s correlation coefficients.
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which was attributed to temperature and ocean currents

(Rodriguez-Martinez et al., 2013; Nitsche and Arndt, 2015;

Thomsen and Østergaard, 2017). Large taxa with global

distributions may obscure most HFs-specific taxa with climatic

preferences due to their low numbers (Azovsky et al., 2020).

Subsequent studies on the regional specificity of HFs may

therefore need to focus more on the less abundant taxa.
4.2 Influence of ocean currents on
heterotrophic flagellates’
regional distribution

Geographically, the Antarctic Cosmonaut Sea is bordered by the

Weddell Sea Gyre Eastern Branch (WSG) to the west, it intersects

with the Weddell Sea Deep Water (Aoki et al., 2020), the Antarctic

Slope Current (ASC) is to the south, the Prydz Bay Gyre (PBG) is to

the east, and the southern boundary of the Antarctic Circumpolar

Current (ACC) is to the north (Orsi et al., 1995; Williams et al.,

2010; Anderson and Hansen, 2020; Yang et al., 2024). Among them,

sections C2 and C3 are in the inner rotation of WSG; C4 is on the

outer side of WSG; the C5, C6, and C7 northern stations are in the

ACC, and C9, P1, and C8-08 are in the inner rotation of the PBG

(Figure 1). Based on the differences in the abundance and

community structure of the HFs in each section, the areas that

were delineated with the currents were more consistent, and

sections C2, C3, and C4 are all distributed in the WSG. This may

be because the area is at the intersection between the ASC and the

PBG, and the direction of the ASC runs from east to west along the

Antarctic continental margin. This may bring microorganisms from

the eastern waters of the Cosmonaut Sea to the west. They may mix

with the shelf water near the shelf front (Bibik et al., 1988; Klyausov

and Lanin, 1988; Comiso et al., 2017; Li et al., 2022), which could be

why the distribution and abundance of the dominant species of the

HFs communities in this part of the region and at depth differed

significantly from other stations in the region.

By comparing the structure and dominant species of the HFs

communities in the northern Antarctic Peninsula (Chen et al.,

2021) and the Cosmonaut Sea, it was found that the distribution

of the HFs in these two regions is likely closely related to ocean

currents, and both the northern Antarctic Peninsula and the

southwestern Cosmonaut Sea are areas where the WSG and the

ASC act together, and their dominant species was MASTs. Some

stations in sections C5, C6, and C7 are within the ACC, the most

extensive ocean current in the world, circumnavigating the

Southern Ocean and being composed of an eastward flowing

mean current and a small transient eddy. If the average position

of the ACC shifts southward, it will alter the habitat range of the

different species with profound effects on marine ecosystems

(Cristofari et al., 2018; Meijers et al., 2019).

There are some differences in the drivers of microbial distribution

in the surface and deep seas. In the surface ocean, spatial

environmental differences significantly influence microbial

distribution (Villarino et al., 2022). In the deep sea, the influence of

the ocean distance (the shortest path between two sites while avoiding

land) (Villarino et al., 2022), ocean circulation, and water mass
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interactions (Ghiglione et al., 2012; Wilkins et al., 2013) is more

significant. It has also been proposed that bacterioplankton are water-

mass specific, and interactive mixing of the water masses creates

either convergence or divergence in the regional distributions of the

marine microbial communities (Hernando-Morales et al., 2017). As

predators, HFs in the marine micro-food web are selective for

bacterial predation, potentially selectively targeting actively growing

bacteria (Anderson and Hansen, 2020). The differences in the

bacterial biomes may further affect the community structure of

the HFs. In addition, there was a certain gradient change in the

environmental factors at different ocean depths in the region [(Han

et al., 2022), Supplementary Figure S1]. Therefore, the existence of a

bathymetric gradient in the distribution of HFs communities

supports, to some extent, the differences in the microbial

community impact mechanisms between the surface ocean and

deep ocean.
4.3 Prospects with climate change

The eastern waters of the Cosmonaut Sea are influenced by the

PBG, which intersects the ASC and converges northward in a

clockwise direction northward toward the southern boundary of

the ACC. The shelf water along the Antarctic continent sinks to

form the low-temperature and high-density Antarctic bottom water

mass (AABW), which forms the Southern Ocean through

overturning circulation with the upper relatively warm water

mass (Armour et al., 2016; Stuecker et al., 2018). The bottom

water mass also flows into the deep ocean layers of most oceans

(Patara and Boning, 2014; Patara et al., 2016), andWeddell Sea- and

Prydz Bay-sourced AABW are blended and exported mainly to the

Atlantic and Indian oceans (Solodoch et al., 2022). The upwelling of

the Southern Ocean’s overturning circulation carries deep-sea

plankton and nutrients, to shallower depths (Thomson et al.,

2010; Han et al., 2022), and the surface plankton communities

and nutrients can also be transported to the deep sea (Jiao et al.,

2018). Therefore, the community ecology of the HFs in the deeper

layers of the Cosmonaut Sea is also affected by overturning

circulation. Some of the pelagic HFs will be transported to the

bottom layer. There will be HFs carried with the Southern Ocean’s

bottom water mass to other Antarctic waters and even the deeper

layers of the Atlantic Ocean and Indian Ocean.

At the circumpolar scale, the overall variability in the plankton

biomass per unit area in the Southern Ocean waters is small

(Behrenfeld et al., 2017), with local factors, such as sea ice,

glaciers, and changes in the seawater stratification under the

influence of circulation affecting the plankton community in the

Southern Ocean waters to a greater extent (Schofield et al., 2018;

Kim et al., 2020). Freshwater fluxes in the circumpolar zone of the

ACC will gradually increase under the influence of sea ice melt,

increased net precipitation, and glacier breakup (Downes and Hogg,

2013). Moreover, Antarctic Circumpolar Deep-Water formation

and export will continue to decrease due to warming and the

renewal of the surface ocean waters near the Antarctic continent

(Azaneu et al., 2013; Desbruyeres et al., 2017). The overall transport

of the Southern Ocean overturning currents will increase, with
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implications for the stability of the ice shelves, glaciers, and the

Antarctic ice cap. The effect on the nature and circulation of the

Southern Ocean water masses (Abernathey et al., 2016; Pellichero

et al., 2018; Swart et al., 2018) could directly affect pelagic plankton

in the middle and upper ocean (Doney et al., 2012).

Furthermore, it could directly affect the transportation of DO

and nutrients in the deep Antarctic seawater. It has been found that

the Surface waters that are south of the ACC have stronger

freshening rates than those of the intermediate or bottom waters

(Menezes et al., 2017; Morley et al., 2020). This means that impacts

on the micro-plankton in the surface ocean will occur more quickly

(Doney et al., 2012). Therefore, species that are more resilient to

disturbances, such as freshening due to climate warming in

Antarctica, will be more likely to be less affected (Alcaman-Arias

et al., 2021). This implies that as the climate gradually warms, the

overall community structure and distribution of the HFs is likely to

shift from the original seawater habitat structure to a freshwater

habitat structure. The dominance of the taxa that are more adapted

to higher temperature and lower salinity water bodies may

gradually increase.

This study only discusses heterotrophic flagellate data from a

single summer year, with temporal and spatial limitations, which

require the subsequent establishment of a long-term dynamic

monitoring database to materialize the evaluation of the response

and feedback of marine ecosystems to global climate change.

Moreover, regionally representative and environmentally

indicative taxa could be selected. In addition to focusing on the

dominant taxa, further attention should be paid to some taxa (e.g.,

MAST-4) that are less abundant but have obvious regional

distribution characteristics.
5 Conclusion

Investigating the spatial distribution and diversity of

heterotrophic flagellates (HFs) in polar seas and ice zones is

essential. Our study revealed that the western Cosmonaut Sea had

a significantly higher HFs abundance than its eastern counterpart,

primarily within the top 100 m. Dominant HFs taxa, such as

Cryomonadida in the western and MASTs and Opalozoa in the

eastern regions, were influenced by local ocean currents.

Specifically, the western Cosmonaut Sea’s HFs diversity was

shaped by a combination of the Antarctic Circumpolar Current

(ACC) and the Weddell Eddy, similar to the northern Antarctic

Peninsula. Long-term monitoring of HF and the construction of an

ecological database are recommended for assessing climate change

impacts on HFs and the marine food web.
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