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Satellite tagging confirms long
distance movement and fast
dispersal of Patagonian toothfish
(Dissostichus eleginoides) in the
Southwest Atlantic
Eunjung Kim1*†, Chi Hin Lam2†, Gyum Joon Park3

and Jong Hee Lee4

1Distant Water Fisheries Resources Division, National Institute of Fisheries Science, Busan, Republic of
Korea, 2Large Pelagics Research Center, Gloucester, MA, United States, 3Cetacean Research Institute,
National Institute of Fisheries Science, Ulsan, Republic of Korea, 4Coastal Water Fisheries Resources
Division, National Institute of Fishers Science, Busan, Republic of Korea
Introduction: To better understand Patagonian toothfish (Dissostichus

eleginoides) movement and habitat in the Southwest Atlantic, fifty popup

satellite archival tags (PSATs) were deployed off Davis Bank on North Scotia

Ridge between 2019 and 2020 on individuals ranging from 97-139 cm

total length.

Methods: PSATs (18 Lotek Wireless PSATFLEX and 32 Wildlife Computers

MiniPAT) were programmed to detach after completing 1 to 16-month

missions recording pressure (depth) and water temperature.

Results: Six tags failed to report, and among the remaining 44 reporting tags, 34

reported on schedule, up to 487 days at sea – the longest electronic tag

deployment for this species to date. Although the majority of PSATs reported

within 50 km from the release sites, confirming high site fidelity, 12% of tags

reported more than 200 km away, showing connectivity to Shag Rocks and

South Georgia in the Southern Ocean. Toothfish moved across the Antarctic

Polar Front through/to areas with no fishing activities, and hence, explained the

absence of any previous conventional tag recapture. A 1-month transit to the

Falkland/Malvinas Plateau Basin also revealed that toothfish can attain a

surprisingly high movement rate of 33 km day-1.

Discussion: Fishery independent examples of toothfish presence and their

movement capabilities are inviting us to broaden our examination on how

toothfish move around their Scotia Arc habitats and link up different regional

aggregation sites in the South Atlantic.
KEYWORDS

dispersal, migration, stock structure, Southwest Atlantic, connectivity, site fidelity,
mixing, PSAT
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1 Introduction

Patagonian toothfish (Dissostichus eleginoides) is a notothenioid

fish, and has a circum-sub-Antarctic distribution. Off the South

American continent, they are found on the continental shelves and

slopes along Chile and Argentina, around the sub-Antarctic islands of

the Southern Ocean. D. eleginoides is long-lived, reaching over 33-54

years old (Horn, 2002), and can attain over 2.3 m total length (TL) and

weight over 200 kg (Collins et al., 2010). Given its rich oil content and

white flesh, toothfish are particularly sought after by chefs and seafood

consumers worldwide, fetching high prices, and thus represent an

important species for the commercial fisheries in the South Atlantic

and around the Southern Ocean (CCAMLR Secretariat, 2016).

Patagonian toothfish is primarily targeted by bottom longliners

using the trotline and Spanish set systems1, and can also be caught as

a bycatch in the finfish and squid trawl fisheries north of the

Commission for the Conservation of Antarctic Marine Living

Resources (CCAMLR) Convention Area (Skeljo et al., 2022; Collins

et al., 2010). This study explored the high-sea fishing grounds of the

Korean bottom longline fleets in FAO Area 41 between 40°S and 55°

S, which consist of a northern ground in Subarea 3.1 (north of 48°S)

and a southern ground in Subarea 3.2 (Park et al., 2021). The fleets

operate year-round over a latitudinally broad area, but a

longitudinally narrow area outside of coastal states’ exclusive

economic zones (EEZs) on the Patagonian Continental Shelf, and

the North Scotia Ridge (Figure 1A). Among these fishing areas, Davis

Bank is of particular interest as it has been consistently associated

with high catch (Park et al., 2021) and sits at the southeastern extent

of the fishing grounds (Figure 1A). It is situated about 160 km to the

east of Burdwood Bank, another high catch location and a known

toothfish spawning site (Laptikhovsky et al., 2006). These two banks

are separated by a deep trough of > 3000m bottom depth. Davis Bank

features steep drop-offs on its southern edge. Together with Tierra del

Fuego, Burdwood Bank, Aurora Bank, Shag Rocks, South Georgia,

and South Sandwich Islands, Davis Bank make up the northern part

of the Scotia Arc (Figure 1A, Dalziel et al., 2013). This island arc

system separates the Southern Ocean from the Atlantic and Pacific

Oceans, and interacts with the eastward-flowing Antarctic

Circumpolar Current to form complex circulation patterns

(Figure 1B), providing a platitude of productive habitats for many

species to flourish (Dalziel et al., 2013). Apart from its toothfish

availability, Davis Bank is located just to the east of the Antarctic

Polar Front (Artana et al., 2016; Frey et al., 2021), which purportedly

acts as a biogeographic barrier that structures toothfish populations

(Ashford et al., 2008; Canales-Aguirre et al., 2018), and provides an

isolation mechanism for potential speciation (Arkhipkin et al., 2022).

Biology and ecology of toothfish have been studied extensively

in the Southern Ocean by nation-state research authorities, often in

support of or complement to CCAMLR research activities. For

example, just off the Falkland Islands/Isla Malvinas (FLK) alone,

north of the CCAMLR Convention Area, over 4400 conventional

tags were deployed off the fishing grounds within its EEZ (Lee et al.,

2022), and two electronic tagging studies had released fish north/
1 https://www.ccamlr.org/en/publications/fishing-gear-library
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northeast of the FLK, and on Burdwood Bank (Brown et al., 2013;

Farrugia, 2018). Tagging, be it conventional or electronic, has

shown most Patagonian toothfish tend to remain within a 50-km

radius from their release sites (Brown et al., 2013; Farrugia, 2018;

Lee et al., 2022; Troccoli et al., 2023). Recapture distances of >

200 km are observed in less than 10% of tagged fish, even though

adults can undertake journeys in excess of 5000 km (CCAMLR

Secretariat, 2017; Grilly et al., 2022). Earlier studies have therefore

concluded that Patagonian toothfish exhibit year-round site fidelity

(Collins et al., 2010; Lee et al., 2022) and extended periods of limited

displacement (up to 8 years, Troccoli et al., 2023), implicating

specific life history choices adopted by Patagonian toothfish, such as

the maximization of energy savings through reduced migratory

dispersals (Collins et al., 2010; Lee et al., 2022). Restricted

movements appear to contradict results obtained from the recent

applications of whole genome sequencing, which show some levels

of regional connectivity and genetic homogeneity (Canales-Aguirre

et al., 2018; Touma et al., 2019). The mechanisms behind

population connectivity, other than the dispersal that occurred

during a prolonged, pelagic drifting phase in egg and larval stages

(Ashford et al., 2008), remain elusive. Ontogenetic change in

toothfish bathymetric range is well established (Ashford et al.,

2007; Collins et al., 2010; Lee et al., 2021). Juveniles first become

benthopelagic and migrate into deeper waters as they grow, and as

adults, toothfish occupy depths mostly below 1000 m. It is unclear if

ontogenesis would also apply to horizontal movement, or even

more broadly, habitat utilization that varies over space (location

and/depth) and time. The large geographic scope of Patagonian

toothfish around the Southern Ocean, and that differences in size

composition of juvenile and adults in different areas (e.g., Ashford

et al., 2007) suggest ontogenetic migration could be plausible.

To address this knowledge gap, we therefore utilized newer-

generation popup satellite archival tag (PSAT), equipped with

better data acquisition and reporting technologies, to capture

fishery-independent movement and behavior of Patagonian

toothfish. PSAT tagging is preferred given its potential to study

toothfish in areas or time of year with no/low fishing effort or

closed to fishing activities (Collins et al., 2021). We prioritized the

tagging of longline-caught toothfish over 100 cm TL, as the mean

sizes at capture on Davis Bank were 97 cm and 95 cm TL for

female and male, respectively (Kim, E. J., unpublished data). A

larger body size makes these fish better suited to bear the

energetic costs of towing a PSAT, thereby increasing the chance

of post-release survival and improving data recovery. Moreover, ≥

90% of both sexes reach sexual maturity by 100 cm TL

(Laptikhovsky et al., 2006). Mature adult toothfish might

migrate in search of potential spawning sites, and thus,

contribute to population mixing.
2 Materials and methods

2.1 Satellite tags

Wildlife Computers MiniPAT (n = 32) and Lotek Wireless

PSATFLEX (n = 18) were rigged via an attachment assembly
frontiersin.org
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consisted of a 2-cm (length) “umbrella” plastic dart anchor2,3,

stainless steel crimps and an 11.4-cm (4.5-inch) tether made with

110-lb test monofilament (Galuardi and Lutcavage, 2012). Metal

anchors and attachment wires were avoided to minimize potential

damage to the tagged animals.

Per manufacturer specifications, Wildlife Computers MiniPAT

has a pressure rating of 2000 m, and records depth to 1700 m
2 https://static.wildlifecomputers.com/mds/Towed-Tag-Anchor-Suite.pdf

3 https://www.hinchinbrookei.com/product-page/anchors
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(± 0.5 m resolution), temperature from -40 to 60°C (± 0.05°C

resolution), and light from 5 x 10-12 to 5 x 10-2 W cm-2 at 440 nm

wavelength. MiniPAT has a total length and width of 118 x 38 mm,

with a weight of 61 g. MiniPAT sensors sample at various

frequencies, however measurements are only written into a tag’s

memory archive every 3 seconds to 1 minute, depending on the

user-programmed duration of a mission. Archival records can be

downloaded from the memory after physically recovering a tag.

LotekWireless PSATFLEX also has a pressure rating of 2000 m, and

records depth to 2000 m (± 1 m resolution), temperature from -10

to 45°C (± 0.05°C resolution), and light levels for geolocation
A

B

FIGURE 1

An overview of Patagonian toothfish popup satellite archival tag, or PSAT, deployments (green circles) on Davis Bank in relation to exclusive
economic zones (EEZs, gray polygons) and Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) Convention Area
(black polygons). (A) Physical and fisheries settings: Davis Bank is part of the group of islands and submarine ridges forming the Scotia Arc (dashed
line). Gridded (0.5° x 0.5°) locations of the Korean longline fleet targeting toothfish (Park et al., 2021) are indicated by green crosses (+). Notice the
relatively narrow longitudinal range of the fishing operations. (B) Antarctic Circumpolar Current (ACC) in the Scotia Sea: climatological mean
locations of the ACC fronts are derived by satellite altimetry in Park et al. (2019) and made available in Park and Durand (2019). The fronts include
the Northern Boundary (magenta line), Subantarctic Front (pink line), Antarctic Polar Front (purple line), Southern Antarctic Circumpolar Current
Front (dark purple line) and Southern Boundary (light pink line). Location of the Malvinas Current (navy blue dotted line) is approximated from Frey
et al. (2021). Estimated PSAT popoff positions from three toothfish that dispersed over 300 km from Davis Bank are shown with yellow triangles.
Refer to the main text for the estimation methods. Spatial extents of the maps in (A, B) are represented by a red polygon in the mini-map (top right)
centered on Antarctica. Bathymetry is obtained from the GEBCO 2014 gridded data set (version 20150318) through the R package, SOmap
(australianantarcticdivision.github.io/SOmap).
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(sensitivity is not specified in manufacturer references). The tag’s

total length and width measures 131 x 42 mm, with a weight of 87 g.

Upon physical tag recovery, 1-minute archival measurements can

be retrieved.

Given previous successful deployments of PSATs on toothfish

species in the literature (e.g., Brown et al., 2013), the prospect of

operating in a pressure environment that slightly exceeds stated

specifications was not a practical concern. Technical discussions

with manufacturer engineers also supported this assessment.
2.2 Experimental design

The propensity of adult toothfish staying at depths below 800 m

means no or little ambient light is available for the use of light-based

geolocation to position PSATs. We therefore utilized a PSAT to

provide a fishery-independent location when the tag ended its

mission and detached. To avoid tagged specimens from being

prematurely recaptured by the Korean fleet, tag deployments were

scheduled towards the end of their fishing activities on Davis Bank

(i.e., January). This time of the year also provided more stable

weather conditions that were conducive to fishing and tag

deployments. PSATs were configured to detach from tagged

animals after mission durations of 1 month (n = 7), 2 months

(n = 6), 3 months (n = 10), 5 months (n = 3), 6 months (n = 4), 9

months (n = 4), 12 months (n = 13) and 16 months (n = 3).

Missions of up to 9 months were scheduled to provide various

observation periods after the Korean fleet had left the southern

fishing ground. These durations also enveloped the known

spawning period on Burdwood Bank between April and

September (Laptikhovsky et al., 2006). A full-year or 16-month

mission would enable the capturing of any seasonal or inter-annual

movement pattern. Almost half of the tags were set for 1 to 3-month

missions to observe potential short-term movement, e.g., the

departure from Davis Bank after foraging there. These short

deployments could also provide practical feedback to help refine

tag configurations and field operations. Upon detachment, PSAT

was configured to initiate data transmission sequence as soon as it

reached the sea surface. This minimized the amount of time that a

tag was drifting with surface currents before it was able to establish a

link with an orbiting Argos satellite.

Given various mission durations used, PSATs were

programmed to transmit to satellites sensor data at a common

resolution to facilitate data analysis: time series at 5-minute interval

and daily summaries. Depth data were always transmitted, but

temperature data were on a duty cycle. This tradeoff was made

because below the thermocline, temperature fluctuate less.

Summarized data products (e.g., time-at-depth histograms) were

transmitted for selected tags while balancing their mission

durations and the number of satellite messages required. Detailed

settings for each tag are out of scope for characterizing toothfish

movement here, but we invite any interested readers to reach out so

that we can share and discuss further our programming logic.
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2.3 Field operations

PSATs were deployed on toothfish off Davis Bank by scientific

observers on board of the Korean commercial longliner, F/V No. 8

Meridian in 2019 and 2020 (Table 1). Safe fish handling and

conventional tagging protocols detailed in the CCAMLR tagging

handbook (CCAMLR Secretariat, 2014) were followed. During haul

back, toothfish (~ 100 cm TL) assessed in excellent condition (e.g.,

lively, injury free and without scars) were carefully brought onboard

with a conical net and unhooked (Figure 2A). Total length of a

specimen was measured to the nearest 0.1 cm. A designated, trained

observer carefully, aiming for the base of the pterygiophores, inserted a

PSAT and two conventional T-bar tags (Supplementary Table 1)

around the region between the first and second dorsal fin

(Figure 2B). With all tags placed and secured, the tagged fish was

kept in a stainless steel holding tank for about five minutes (Figure 2C),

during which the observer checked if the PSAT was being towed

properly (e.g., positively buoyant and floating away from the body) and

monitored the specimen’s condition (Supplementary Video 1). Video

and still recording of the fish’s swimming and behavior were also

obtained. At the end of the recovery period, the fish was delicately and

promptly released head first into the water (Figure 2D).
2.4 Data recovery

Once a PSAT reached the end of its programmed mission, an

electric current was passed to the release pin to trigger the popoff

process. For MiniPAT, the current is passed at 20:00 UTC after the

mission is completed. The metal release pin usually corrodes (referred

to as “pin burn”) and dissolves within one day, allowing the positively

buoyant tag to separate from the attachment assembly and begin its

ascent. Once at the sea surface, a PSAT attempted to communicate

with any of the orbiting Argos satellites. Upon establishing a successful

satellite link, a first reporting location was registered on the Argos

system, and the tag proceeded to transmit its data. Received messages

were downloaded through the web daily. Consolidated messages were

parsed and decoded by manufacturer’s software into human-readable

output files. Each dataset was then visually inspected to determine a

tag’s fate, such as premature shedding or the occurrence of a post-

release mortality event that is deducible from abnormally high daily

maximum temperatures, changes in light levels or other anomalies in

the sensor data.
2.5 Data analysis

Dispersal distance was calculated using the fish release and first

Argos satellite reporting positions via the R-package geosphere

(github.com/rspatial/geosphere). This minimum distance

calculation does not account for any drift that could have

occurred while a floating PSAT was attempting a satellite fix. In

the absence of any geolocation capabilities, horizontal movement
frontiersin.org
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TABLE 1 Satellite tag deployment and reporting metadata for Patagonian toothfish.

g
S)

Reporting
longitude (°W)

Minimum
distance (km)

Least cost path
distance (km)

54.12 384 929*

47.50 Excluded# Excluded#

50.22 16 17

49.62 48 49

49.86 36 38

49.97 8 9

51.75 26 27

51.79 8 7

49.84 36 38

51.34 6 7

49.93 9 10

41.17 Excluded# Excluded#

49.68 47 48

(Continued)

K
im

e
t
al.

10
.3
3
8
9
/fm

ars.2
0
2
4
.13

3
4
3
3
9

Fro
n
tie

rs
in

M
arin

e
Scie

n
ce

fro
n
tie

rsin
.o
rg

0
5

Fish ID/
Argos PTT

Tag
serial

Fish total
length (cm)

Release
date

Release
latitude (°S)

Release
longitude

(°W)

Mission
duration
(day)

Reporting
date

Reportin
latitude (

177062 L330-
2552

105 Jan
17, 2019

53.13 50.05 28 Feb 15, 2019 50.76

177063 L330-
2553

103 Jan
17, 2019

53.15 50.05 28 Feb 14, 2019 50.35

177064 L330-
2554

100 Jan
17, 2019

53.16 50.04 28 Feb 14, 2019 53.26

177065 L330-
2555

107 Jan
18, 2019

53.52 50.33 145 Jun 12, 2019 53.46

177066 L330-
2556

112 Jan
19, 2019

53.97 51.38 145 Did not report

177067 L330-
2557

107 Jan
26, 2019

53.53 50.33 145 Jun 20, 2019 53.36

177068 L330-
2558

120 Jan
17, 2019

53.16 50.04 102 Apr 29, 2019 53.22

177069 L330-
2559

103 Jan
19, 2019

54.03 51.38 102 May 1, 2019 53.95

177070 L330-
2560

117 Jan
24, 2019

53.90 51.90 102 May 7, 2019 53.88

177071 L330-
2561

115 Jan
30, 2019

53.55 50.32 102 May 13, 2019 53.40

177072 L330-
2562

123 Jan
31, 2019

53.77 51.25 102 May 17, 2019 53.78

177073 L330-
2563

111 Feb 3, 2019 53.53 50.32 102 Did not report

177074 L330-
2564

137 Jan
17, 2019

53.16 50.04 53 Mar 11, 2019 53.20

177075 L330-
2565

130 Jan
19, 2019

54.04 51.38 53 Mar 13, 2019 49.40

177076 L330-
2566

122 Jan
22, 2019

53.53 50.38 53 Mar 16, 2019 53.58

177077 L330-
2567

109 Jan
28, 2019

53.60 51.06 53 Did not report
°
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TABLE 1 Continued

Reporting
longitude (°W)

Minimum
distance (km)

Least cost path
distance (km)

51.24 7 8

50.23 4 5

50.78 15 15

50.27 250 264

49.97 89 95

49.57 42 43

34.40 1101 1231*

51.27 14 15

51.47 46 48

50.98 39 41

49.85 36 38

50.97 50 62

50.11 38 52

49.69 76 91

49.72 94 99

50.05 70 75

51.47 88 93

50.23 4 5

49.86 24 24

49.82 31 30

49.86 13 14

(Continued)
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Fish ID/
Argos PTT

Tag
serial

Fish total
length (cm)

Release
date

Release
latitude (°S)

Release
longitude

(°W)

Mission
duration
(day)

Reporting
date

Reporting
latitude (°S)

177078 L330-
2568

124 Jan
31, 2019

53.78 51.22 53 Mar 25, 2019 53.84

177079 L330-
2569

100 Feb 2, 2019 53.15 50.18 53 Mar 27, 2019 53.17

177080 18P0369 122 Jan
19, 2019

53.90 50.75 364 Jan 19, 2020 54.03

177081 18P0371 139 Jan
21, 2019

54.08 53.77 364 Aug 1, 2019 53.23

177082 18P0372 113 Jan
27, 2019

53.98 51.20 364 Jan 1, 2020 53.65

177083 18P0374 111 Jan
30, 2019

53.63 50.08 364 Jan 30, 2020 53.40

177084 18P0375 105 Feb 1, 2019 53.90 51.33 364 Sep 26, 2019 54.59

177085 18P0376 119 Feb 4, 2019 53.38 51.22 364 Apr 5, 2019 53.50

177086 18P0378 113 Feb 7, 2019 53.25 50.85 364 Feb 7, 2020 53.42

196749 19P0868 100 Jan 1, 2020 53.28 50.48 30 Feb 4, 2020 53.46

196750 19P0869 111 Jan 2, 2020 53.50 50.34 30 Feb 5, 2020 53.36

196751 19P0870 137 Jan 2, 2020 53.50 50.34 30 Feb 5, 2020 53.77

196752 19P0871 124 Jan 2, 2020 53.94 50.40 30 Feb 6, 2020 53.65

196753 19P0873 134 Jan 2, 2020 53.93 50.50 90 Apr 6, 2020 53.44

196754 19P0874 108 Jan 3, 2020 53.61 51.03 90 Apr 7, 2020 53.29

196755 19P0875 105 Jan 3, 2020 53.60 51.03 90 Apr 7, 2020 53.36

196756 19P0876 114 Jan 4, 2020 53.22 50.45 90 Did not report

196757 19P0877 111 Jan 6, 2020 53.65 50.17 180 Apr 24, 2020 53.84

196758 19P0878 128 Jan 6, 2020 53.65 50.18 180 Jul 8, 2020 53.67

196759 19P0879 104 Jan 6, 2020 53.62 50.05 180 Jan 25, 2020 53.44

196760 19P0886 101 Jan 6, 2020 53.63 50.04 180 Jun 15, 2020 53.39

196761 19P0887 133 Dec
30, 2019

53.34 50.06 270 Sep 28, 2020 53.36
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TABLE 1 Continued

n
Reporting

date
Reporting
latitude (°S)

Reporting
longitude (°W)

Minimum
distance (km)

Least cost path
distance (km)

Sep 28, 2020 53.49 50.15 5 6

Mar 22, 2020 53.39 50.21 81 87

Sep 30, 2020 53.26 50.84 62 63

Jan 12, 2021 53.22 50.18 7 7

Did not report

Nov 26, 2020 51.04 40.85 696 319*

Jul 29, 2020 45.01 12.67 2927 Excluded^

Jan 14, 2021 53.59 52.88 113 119

Jan 14, 2021 53.43 51.02 12 12

Apr 4, 2021 53.17 50.32 24 24

May 14, 2021 53.23 50.55 33 35

Did not report

e drift that had occurred.
eployment), and reporting locations were obtained after the tags were drifting on the sea surface for extended periods.
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Fish ID/
Argos PTT

Tag
serial

Fish total
length (cm)

Release
date

Release
latitude (°S)

Release
longitude

(°W)

Missio
duratio
(day)

196762 19P0888 124 Dec
30, 2019

53.46 50.21 270

196763 19P0889 113 Dec
31, 2019

53.79 51.23 270

196764 19P0890 133 Dec
31, 2019

53.76 51.26 270

196765 19P0891 104 Jan 8, 2020 53.18 50.25 365

196766 19P0892 124 Jan 8, 2020 53.20 50.04 365

196767 19P0893 102 Jan 9, 2020 53.63 50.18 365

196768 19P0895 97 Jan
10, 2020

53.50 51.39 365

196769 19P0908 105 Jan
11, 2020

53.41 51.21 365

196770 19P0911 98 Jan
11, 2020

53.40 51.20 365

196771 19P0912 101 Jan
15, 2020

53.22 50.66 480

196772 19P0914 126 Jan
12, 2020

53.18 50.07 480

196773 19P0915 105 Jan
13, 2020

53.69 50.16 480

* denotes least-cost path distance calculation utilized the first popoff position as estimated by particle backtracking to account for th
# denotes individuals that were excluded from any forms of distance calculation. Their tags detached prematurely (< 10 days post-d
^ denotes no least-cost path could be estimated for fish 196768 by the “lc.path” model described in Materials and methods.
n
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can only be estimated. This is done using a least-cost path

calculation function “lc.path” in the R-package marmap

(github.com/ericpante/marmap) using the release and reporting

positions as inputs. The estimation is based on the original work

by van Etten and Hijmans (2010) with bathymetric constraints

placed between 450 and 2000-m habitats, following the same

methods described in Lee et al. (2022).

For PSATs that reported > 300 km away from their initial release

site, we corrected for the distance that a tag had drifted prior to its first

successful satellite link (Table 2). Particle backtracking was conducted

with OpenDrift (opendrift.github.io; Dagestad et al., 2018) and forced

by the HYCOM NCODA GOFS 1/12° Analysis (GLBy0.08)

(hycom.org/data/glby0pt08). OpenDrift’s standard ocean drift model

(current + 2% wind drift) was applied, releasing 10000 particles around

a 1500-m radius from the first reporting location. This radius was

selected to buffer around the accuracies (location class 1 to 3) of the

Argos system (Irvine et al., 2020). Drift duration varied by individual

tag, ranging from hours to days (Table 2). For computational efficiency,

we set backtracking time step to every 30 minutes for drift duration <

33 hr, and to daily for drift duration > 33 hr. The centroid of the final

positions of the released particles was taken as the estimated tag popoff

position. Least-cost path was recalculated using the release and

estimated popoff positions.
3 Results

Tagged toothfish ranged 97 to 139 cm TL, with a mean of 114 ±

12 cm (Table 1). Even though the sex of specimens were not
Frontiers in Marine Science 08
identified, their sizes suggested that they were adults

(Laptikhovsky et al., 2006).
3.1 PSAT performance

Among the PSATs deployed, 34 (68%) completed their

designated mission and reported on time, 10 detached

prematurely and reported early (20%), and 6 failed to report

(12%). MiniPAT and PSATFLEX each contributed three cases of

non-reporting. The majority (39%) of reporting tags were deployed

on the 100-110 cm individuals. We found no significant

relationships among any combinations of tag performance with

fish length, tag model or release year/month. PSATs stayed attached

for 10-487 days, with a mean duration of 168 days. This summary

statistic does not account for the different programmed mission

durations. Irrespective of experimental design, this study’s overall

reporting rate of 88% is higher than those seen in Brown et al.

(2013); (73%) and in Farrugia (2018); (73%).
3.2 Survivorship

Among the 44 reporting PSATs, archived sensor data showed

no evidence of tag ingestion, predatory interaction or post-release

mortality i.e., tags remained attached to live fish until popoff. Even

for the two shortest deployments (< 10 d), both specimens returned

to depths below 1600 m and made numerous small depth changes

(< 60 m) for over a week before their tag anchors got loose and the
FIGURE 2

Tagging of Patagonian toothfish. (A) A healthy toothfish was carried on the boat carefully using a conical net; (B) fish was tagged with one PSAT and
two T-bar tags; (C) tagged fish was held inside a recovery tank, and (D) tagged fish delicately released head first into the water.
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PSATs worked their way out of the fish. Scientific observer also

noted that fish 177069 (103 cm TL) was appeared to be poor

condition in the holding tank before release, but this individual

survived and was monitored for 102 days until the scheduled

tag popoff.

Three physical recoveries also confirmed the longer-term

survival of tagged toothfish. Fish 177081 was recaptured with its

MiniPAT still attached, on a Chilean longline on July 31, 2019 at

53.26°S 50.34°W. Fish 177071, only carrying T-bar tags at the time

of recapture, was caught by F/V Kingstar at 53.36°S 50.36°W on 10th

October 2021, 880 days after its PSAT popped off. Fish 196770, also

carrying only T-bar tags, was recaptured by F/V Kingstar at 53.42°S

50.96°W on 19th October 2022, 278 days after its PSAT had

popped off.
3.3 Horizontal movement

Satellite data retrieval provided 42 pairs of reliable release and

reporting locations for minimum distance calculation (Table 1). A

total of 29 fish (69%) were found within 50 km of the release

locations when their tags reported. Eight fish (19%) were found

within 200 km of the release locations, and five fish (12%) dispersed

over 200 km. The longest dispersal was recorded on a 97-cm

specimen (fish 196768), with its tag popped off after 201 days at

liberty on a known toothfish fishing ground in the Southeast

Atlantic (Kim and Kim, 2008). Archived sensor data did not

support the scenario that the tag/fish was being transported by a

fishing vessel at any given time. Given our current focus on fish

movement around the Scotia Arc, horizontal and vertical data for

fish 196768 will be presented in details by a later study.

Least cost paths showed an extensive use of Davis Bank by all

sizes of toothfish (Figures 3–6), with tagged specimens concentrated

around < 1000-m bottom depth. Fish appeared to aggregate on the

eastern and southern side of Davis Bank, proximal to the deep

trough in which the Antarctic Polar Front flows through the

relatively narrow (~ 180 km wide) Shag Rocks Passage, forming

eddies and meanders that sit on Davis Bank (Artana et al., 2016).

Toothfish that carried a tag for at least 12 months were found within

15 km from where they were first released on Davis Bank,

implicating strong site fidelity for and/extended residency at this

release location. The largest specimen, a 139-cm TL fish (177081)

was recaptured about 264 km northeast from its initial release site

on western Davis Bank, after 193 days at liberty (Figure 6).
3.4 Long dispersals

Cases for toothfish dispersing > 300 km were few but they were

all completed within the same calendar year (Table 2; Figure 7;

Figure 1B). Fish 177062 (105 cm TL) moved west from its release

location on Davis Bank, and went through the north of Burdwood

Bank/Namuncurá before reaching the Falkland/Malvinas Plateau

Basin, at the edge of the Malvinas Current (Figure 7). This

PSATFLEX registered a first reporting location with the Argos

satellite system on February 15 07:48 a.m. UTC. After a pin burn
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time of 3 hours, the tag was drifting on the surface for a maximum

of 32 hours, putting it 42 km away from its initial popoff position.

Fish 177062 covered a least-cost path distance of 929 km in 28 days

at liberty, translating to a daily movement rate of 33.2 km day-1.

Fish 177084 (105 cm TL) undertook an eastward 1231-km

journey along the North Scotia Ridge towards Shag Rocks and
Frontiers in Marine Science 10
South Georgia (Figure 7). After 237 days at sea, this MiniPAT

reported on September 26 07:32 a.m. UTC to the east of South

Georgia off the 1000-m bathymetric contour, in a region with very

slow surface current (Smith et al., 2010). Tag release sequence was

initiated on September 25 20:00 p.m. UTC. After 7.5 hours, the

release pin was burnt through, releasing the tag. On the sea surface,
FIGURE 3

Least-cost paths for 13 satellite-tagged Patagonian toothfish measuring 100-109 cm total length, around Davis Bank, on the North Scotia Ridge. Tag
deployment and popoff locations are indicated with circles and triangles, respectively. Bathymetry (in meters) is obtained from ETOPO 2022 (15-
arcseconds) product through NOAA National Centers for Environmental Information (ncei.noaa.gov/maps/grid-extract). Bathymetry is plotted as a
false-color overlay, and also contoured at 500, 1000 and 2000 m as gray lines. Color scale of the bathymetry differs from Figure 1 in order to
enhance the visibility of topographic features. Exclusive economic zones (EEZs) are outlined with red dashed lines.
FIGURE 4

Least-cost paths for 9 satellite-tagged Patagonian toothfish measuring 110-119 cm total length, around Davis Bank, on the North Scotia Ridge. Tag
deployment and popoff locations are indicated with circles and triangles, respectively. Bathymetry (in meters) is obtained from ETOPO 2022 (15-
arcseconds) product through NOAA National Centers for Environmental Information (ncei.noaa.gov/maps/grid-extract). Bathymetry is plotted as a
false-color overlay, and also contoured at 500, 1000 and 2000 m as gray lines. Color scale of the bathymetry differs from Figure 1 in order to
enhance the visibility of topographic features. Exclusive economic zones (EEZs) are outlined with red dashed lines.
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the tag drifted only 4 km before linking up with Argos satellites.

Based on the least-cost path, movement rate was 5.2 km day-1.

The MiniPAT on fish 196767 (102 cm TL) detached on

November 3, after 299 days at sea. However, this tag only

registered a first reporting position on the Argos system on

November 26. The cause for this delay is not obvious or

deducible from the transmitted tag diagnostics, but it could be

possible that biofouling reduced the buoyancy of the PSAT and

hampered its ascent to the sea surface. Particle backtracking

provided an estimate of the tag initial popoff location at 53.05°S
Frontiers in Marine Science 11
45.88°W, west of Shag Rocks (Table 2; Supplementary Figure 1;

Supplementary Video 2). Given the extended drift period, no daily

movement rate was estimated.
3.5 Evidence for location-specific
depth behavior

Based on by the presence of fish 177084 off South Georgia in

September 2019, we reviewed the ambient temperatures that the
FIGURE 5

Least-cost paths for 9 satellite-tagged Patagonian toothfish measuring 120-129 cm total length, around Davis Bank, on the North Scotia Ridge. Tag
deployment and popoff locations are indicated with circles and triangles, respectively. Bathymetry (in meters) is obtained from ETOPO 2022 (15-
arcseconds) product through NOAA National Centers for Environmental Information (ncei.noaa.gov/maps/grid-extract). Bathymetry is plotted as a
false-color overlay, and also contoured at 500, 1000 and 2000 m as grey lines. Color scale of the bathymetry differs from Figure 1 in order to
enhance the visibility of topographic features. Exclusive economic zones (EEZs) are outlined with red dashed lines.
FIGURE 6

Least-cost paths for 6 satellite-tagged Patagonian toothfish measuring 130-139 cm total length, around Davis Bank, on the North Scotia Ridge. Tag
deployment and popoff locations are indicated with circles and triangles, respectively. Bathymetry (in meters) is obtained from ETOPO 2022 (15-
arcseconds) product through NOAA National Centers for Environmental Information (ncei.noaa.gov/maps/grid-extract). Bathymetry is plotted as a
false-color overlay, and also contoured at 500, 1000 and 2000 m as gray lines. Color scale of the bathymetry differs from Figure 1 in order to
enhance the visibility of topographic features. Exclusive economic zones (EEZs) are outlined with red dashed lines.
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specimen experienced and depths it occupied to approximate the

timing of its first arrival. Maximum temperatures experienced, all

recorded at depths below 500 m, were under 1.7°C since July 14 till

tag popoff (Figure 8A). Earlier in the time series, maximum and

minimum temperatures began to drop from late April to early May

(Figure 8A), during when the fish stayed predominantly below

800 m (Figure 8B). Minimum temperature first fell below 2°C in

mid-May, and remained low through mid-June (Figure 8A). During

this period, the fish occupied a bimodal depth distribution above

800 m (Figure 8B). A shift to occupying depths below 800 m

resumed after mid-June and maintained until the tag detached and

popped off (Figure 8B). Moving across longitudinally from

Burdwood Bank to South Georgia at depths of 0-1000 m, water

masses of ≤ 2°C can only be found after crossing the Antarctic Polar

Front (Figure 1B), in waters east of 47°W, or an area referred to as

the Shag Rocks Passage (Brandon et al., 2004; Smith et al., 2010).

This implied that fish 177084 might have gone past the Antarctic

Polar Front at a date much earlier than September, and possibly, as

early as May. Taking this altogether, distinct phases of temperature

experienced and changes in depth occupancy over the course of fish

177084’s journey towards South Georgia provide the first

observations for D. eleginoides that vertical behaviors varied over

place and time.
4 Discussion

Current understanding on toothfish movement has been rooted

in the concepts of site fidelity (e.g., Troccoli et al., 2023) and home

range relocation (e.g., Lee et al., 2022). Data returned from our PSATs

have revealed that Patagonian toothfishmight move inmore complex

ways than previously thought. Similar to studies releasing thousands
Frontiers in Marine Science 12
of conventional tags (CCAMLR Secretariat, 2017; Burch et al., 2019;

Lee et al., 2022; Troccoli et al., 2023), dispersals > 300 km were

observed in about 10% of our handful of electronic tags. The main

distinction here is that, with satellite tagging, it is possible to observe

toothfish in places and/times of year that are typically not sampled by

the fisheries. This contrasts with conventional tagging in which tag

recaptures are, by nature, incidental, and thus, are highly dependent

on the timing, location and effort of survey and fishing activities.

With PSATs, we showed that toothfish took only 1-9 months to

disperse over 300 km from Davis Bank, and attained movement rates

previously unobserved from conventional tag recaptures.
4.1 Movement connectivity

Dispersals from Davis Bank include: (1) northward movement

to fishing grounds located northeast and east of the Falkland

Islands/Isla Malvinas, (2) western movement towards Burdwood

Bank, and (3) eastern movement towards South Georgia, also a

known spawning location (Bamford et al., 2024). Most importantly,

our tagged toothfish, all between 102-105 cm TL (n = 3), completed

their long-distance dispersals within 10 months (Figure 7). This

contrasts with Lee et al. (2022) observing that only fish > 120 cm TL

undertook long dispersals. Based on an average recapture time of 2

years, Lee et al. (2022) concluded that large-scale, annual migrations

undertaken by toothfish on a seasonal basis were unlikely, and long-

distance movements are a result of home-range relocation. Our

current findings contradict with this view as long dispersals can

occur as short as within 1 month (fish 177062). The concept of

“one-way” relocation requires further examination, as it relies on

the assumption that adult toothfish possess limited mobility due to

its white-muscle dominated physiology (Collins et al., 2010), and
FIGURE 7

Least-cost paths for 3 satellite-tagged Patagonian toothfish that dispersed over 300 km (see Table 2 for metadata). Tag deployment and estimated
popoff locations are indicated with circles and triangles, respectively. First Argos reporting locations are represented by crosses (+). Bathymetry (in
meters) is obtained from ETOPO 2022 (15-arcseconds) product through NOAA National Centers for Environmental Information (ncei.noaa.gov/
maps/grid-extract). Bathymetry is plotted as a false-color overlay, and also contoured at 1000 and 2000 m as gray lines. Color scale of the
bathymetry differs from Figure 1 in order to enhance the visibility of topographic features. Exclusive economic zones (EEZs) are outlined with red
dashed lines. Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) Convention Area (Subareas 48.2, 48.3 and 48.4) is
marked by black dotted lines.
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consequently, would not be capable of returning to where they have

previously dispersed from through sustained swimming.

Dispersal patterns identified in this study can be integrated with

those observed in other tagging studies (Brown et al., 2013; Lee et al.,

2022; Troccoli et al., 2023) to form a more informed picture of regional

connectivity. For instance, a tagged toothfish traveled 1009 km from

north of the Falkland/Malvinas Slope to North Scotia Ridge (Lee et al.,

2022), close to our PSAT release locations on Davis Bank. Coupling

that example with fish 177062’s dispersal to the Falkland/Malvinas

Plateau Basin, two-way exchanges between these sites become

plausible. This connection could be extended by fish 177084’s

eastward transit to South Georgia, linking toothfish hotspots along

the northern section of the Scotia Arc. Connectivity patterns such as
Frontiers in Marine Science 13
this one may yet to be better defined. Genetic techniques have detected

putative migrants from other South American locations, including

migrants from northern Peru detected in FLK samples, and southern

Peru migrants found among South Georgia specimens (Canales-

Aguirre et al., 2018). Moving in the opposite direction, putative

migrants from South Georgia were found in specimens collected

from FLK and southern Chile (Canales-Aguirre et al., 2018). Broad-

scale connectivity has also been suggested for toothfish across the

Kerguelen Plateau and with those at Crozet and Marion and Prince

Edward Islands, deduced from a small number of migrants (37 out of

9417 recaptured fish) moving against the Antarctic Circumpolar

Current (Burch et al., 2019). As the analyses of genetic markers,

chemical signatures, morphological features and parasitic load
A

B

FIGURE 8

Transmitted underwater data logged by fish 177084 PSAT sensors throughout its time at liberty, summarized at 4-hour intervals. (A) Minimum
(turquoise dots) and maximum (black dots) ambient temperature recorded. (B) Time-spent at depth intervals expressed at percentage (0-100%) of
the 4-hour period (false color). Note not all acquired data can be transmitted and recovered by orbiting satellites, resulting in gaps along the x-axis.
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patterns continue to provide new clues on population structure (e.g.,

Arkhipkin et al., 2022), fishery-independent tagging studies could show

how movements of individuals are accomplished and result in the

genetic connectivity patterns observed.

The route that individual toothfish took in long-distance dispersals

indicates that it may become pelagic for a period to maneuver over

deep water. Fish 177084’s eventual arrival at waters near South Georgia

must have pointed that during part of its journey, it moved away from

the bottom and traveled in the water column, for example, through the

Shag Rocks Passage where bottom depths exceeded 3000 m (Olivé

Abelló et al., 2021). Moreover, the rapid movement rate of fish 177062

suggests that, off the eastern Burdwood Bank, a toothfish may utilize

the Subantarctic Front that offshoots into the Malvinas Current to

travel north (Figure 1B). There, subsurface currents at 400-600 m can

reach up to 0.1 ms-1 (Frey et al., 2021), and can provide an energy-

efficient way to travel. Applications of magnetometers in electronic tags

(e.g., Parker et al., 2014) may assist in characterizing toothfish

navigational capabilities and physiological adaptations (e.g., visual

physiology; Kiss, 2008) for their deep-sea niches.
4.2 Experimental design and
future directions

Movements of marine fishes have traditionally been and continued

to be inferred from conventional tag recaptures. The low cost of

conventional tags (< $2 USD) has allowed that large sample sizes are

routinely achieved, and tag recaptures be readily incorporated into

stock assessment and simulation models used in fisheries management.

In particular, the hundreds of thousands of conventional tags released

on Patagonian toothfish during CCAMLR activities (CCAMLR 2017)

provides a robust and growing data source to help improve stock

definitions and delineate exchanges among management units. PSATs,

as a matter offinancial realities, will never reach the scale and statistical

power provided by conventional tags, no matter how advances in

technology may drive down the cost. Therefore, it is crucial that

researchers design experiments to maximize the benefits of utilizing

various, often complementary, tag types.

PSATs, with its unique advantage of being fishery independent, can

detect toothfish presence in other locations around the vast Southern

Ocean that are difficult to monitor through fisheries interactions. A

lesson learnt, albeit painfully from our own mistake, is the need to

collect light curves used for geolocation, in case of a toothfish spending

a substantial amount of time above 400 m. PSAT deployments can also

be extended to other life stages to profile movement dynamics more

representatively. For instance, tagging sub-adults or juveniles at 70-

90 cm TL is a priority, as they are frequently observed in the longline

catch compositions within CCAMLR4 and in conventional tag

recaptures off South Georgia (Earl and Readdy, 2022).

In this study, mission duration, or “popup date”, was configured

to track toothfish movement across temporal scales, reduce

incidental recapture of PSATs, and span known spawning

periods. This approach is not new; in fact, Lutcavage et al. (1999)
4 https://fisheryreports.ccamlr.org/
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synchronized all PSATs to report on June 1, at the assumed peak of

spawning for Atlantic bluefin tuna, in order to map the distribution

of mature adults. Similarly, PSATs can be scheduled to provide

spatial information on toothfish at a time of interest or in a data-

poor situation, such as during the minor spawning period off South

Georgia (Bamford et al., 2024). Decoupled from fishery recapture,

PSATs offer temporal and practical flexibility that researchers can

creatively exploit in their investigation of toothfish ecology.

Cooperative research with industry partners should also be

encouraged. Apart from delivering concrete results in this study, the

iterative planning process and field implementation provided a

platform for our stakeholders to exchange ideas and develop

solutions collaboratively. It also allowed fishers to better understand

the logic behind research objectives and approaches, which oftentimes

are obscure to them. In turn, fishers shared their valuable knowledge in

at-sea operations and animal handling, something that should not be

overlooked and can contribute to higher fish survival and data

recovery. To address the myriad of challenges presented by climate

change, stakeholders must work together in constructive and

innovative ways to deliver the best, up-to-date scientific information.
4.3 Implications for fisheries management
and conservation

With PSAT popping off South Georgia, we showed that toothfish

dispersal links up areas outside and inside of the CCAMLR

Convention Area. Marine fish’s apparent disregard for management

boundaries, despite posing a headache to fisheries managers, is not

uncommon (e.g., Lam et al., 2022). Recognizing this biological

phenomenon can lead to an increased and much needed

appreciation of regional connectivity (Moon et al., 2017), and a

move towards integrated management and conservation across

jurisdictions (Murphy et al., 2021). Coordination among all

managed fisheries has already been recommended for a conspecific,

Antarctic toothfish (D. mawsoni), as necessitated by the high genetic

connectivity across their circumpolar distribution (Maschette et al.,

2023). In the management of Dissostichus spp., CCAMLR is well

positioned to leverage its knowledge, expertise and cooperation

among its contracting parties to foster partnerships and improve

regional governance5. This is especially important as the dynamics of

the Southern Ocean are rapidly changing, and the Antarctic ecosystem

may not be as isolated as previously thought (Fraser et al., 2018).

At a basic science level, how Patagonian toothfish are able to

distribute across a broad latitudinal range (~ 50°), evident from D.

eleginoides fisheries spanning the Southern Ocean, coastal South

America to the equatorial Pacific (off Ecuador, Zambrano et al.,

2023), remains unsolved. Novel connectivity mechanisms across the

Antarctic Polar Front are yet to be explored, as invertebrates (e.g.,

brittle star, Galaska et al., 2017) and plants (e.g., kelp, Fraser et al.,

2017) have managed a similar feat. As a start, we postulate that adult

toothfish are capable of utilizing underwater currents to assist with
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their dispersal. A greater understanding on toothfish movement

and navigation will widen our perspectives and enhance the

biological realism of our fisheries and ecosystem models.
4.4 Concluding remarks

Satellite tagging of Patagonian toothfish in the Southwest

Atlantic has offered new insights into fish movement, challenging

us to consider that toothfish might not be as sedentary as currently

assumed. While we only confirmed long dispersals in a handful of

individuals, the short amount of time (< 1 year) that they used to

cover large distances implies brief dispersal events could be missed

by conventional tag recaptures and analyses of genetic signatures.

Our understanding of Patagonian toothfish life history and ecology

is likely to expand with the exciting fishery-independent clues on

location, depth and temperature habitat that have not been made

available in large volume until now.
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