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The critical nature of passive ship-radiated noise recognition for military and

economic security is well-established, yet its advancement faces significant

obstacles due to the complex marine environment. The challenges include

natural sound interference and signal distortion, complicating the extraction of

key acoustic features and ship type identification. Addressing these issues, this

study introduces DWSTr, a novel method combining a depthwise separable

convolutional neural network with a Transformer architecture. This approach

effectively isolates local acoustic features and captures global dependencies,

enhancing robustness against environmental interferences and signal variability.

Validated by experimental results on the ShipsEar dataset, DWSTr demonstrated a

notable 96.5\% recognition accuracy, underscoring its efficacy in accurate ship

classification amidst challenging conditions. The integration of these advanced

neural architectures not only surmounts existing barriers in noise recognition but

also offers computational efficiency for real-time analysis, marking a significant

advancement in passive acoustic monitoring and its application in strategic and

economic contexts.
KEYWORDS

ship-radiated noise, underwater acoustic target recognition, deep learning, DWS-
Transformer collaborative deep learning network, depthwise separable convolution
1 Introduction

Ship-radiated noise plays a critical role as a significant source of oceanic noise, making

its recognition essential across diverse domains, including maritime security, navigation,

environmental monitoring, and ocean research. However, the recognition of ship-radiated

noise in the real marine environment poses significant challenges. The underwater

environment comprises various types of underwater acoustic signals resulting from

ocean movements, marine creatures, vessels, etc. The unwanted presence of natural

sounds can greatly obscure the target’s signals, posing a great challenge to accurately

identify and discern the distinct features of ship-radiated noises.

In addition to the interference caused by ambient noise, the challenge of accurately

identifying ship targets based on their radiated noises is intensified by the inevitable
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attenuation and distortion that occur in received acoustic signals.

Furthermore, the noise emitted by a ship is primarily attributed to

the vibrations generated by its various components. These

vibrations result in a multifaceted soundscape consisting of

mechanical noise, propeller noise, hydrodynamic noise, and other

contributing factors (Li and Yang, 2021). The intricate blend of

these auditory elements poses a significant challenge that makes it

difficult to solely rely on the analysis of radiated noise to accurately

identify ship targets.

In the field of recognition tasks, researchers primarily focus on

two crucial aspects: feature extraction and classifier design. The

process of feature extraction involves extracting meaningful and

relevant information from the input data and transforming it into a

more compact and representative format. On the other hand,

classifier design involves the creation and implementation of

models that can effectively classify and categorize the

extracted features.

In the field of feature extraction methods, the traditional

approaches such as the discrete wavelet transform (DWT)

(Mallat, 1989), the low-frequency array (LOFAR) (Polatidis et al.,

2013), and the detection of envelope modulation on noise

(DEMON) (Pollara et al., 2016) are valuable in certain

applications, but they may struggle to address the full range of

challenges posed by underwater acoustic signals.

The DWT, which decomposes signals into different frequency

bands, faces challenges in differentiating desired signals from

background noise and environmental interference, as highlighted

in academic literature. Key disadvantages identified include shift

sensitivity, where DWT’s output can vary significantly with slight

input shifts, limiting its use in precise signal localization; poor

directionality, which restricts its effectiveness in multidimensional

signal processing, like image analysis; and the inability to preserve

phase information, crucial for detailed signal structure and timing

(Fernandes et al., 2004). Furthermore, the computational

complexity and resource consumption of conventional DWT, as

discussed by Alzaq et al. (Alzaq and Üstündağ, 2018) present

further challenges, particularly in areas requiring low-

frequency focus.

LOFAR spectra transform signals from the time domain to the

time-frequency domain using shorttime Fourier transform (STFT),

which is particularly significant for sound source information with a

high signal-to-noise ratio. As discussed by Chen et al. (Chen et al.,

2021) and Luo et al. (Luo and Feng, 2020), the process implies that

LOFAR is more attuned to identifying low-frequency elements in

sonar ship target recognition, which may suggest inherent

limitations in capturing high-frequency details.

DEMON, a technique for monitoring and detecting impulsive

underwater sounds, faces challenges in real-time analysis and

adaptability to changing noise conditions, as discussed by Tian

et al. (Tian et al., 2023). Its effectiveness in recognizing different

types of underwater acoustic events or sources is limited, especially

when dealing with complex and variable noise signatures.

Auditory-characteristic-based extraction methods, such as Mel-

frequency cepstral coefficients (MFCCs) (Davis and Mermelstein,

1980a) and Mel-spectrogram (Davis and Mermelstein, 1980b), can

help mitigate the shortcomings mentioned above (Hinton et al.,
Frontiers in Marine Science 02
2012). By mapping the signal’s frequency content to the mel-scale,

these methods provide improved frequency resolution, enabling the

capture of nuances in underwater acoustic signals. Additionally,

they exhibit noise robustness through logarithmic compression,

which emphasizes perceptually relevant features while suppressing

noise components. Thus the performance is enhanced in the

presence of additive noise. However, the inclusion of the Discrete

Cosine Transform (DCT) in MFCCs can inadvertently filter out

valuable information and increase computational complexity.

However, Mel-spectrograms can directly represent the signal’s

complete spectral information, including both magnitude and

phase, without requiring additional computation steps or

omitting crucial details. Therefore, in this paper, the choice of

feature extraction method to handle raw underwater acoustic data

falls on the Mel-spectrogram.

Previous studies have demonstrated the application of statistical

classifiers in the field of underwater acoustic signal recognition,

showcasing notable achievements (Filho et al., 2011; Yang et al.,

2016; Tong et al., 2020). However, achieving promising results often

requires sophisticated feature engineering and abundant prior

knowledge. Furthermore, the statistical approaches usually entail

a relatively complex process of partitioning the problem into

multiple subsections and then accumulating the results

(Khishe, 2022).

Deep learning methods provide effective solutions to handle the

limitations mentioned above, which have brought new ideas to

strengthen data analysis and improve the accuracy of shipradiated

noise recognition. Their automatic feature extraction capability

eliminates the need for manual engineering. However, there are

inherent deficiencies in traditional network architectures like Deep

Belief Networks (DBNs) (Zhao et al., 2016; Tang et al., 2017; Yang

et al., 2018; Wu et al., 2019)and Convolutional Neural Networks

(CNNs) (Chen et al., 2017; Wang et al., 2017; Chen et al., 2018; Shen

et al., 2018). While excelling in capturing local features and

preserving locality, they struggle with comprehending long-range

dependencies and capturing global temporal patterns. Designed

primarily for local feature extraction, they lack effectiveness in

capturing broader temporal relationships within ship-radiated

noise data. Additionally, their inherent computing mechanisms

make them computationally expensive and time-consuming.

Perotin et al. (Perotin et al., 2019) introduce a method that

combines CNN blocks with a recurrent neural network (RNN)

block to enhance classification accuracy by capturing temporal

dependencies, where CNN blocks extract locally invariant high-

level features and the RNN block gathers related features. However,

the use of RNN introduces the short-term memory problem,

hindering the network’s ability to learn long-term dependencies.

For longer input sequences, the RNN model may neglect

information at the beginning (Zhou et al., 2018). Although CNNs

can partially address this issue by applying different kernels to the

input sequence, as the maximum length of the input sequence

increases, the number of kernels required to capture dependencies

grows exponentially. This can result in ineffective training and

model overfitting, limiting the model’s performance. Therefore,

there is a need for alternative approaches that can address long-

term dependencies more effectively while avoiding potential
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training and overfitting challenges caused by an increasing number

of parameters.

The Transformer was initially introduced in natural language

processing (Vaswani et al., 2017; Devlin et al., 2018; Brown et al.,

2020) to overcome recursion and enable parallel computations,

reducing training time and minimizing performance drops due to

long dependencies. Being a non-sequential model that doesn’t rely

on past hidden states, the Transformer exhibits robust global

computation and flawless memory, making it more suitable for

processing lengthy sequences compared to RNNs. In the domain of

ship-radiated noise signal recognition, the Transformer architecture

has emerged as a pivotal tool, adeptly handling complex acoustic

signals. Li et al. (Li et al., 2023) demonstrated the Transformer’s

proficiency in learning temporal information under low signal-to-

noise ratios, significantly bolstering signal recognition and

denoising. Feng et al. (Feng and Zhu, 2022) delved into the

Transformer’s core feature, the attention mechanism, highlighting

its effectiveness in isolating critical signal features amidst substantial

background interference. Yang et al. (Yang et al., 2023) innovatively

merged two-dimensional adaptive compact variational mode

decomposition with the Transformer, enhancing the extraction

and denoising of ship-radiated noise textures, thereby markedly

surpassing traditional methodologies. This transformative approach

in underwater acoustic signal processing stands as a beacon, offering

a robus t so lu t i on to the complex i t i e s inhe ren t in

marine environments.

The rising trend of researchers proposing transformer-based

models to improve various tasks highlights the growing interest in

their capabilities. However, it is important to note that the

Transformer stands out with its notably reduced spatial-specific

inductive bias compared to CNNs (Dosovitskiy et al., 2020). This

distinction arises from inherently integrating locality,

twodimensional neighborhood structure, and translation

equivariance across all layers for CNNs. Jin et al. (Jin and Zeng,

2023) adeptly combine the Res-Dense CNN with the Transformer’s

attention mechanism to address ship-radiated noise challenges in

complex marine environments. They leverage the Residuals CNN

module to prevent network degradation, while the attention

mechanism effectively highlights important features in time series

data. Duan et al. (Duan et al., 2022) employ signal enhancement

techniques alongside a one-dimensional CNN and Vision

Transformer’s multihued attention mechanism. This innovative

approach significantly boosts the signal-to-noise ratio of ship-

radiated noise, particularly in extremely low signal-to-noise

conditions ranging from -20 dB to -25 dB.

In the complex marine environment, ship sound recordings are

often contaminated by persistent, irregular background noise. To

develop an effective recognition model, it is crucial to denoise the

data while preserving the essential feature dependencies present in

the original recordings. This study takes inspiration from the

CRNN architecture and proposes a novel approach that combines

a depthwise separable convolutional neural network (DWSCNN)

with a Transformer. This integration aims to enhance the model’s

ability to capture both spatial characteristics and feature

dependencies accurately. By decomposing the convolution

operation into separate depthwise and pointwise stages, the
Frontiers in Marine Science 03
computational complexity can be significantly reduced. This

reduction in complexity makes the DWSCNN more efficient than

traditional CNNs, particularly when operating on large-scale

datasets or in resource-constrained environments.

The contributions in this paper can be summarized as:
1. In order to address the performance degradation resulting

from long-term dependencies and noisy input data, we

introduce a Transformer approach. The model can

automatically assign higher importance to relevant

information frames, thereby enabling improved modeling

of spectral dependencies and capturing critical

temporal dependencies.

2. In order to enhance spatial modeling in underwater

acoustic signal recognition, we propose a DWSCNN

combined with the Transformer framework. The model

gains the ability to effectively analyze and interpret spatial

characteristics, leading to more precise and reliable results

in recognizing underwater acoustic signals.

3. In order to reduce computational complexity and realize

real-time analysis, the convolution operation is separated

into pointwise and depthwise stages. This separation allows

for more efficient processing, reducing the overall

computational load and enabling faster analysis of data.
The rest of the paper is structured as follows. Section II details

the methodology of feature extraction and the proposed neural

network. Section III presents the dataset used in this paper and

analyses conducted from experimental results. Finally, conclusions

are given in section IV.
2 Methodology

2.1 System overview

This paper proposes a hybrid network, DWSTr, to ensure data

integrity and model efficiency. The spectrogram is initially

processed by the DWS block, generating a two-dimensional

spatial feature mapping. This mapping is then flattened,

segmented, and position-embedded, forming a one-dimensional

sequence. The Transformer block subsequently processes the entire

sequence, learning the timing correlation information. By

combining the strengths of the DWS block and Transformer

block, the proposed network effectively maintains the integrity of

the data while efficiently capturing timing correlations, leading to

improved performance. The overall architecture of the proposed

model is shown in Figure 1.
2.2 Feature extraction

In the dataset, each recorded ship-radiated noise sample is

stored as a one-dimensional array based on the audio length and

sampling rate. Extracting informative feature representations

necessitates the use of Mel-spectrograms since they offer a
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distinct advantage due to their ability to comprehensively represent

the raw data while also providing flexibility in parameter selection,

such as window length and overlap. This adaptability allows for

customization that aligns with the specific requirements of

underwater acoustic analysis. Moreover, Mel-spectrograms

seamlessly integrate into deep learning models because they can

directly process spectrogram-like inputs. Hence, they are

exceptionally well-suited for acoustic signal recognition tasks that

involve the utilization of neural networks. Figure 2 shows the

extraction process of the Mel-spectrogram. In the process, an

audio signal first goes through a pre-emphasis filter. The filter is

employed to balance the frequency spectrum since high frequencies

usually have smaller magnitudes compared to lower frequencies.

Besides, it can avoid numerical problems during the Fourier

Transform operation and also improve the signal-to-noise ratio.

Frequencies are time-varying, so in most cases, applying the

Fourier transform to the entire signal would make no sense and lose

the frequency contours of the audio data. However, it can be safely

assumed that frequencies in a signal are stationary over a very short

period. Hence, a good approximation of the frequency contours can

be obtained by concatenating adjacent frames ’ Fourier

transformation results. To avoid variations in a frame, the frame

size is usually set small with a millisecond level. In this paper, the

frame size of the ship-radiated noise is set to be 25 ms, with feature
Frontiers in Marine Science 04
aggregation conducted over a temporal interval of 75 ms. A

Hanning window is used in the work to reduce spectral leakage.

Then, a 2048-point FFT with 512 hopping-length in the time

domain is applied to each frame in order to generate the

frequency spectrum. The power spectrum is computed by

Equation 1,

P =
FFT(xi)j j2

N
(1)

where FFT stands for Fast Fourier Transform and xiis the ith

frame of signal x. In the end, the Mel filter bank with 128 bins is

applied to the power spectrum to extract the Mel-spectrogram. The

rationale behind the choice of 128 is that it is a power of 2, hence it

is convenient for the calculations conducted in the neural network.

The Hertz(f) and Mel(m) can be converted using Equations 2, 3.

m = 2595 log10 (1 +
f
700

) (2)

f = 700(10m=2595 − 1) (3)

The Mel-scale aims to be more discriminative at lower

frequencies and less discriminative at higher frequencies. With a

22050 Hz sampling rate, a 75 ms signal can generate a Mel-

spectrogram with the size of 128 × 4. Although the Mel-

spectrogram can only reflect the static characteristics of the

signal, the duration of each audio signal is short enough to be

safely assumed that the target is relatively stable, and therefore, only

the static features are mattered. Figure 3 represents an original ship-

radiated noise signal and its corresponding Mel-spectrogram.
2.3 Model architecture

The overall DWSTr architecture contains two main parts: a

DWS block to extract a compact spatial feature representation and a

Transformer block to extract timing correlation characteristics. The

basic conception of the architecture is inspired by the classical

CRNN model with the replacement of a DWS for CNNs, which

results in a smaller amount of parameters and increased
FIGURE 2

Block diagram of the Mel-spectrogram extraction process. The
process mainly includes three stages: (1) the pre-processing stage
involves pre-emphasizing, framing and windowing the original
signal; (2) the spectrum transformation stage involves N-point Fast
Fourier Transform (FFT) on each frame and then computing the
power spectrum; (3) the Mel-spectrogram transformation stage aims
to apply triangular filters on a Mel-scale to the power spectrum to
extract frequency bands and apply logarithm to extract the
Mel-spectrogram.
FIGURE 1

The overall architecture of the proposed method in this paper: (1) the audio signal’s Mel-spectrogram is used as the input; (2) a DWS block is
employed to extract spatial features and the generated feature map is used as the Transformer’s input; (3) a Transformer is adopted to automatic
learn temporal features and classify the target.
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performance (Ioffe and Szegedy, 2015; Szegedy et al., 2015; Chollet,

2016; Szegedy et al., 2016; Howard et al., 2017), and the replacement

of a multi-head attention based Transformer for RNNs, which can

perfectly model temporal context and evade the short-term

memory problem.

In detail, the proposed model first accepts an input Mel-

spectrogram as X ∈ RT×N×1, where T is 128 and N is 4. The DWS

block is mainly composed of a 2D Depthwise convolution layer and a

Pointwise convolution layer. Each layer is followed by a normalization

process and a rectified linear (ReLU) activation function to overcome

the vanishing gradient problem, allowing the model to learn faster and

perform better. Figure 4 illustrates the structure. In a typical 2D CNN

with unit stride and zero padding, the spatial and cross-channel

learning process can be described by Equation 4,

Zx
0
H−Kh ,x

0
W−Kw ,ko

= (Kko*X)(xh − kh, xw − kw, ki)

=o
Kh

kh
o
Kw

kw
o
Ki

ki

Xxh−kh ,xw−kw ,kiKkh ,kw ,ko (4)

where * denotes the convolution operation. ki and ko are the

number of input and output channels of the CNN respectively. Kh

and Kw represent the height and width of the kernel of each channel.

Normally, they are set to be equal to generate a square kernel. Each

kernel K ∈ RKh�Kw�Ki is applied to the input X ∈ RXH�XW�Ki , then

the output Z ∈ RX0
H�X0

WKo is obtained. Its computational complexity

is O(Kh · XH · Kw · XW · Ki · Ko) and the total number of its learnable

parameters is Kh · Kw · Ki · Ko, excluding the bias b ∈ RKi .

Different from traditional CNNs, DWS separates the whole

process described above into two parts. Instead of using only one

kernel to learn both spatial and cross-channel information in a
Frontiers in Marine Science 05
single convolution, there are two kernels and two convolutions,

namely depthwise convolution and pointwise convolution, are

employed in series for the input X. At first, Ki kernals Ks ∈
RKh�Kw are applied to each Xki . The learned spatial relationships,

F ∈ RX0
H�X0

W , in X can be calculated by Equation 5:

Ft−Kh ,n−Kw ,ki = (Ks
ko*Xki )(t − Kh, n − Kw)

=o
Kh

kh
o
Kw

kw

Xt−kh ,n−kw ,kiK
s
kh ,kw ,ki (5)

where t = 1,…,T and n = 1,…,N. The result is immediately fed

into the second part. Ko kernels are utilized with K  =  

kz1, kz2,…, kzko
� �

, and are applied to F = {F1,…,FKi}, aiming to

extract the cross-channel relationships. The final output is gained

based on Equation 6,

Zx
0
H ,x

0
W ,ko

=o
Ki

ki

Fx0H ,x
0
W ,ki

Kz
ko ,ki (6)

It can be concluded that the computational complexity of the

DWS is O(Kh · Kh · XH · Kw · XW · Ki + x0H · x0W · Ki · Ko). while its

total number of parameters is Kh · Kw · Ki+ Ki · Ko.

The reduction in the total number of parameters is:

Kh · Kw · Ki + Ki · Ko

Kh · Kw · Ki · Ko
=

1
Ko

+
1

Kh · Kw
(7)

Since Ko, Kh and Kw are greater than or equal to 1 by definition,

the right side of Equation 7 is less than 1. Hence, the parameters

needed are effectively reduced. As for the computational

complexity, its change can be expressed as:
FIGURE 3

The original signal and its corresponding Mel-spectrogram.
FIGURE 4

A detailed description of the DWS block. It mainly contains two parts: the DWC (Depthwise Convolution) layer and the PWC (Pointwise Convolution)
layer. Each convolution layer is followed by a BN (batch normalization) layer and a ReLU activation layer.
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Kh·XH ·Kw·XW ·Ki+x
0
H ·x

0
W·Ki·Ko

Kh·XH ·Kw·XW ·Ki·Ko

= 1
Ko

+ x0H ·x
0
W

Kh·XH·Kw·XW

(8)

where Ko, Kh and Kw are greater or equal to 1. The x0H and x0W
are the input feature dimensions of the pointwise convolution layer.

By definition, they are also the output feature dimensions of the

depthwise convolution layer. Hence, there will be:

x
0
H =

XH − Kh + 2Padding
Stride

+ 1 (9)

and

x
0
W =

XW − Kw + 2Padding
Stride

+ 1 (10)

In this paper, a unit stride is used along with zero padding.

Consequently, Equations 9, 10 are updated to Equations 11,

Equations 12, respectively.

x
0
H = XH − (Kh − 1) (11)

and

x
0
W = XW − (Kw − 1) (12)

Since Kh and Kw are greater than or equal to 1, x
0
H and x

0
W are

less than XH and XW respectively. Hence, the result of Equation 8 is

less than 1, which proves that the DWS can successfully extract

spatial features and cross-channel information that is hidden in the

input data with less computational costs than traditional CNNs.

The process is illustrated in Figure 5.

By reconstructing the input sample, the DWS network can

effectively extract spatial characteristics contained in the
Frontiers in Marine Science 06
spectrogram without destroying the structure information.

However, the temporal features hidden in the ship-radiated noise

remain un-highlighted. In order to achieve better recognition

results, a Transformer is connected to the DWS block. The

standard Transformer receives each input as a one-dimensional

sequence of embedded tokens. In order to handle the two-

dimensional feature maps generated by the DWS, a patch

embedding projection is employed to reshape the input feature

maps Z ∈ Rx
0
H�x

0
W�Ko into sequences of flattened 2D patches Zp ∈

RN�(PH ·PW ·Ko), where PH and PW are the height and width of each

patch and they are usually set to be equivalence. N = (x
0
Hx

0
W)=(PH ·

PW) is the total number of patches, which also serves as the effective

input sequence length for the Transformer. Hence, every input

sequence can be obtained by simply flattening the spatial

dimensions of the feature map and projecting to the Transformer

dimension. Subsequently, a learnable class embedding is prepended

to the sequence and a position embedding tensor is tailed to the

sequence aiming to preserve the feature map’s positional

information. Together, the position annotated sequence serves as

input to the Transformer’s encoder, where all the patches can be

parallelly received and encoded. Although the input feature maps

are batched together, their dimensions are the same, ensuring that

parallel computing can go without a hitch. The process can be

expressed by Equation 13,

Z0 = ½Zclass;Z
1
pE;Z

2
pE;⋯;ZN

p E� + Epos (13)

where E is the trainable patch embedding, which flattens the

patches and projects them to the Transformer dimension. Epos is the

learnable position embedding. It learns each patch’s positional

information in the sequence so that even if the input feature
B

A

FIGURE 5

The detailed illustration of the process of the depthwise separable convolution. (A) denotes the role of the depthwise convolution layer: learning
spatial information using Ki different kernels from the multi-channel input. (B) denotes the responsibility of the pointwise convolution layer: learning
cross-channel information using Kodifferent kernels.
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mapping is dimensionality deducted, reshaped, and segmented, its

higher dimensional lexeme can be mostly retained. The class token

Zclass serves as a label of the linearly flattened sequence. It is always

placed in the very first place to ensure that the Transformer can find

it every time without going through the entire sequence.

In the following step, the model learns more abstract features

from the embedded patches using a stack of transformer encoders.

The encoder consists of alternating layers of self-attention and

MLP. Layer normalization (LN) is applied before every layer and

layers are connected by residual connections. The multi-head

attention (MHA) is employed rather than the single head

attention in the encoder. Because MHA allows the model to

perform attention multiple times in parallel which results in

better performance and richer information extracted from

different representation subspaces. The procedure is encapsulated

by Equations 14, 15, with Equation 14 illustrating the

comprehensive process and Equation 15 specifying the operation

within a single head. For each patch in the input sequence, an

attention weight A is calculated. The attention score is based on the

pairwise similarity between two patches of the sequence and their

respective query q and key k representations. Its calculation process

can be expressed as Equation 16:

MHA(Zl−1) = ½head1; head2;…; headm�Wo

=o
m

i
headiW

o
i

(14)

headi = softmax(qkT=
ffiffiffi
d

p
)v (15)

½q, k, v� = Zl−1Uqkv (16)

where, both W° and Uqkv are learnable matrices. Zl−1 denotes

the output generated from the former layer and d is usually set to be

equal to the hidden dimension of the patch’s key representation.

By applying the MHA mechanism, the salient time correlation

features hidden between frames can be efficiently obtained.

Although recurrent layers used in RNNs are also good at

extracting the temporal features from the sequential data, the

MHA can do it much faster. As noted in Table 1, if an input

sequence length is n, then a Transformer with a self-attention

mechanism layer will have access to each element with O(1)

sequential operations whereas an RNN with a recurrent layer will

need O(n) sequential operations to access an element. With O(n)

sequential operations and under the influence of the chain rule in

the backward propagation calculation process, long sequences will

cause problems with exploding and vanishing gradients. However,
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the Transformer does not suffer from the gradient problem, since

the distance to each element in the sequence is always O(1)

sequential operations away. In this paper, n is the total number of

patches N = 13, which is considerably smaller than the

representation dimension d = 14 × 14. Hence, by employing the

attention method rather than the recurrent method, the

computational complexity can be greatly reduced.

The attention score is then sent to a simple, position-wise fully

connected feed-forward neural network, MLP. It normalizes the

outputs and aids in learning during backpropagation via residual

connections. The other sub-layers help to stabilize the network

while deepening the model so that the problem of vanishing

gradients can be avoided. The outputs of the Transformer

encoder are sent into a classification head. It is implemented by

an MLP with one hidden layer and it receives the value of the

learnable class embedding, namely the class token, to generate a

classification output based on its state. The entire set of processes is

delineated from Equations 17–19

Z
0
l = MHA(Zl−1) + Zl−1 (17)

Zl = MLP(LN(Z
0
l)) + Z

0
l (18)

Y = LN(Zclass) (19)

Besides the linear normalization layers, dropout layers are also

employed to optimize the network structure. Furthermore, in order

to verify the best result and select the most suitable network

structure, different combinations of layer construction and

parameters are tested; the detailed test results will be described in

the next section. In the proposed network structure, the DWS block

is used for the extraction of spatial characteristics and the

Transformer block is responsible for abstracting temporal features

from Mel-spectrograms.
3 Experiment

3.1 Dataset

The underwater vessel noise dataset used in this paper is

ShipsEar (Santos-Domıńguez et al., 2016). Each acoustic signal

sample is recorded in real oceanic conditions and therefore

contains certain natural or anthropogenic environment noise.

There are 90 acoustic samples representing 11 vessel types in the

dataset. Each category contains one or more samples and the audio

length of each sample varies from 15 seconds to 10 minutes. In the

experiments, the dataset was split into a training set, a testing set,

and a validation set. 70% of the ShipsEar’s data went to the training

set, which was used for model training and fitting. 20% was used to

tune the model’s hyperparameters and make an initial assessment of

the model’s capabilities. The last 10% formed the validation set and

it was kept unknown for the model while training and testing in

order to evaluate the generalization ability and robustness of the

final model. Since during the data preprocessing period a slicing

method is employed to cut all signals according to a fixed duration
TABLE 1 Complexity comparison between the self-attention layer and
the recurrent layer.

Layer
Type

Complexity
per Layer

Sequential
Operations

Maximum
Path Length

Self-
Attention

O(n2·d) O(1) O(1)

Recurrent O(n·d2) O(n) O(n)
n is the input sequence length and d denotes the representation dimension.
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of 75 milliseconds, the dataset is augmented and it becomes large

enough for every category’s data can be split into three sets. All the

samples are randomly selected and separated into different sets

according to the ratio.
3.2 Training and testing

In this paper, the training and testing of the proposed model

were conducted utilizing Nvidia’s RTX3090 GPU, which is

equipped with 24 GB of G6X memory. The parameters used

during the training and testing stages are listed in Table 2 while

Figure 6 provides a detailed view of the model’s performance in

each epoch of these stages.

The initial assessment of a deep learning model typically

involves analyzing training and testing losses, which measure the

errors for each example in their respective datasets. As depicted in

the figure, both training and testing losses exhibit a decreasing

trend, while training and testing accuracies steadily increase. They

start to stabilize after ten epochs and stop after fourteen epochs. The

behavior indicates the model’s effective convergence to an

optimal fit.

Overfitting and underfitting are common challenges in deep

learning which often arise when the model struggles to generalize

well on new data or experiences significant errors in the training

data. These issues often result in diverging loss lines due to gradient
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disappearance or explosion. However, as evident from the figure,

the convergence lines of the proposed model demonstrate its

capability to mitigate these problems and effectively learn the

underlying data features. Consequently, the results demonstrate

our model’s high performance and its potential as a robust data

analysis and prediction tool.
3.3 Evaluation

In order to find the optimal number of DWS blocks needed for

the model to extract and learn the spatial features from the raw data,

different numbers of DWS blocks were tested. Figure 7 exhibits the

results. In both the training and testing process, a single DWS block

achieved the best results.

While with the number of DWS blocks determined, the number

of Transformer blocks also needs to be tested not only for the

purpose of achieving better identification accuracy but also aiming

to optimize the utility of computational resources. As shown in

Figure 8, the ideal depth, 6, was founded after several

thorough experiments.

Figure 9 describes different classification accuracies with

different patch sizes, batch sizes and audio segment lengths. The

patch size represents the size of the patches to be extracted from the

input data by the transformer block. Since the Transformer’s

sequence length is inversely proportional to the square of the

patch size, models with smaller patch sizes are computationally

more expansive. However, a larger patch size does not necessarily

indicate a better result. A larger patch size leads to a smaller number

of patches for the same input, meaning fewer learning chances and

worse results, as can be seen from the comparison in Figure 9.

Another element that should be considered is the model’s batch

size. It defines the number of samples to work through before

updating the internal model parameters. Batch size is commonly

kept in the power of 2 because the number of GPUs’ physical

processors is often a power of 2. Using a number of virtual

processors different from the number of physical processors will

lead to poor performance. The 50, 75, 100, and 500 indicate different
TABLE 2 The following parameters are utilized in the proposed model
during both the training and testing stages.

Parameter Name Parameter Value

Audio Segment Length 75ms

Patch Size 4x4

DWC Kernel Size 3x3

PWC Kernel Size 1x1

Batch Size 256

Strides (1,1)

Dilation Rate (1,1)

Learning Rate 0.001

Dropout Rate 0.3

Weight Decay 0.0001

Depthwise Initializer glorot uniform

Pointwise Initializer glorot uniform

DWS Block Number 1

Transformer Encoder Number 6

Transformer Decoder Number 1

Projection Dimension 64

MLP Nodes Number 1024

Optimizer adam
FIGURE 6

The detailed training process and results. The tendency of lines
indicates an optimal fit.
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lengths of audio clips in milliseconds. As shown in the figure, while

patch size = 4x4, audio segment length = 75, and batch size = 256, the

classification accuracy reaches the ideal result, approximately 96.5%.

The promising result proved that even working with milliseconds-

long audio clips recorded in an extremely challenging environment,

the proposed model can accurately identify the vast majority of them.

The detailed graphical representation of each class’s recognition

result is shown in Figure 10.

Figure 11 shows the classification performance by selecting

different optimizers and different dropout rates. Figure 11 offers

insights into our model’s classification performance, considering

various optimizers and dropout rates. Optimizers play a pivotal role

in parameter updates based on loss gradients. We assessed five

common optimizers: adaptive moment estimation (Adam), root

mean square propagation (RMSprop), stochastic gradient descent

(SGD), adaptive gradient (Adagrad), and adaptive delta (Adadelta).

Our results, depicted in Figure 11, demonstrate that Adam excels

when applied to non-convex underwater signal datasets.

Underwater acoustic signals are often sparse and noisy, making

accurate gradient estimation challenging. Adam and RMSprop both

adapt learning rates using historical gradient data, making them

effective in handling sparse and noisy gradients. Their adaptability

ensures stable and efficient optimization under such conditions.
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Adam, which combines momentum and adaptive learning rates,

maintains separate learning rates for each parameter, employing

adaptive estimates of first and second-order gradient moments.

RMSprop also adapts learning rates but only considers first-order

gradient moments, making it slightly less effective than Adam in

handling underwater acoustic data.

Conversely, SGD’s fixed learning rate often leads to slow

convergence and can be sensitive to the choice of learning rate.

The rigidity of this rate prevents automatic adjustments, possibly

causing oscillations or divergence with high learning rates and slow

convergence or suboptimal solutions with low learning rates.

Adadelta struggles with sparse gradients, limiting its parameter

updates and demanding higher memory due to squared gradient

accumulation. Adagrad’s declining learning rates over time can

hinder adaptation in underwater acoustic target recognition, with

the accumulation of historical gradients potentially diminishing the

relevance of recent gradient data.

Dropout, a regularization technique, randomly deactivates

nodes within a layer during training to combat overfitting. Our

experiments have revealed an optimal dropout rate of 0.3, excluding

approximately one-third of inputs during each update iteration.

A dropout rate below 0.3 can cause overreliance on specific

nodes, undermining the model’s capacity to learn diverse
BA

FIGURE 7

This figure illustrates the variance in model performance with different numbers of DWS blocks during training, evaluating configurations with 1, 2, 4,
and 8 DWS blocks. Subfigure (A) illustrates the performance throughout the training phase, whereas Subfigure (B) highlights the performance during
the testing phase. The findings reveal that the model achieves optimal learning efficiency when equipped with a singular DWS block.
FIGURE 8

Model performance comparison in different numbers of Transformer blocks. The optimal quantity of Transformer blocks is 6.
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representations and hampering its generalization. Conversely, a

dropout rate above 0.3 can impair learning complex patterns and

relationships, resulting in decreased performance.

In Figure 12, the recognition results of several comparison

models are shown. The different colors indicate CRNN

(Convolutional and Recurrent Neural Network) (Hu et al., 2023),

DBNs (Deep Belief Networks) (Yang et al., 2018), Swin-

Transformer (Chen et al., 2022), SAEs (Sparse Autoencoders) (Ke

et al., 2018), and MobileNet (Mobile Network) (Liang et al., 2020)

respectively. The primary parameters for the comparative models

are comprehensively listed in Table 3. These settings conform to the

methodologies specified in the respective research papers whenever

available. In cases where such specific settings are not provided in

the referenced literature, the models adhere to the parameters

established by the proposed method.
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The numerical classification accuracy for each comparison

model is systematically tabulated in Table 4, facilitating a direct

comparison of their respective performances. It is observed that

neural networks with a singular focus on either local or global

information processing tend to lag behind those capable of

integrating both aspects. This emphasizes the significance of a

dual approach in handling local and global information for

achieving superior classification results in neural network models.

Ship-radiated noise classification is a challenging task due to the

complex and noisy nature of underwater environments. The

acoustic signals radiated by ships are often masked by natural

sounds, attenuated, and distorted, making it difficult for models

to extract relevant acoustic features. The CRNN is a powerful model

for various sequence-related tasks. However, when applied to

shipradiated noise recognition tasks, it can have certain

deficiencies that may diminish its performance. While RNNs can

capture sequential information, they can struggle to capture very

long-term dependencies. Ship-radiated noise can have complex

patterns and dependencies that span over a considerable time
B CA

FIGURE 9

The study meticulously evaluates identification accuracy by examining a range of patch sizes, batch sizes, and audio segment durations. The
classification accuracy is plotted on the y-axis, while the x-axis is organized into two levels: the first level delineates the patch sizes, and the second
level outlines the lengths of the audio segments. Subfigure (A) illustrates the variance in performance for an 8x8 patch size across diverse audio
segment durations and batch sizes. Subfigure (B) explores the performance implications of employing a 4x4 patch size, again across varying audio
segment durations and batch sizes. Subfigure (C) delves into the performance metrics associated with a 2x2 patch size under different audio
segment durations and batch sizes. The analysis concludes that the configuration yielding the highest accuracy involves a 4x4 patch size, combined
with a batch size of 256 and an audio segment duration of 75ms.
FIGURE 10

Each class’s identification result. All of the categories own an
identification accuracy higher than 94%. Seven out of twelve
categories’ identification accuracy is higher than 95%.
FIGURE 11

Comparison of different identification accuracies in different
optimizers and dropouts. The Adam optimizer reaches the local
minimum most effective in the ship target recognition task while the
dropout rate should set to 0.3 to achieve the optimal result.
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frame. CRNNs, which combine CNNs for feature extraction and

RNNs for sequence modeling, might not effectively capture these

long-range dependencies.

Ship-radiated noise is a time-dependent signal with intricate

temporal patterns. DBNs are primarily designed for modeling static

data distributions and may not effectively capture the temporal

dependencies present in audio signals. This deficiency can limit

their ability to discern relevant noise patterns over time.

Furthermore, DBNs are feedforward networks, which means they

lack inherent sequential learning capabilities. Ship-radiated noise

recognition often involves identifying patterns and trends in the

noise signal over time. DBNs may struggle to capture these

sequential dependencies without additional modifications.

While Swin-Transformer is a promising architecture that has

shown effectiveness in various computer vision tasks, it may face

certain deficiencies when applied to ship-radiated noise recognition

tasks, which could potentially diminish its performance. Ship-

radiated noise is a time-dependent signal with intricate temporal

patterns. Swin-Transformer primarily excels in processing spatial

information in spectrograms. Its attention mechanism, while

powerful for spatial relationships, may not be optimized for

capturing the temporal dynamics present in audio signals. This

limitation can hinder its ability to effectively recognize ship noises

over time.

The sparsity constraints in SAEs may make them less suitable for

tasks where the acoustic features don’t naturally lend themselves to

sparse representations. Ship-radiated noise recognition often involves
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recognizing complex sound patterns, and forcing sparsity in the

feature space might not align with the underlying data distribution.

This can lead to suboptimal performance when compared to other

techniques that don’t enforce sparsity.

MobileNet is a neural network architecture known for its

efficiency and effectiveness. However, when applied to the ship-

radiated noise recognition task, it may face several deficiencies that

can impact its performance. MobileNet architectures typically involve

depthwise separable convolutions, which reduce computational

complexity and model size. While this is advantageous for mobile

and embedded devices, it may not provide the necessary model

capacity for ship-radiated noise recognition. Recognizing different

ship noise categories in various environmental conditions requires a

model with sufficient capacity to learn intricate patterns. MobileNet’s

lightweight design, while efficient, might struggle with capturing the

complex and diverse acoustic features in ship noise, leading to

reduced recognition accuracy.

The running speed of each model, as detailed in Table 5, is a

critical factor to consider, reflecting the model’s computational

complexity. While our proposed model may not exhibit optimal

performance during the training and testing phases, it excels in the

validation phase, indicating superior real-time analysis capability.

This aspect is particularly significant as it determines the model’s

practical applicability in real-world scenarios, where efficient and

timely processing of data is essential. Therefore, balancing

computational efficiency with performance is key in developing

effective and deployable models.

DWSTr presents a compelling solution for ship-radiated noise

recognition due to its unique combination of DWS and

Transformer components. The DWS component specializes in

extracting local acoustic features, allowing it to distinguish

relevant information from interference. Simultaneously, the

Transformer framework captures global and long-range

dependencies in the data, helping mitigate the effects of

interference, distortion, and variability in noise signatures. This

dual capability enables DWSTr to excel in handling ship noise

recognition tasks, where both local and global features play a crucial

role in accurate classification. Hence, as shown above, using the

same dataset to fulfill the same task, DWSTr can achieve the

best result.
B CA

FIGURE 12

The comparison highlights the identification accuracy between the proposed model and other prevalent neural networks. In subfigures (A, B), the y-
axis quantifies classification accuracy, whereas in subfigure (C), it directly measures accuracy. Various colored lines within (A, B) correspond to the
different models evaluated. The proposed model outperforms others in training, testing, and validation phases, reaching optimal results faster.
Notably, at the same epoch count, the proposed model has converged to its peak performance, whereas competing models continue to evolve.
TABLE 3 Numerical accuracy comparison.

Model Name Accuracy

CRNN 92.31%

DBNs 37.66%

SAEs 60.49%

Swin-Transformer 86.36%

MobileNet 60.66%

DWSTr 96.50%
Bold values signify the top performances.
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3.4 Ablation experiments

To ascertain the efficacy of the proposed model, four distinct

models were conceptualized and employed in ablation studies. These

models are systematically designed to evaluate specific components

and functionalities within the overall architecture, thereby enabling a

comprehensive analysis of the proposed model’s performance. The

following outlines the specifics of the four models.
Fron
• DWSTr-CNN: In this variant of the model, traditional CNNs

are utilized instead of the DWS block. This adaptation

serves as a crucial experiment to evaluate the impact of the

DWS block on feature extraction and the overall

performance of the model.

• DWSTr-DWS: In this altered model, the Transformer

framework is omitted to solely concentrate on the

functionality of the DWS component. This change

provides a focused analysis on how the DWS block

performs independently in the model’s architecture.

• DWSTr-Tr: This model variation, by excluding the DWS

block, focuses on assessing the Transformer’s proficiency in

managing global and long-range dependencies within the
tiers in Marine Science 12
data. This approach allows for a targeted evaluation of the

Transformer’s capabilities in isolation.

• Baseline DWSTr: The full DWSTr model is utilized as the

benchmark for comparison in the ablation experiments,

providing a comprehensive standard against which the

performance of each variant model is assessed.
For a thorough and equitable assessment, each model variant

undergoes evaluation using an identical dataset and a uniform set of

performance metrics. The results of these evaluations, which

provide critical insights into the comparative effectiveness of each

model, are systematically documented in Table 6. For the DWSTr-

CNNmodel, the comparative analysis reveals a nominal decrease in

accuracy and a prolongation in computation time vis-à-vis the

baseline DWSTr framework. This phenomenon is attributed to the

intrinsic characteristics of conventional CNNs. While they exhibit

adeptness in feature extraction, their efficiency, particularly in terms

of parameter optimization and local feature processing, falls short

when compared to the DWS mechanism. This discrepancy results

in a slight compromise in the model’s overall efficiency and its

capacity for feature extraction.

For the DWSTr-DWS model, the observed results reveal a

reduced efficiency, likely stemming from its limited ability to

capture global dependencies. This limitation notably impacts the

model’s overall accuracy. Such a reduction in performance suggests
TABLE 4 The following parameters are utilized in the comparison models. CRNN(CNN) represents the convolutional component, while CRNN(LSTM)
denotes the recurrent segment of the model.

Name CRNN(CNN) CRNN(LSTM) DBNs Swin-Transformer SAEs MobileNet

Kernel Size 3x3 – – – – –

Strides (1,1) – – – – –

Width Multiplier – – – – – 1.0

Unit Number – 128 256 – 128 –

Sparsity Penalty – – – – 3.0 –

MLP Nodes – – – 1024 – –

Window Size – – – 2 – –

Shift Size – – – 1 – –

Learning Rate 0.001 0.001 0.001 0.001 0.001 0.001

Dropout Rate 0.3 0.3 0.3 0.3 0.3 0.3

Weight Decay 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Batch Size 256 256 256 256 256 256
TABLE 5 Running speed comparison.

Model Name Training Testing Validation

CRNN 35 ms/step 35 ms/step 17 ms/step

DBNs 29 ms/step 29 ms/step 15 ms/step

SAEs 28 ms/step 28 ms/step 13 ms/step

Swin-Transformer 23 ms/step 23 ms/step 11ms/step

MobileNet 23 ms/step 23 ms/step 10 ms/step

DWSTr 30 ms/step 30 ms/step 9ms/step
Bold values signify the top performances.
TABLE 6 Experimental results of the ablation models.

Model Name Accuracy Time Consuming

DWSTr 96.50% 25 s/epoch

DWSTr-CNN 95.79% 33 s/epoch

DWSTr-DWS 89.42% 11 s/epoch

DWSTr-Tr 91.86% 13 s/epoch
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that the global contextual understanding, crucial for comprehensive

signal analysis, is not optimally harnessed in this model variant.

This finding underscores the importance of effectively integrating

mechanisms within the model that proficiently handle global

dependencies, thus reinforcing the necessity for a balanced

approach in local and global feature analysis in complex signal

recognition tasks.

The DWSTr-Tr model is particularly proficient in global feature

analysis, effectively discerning broad patterns and dependencies. This

capability is especially valuable for classifying ship noise, a domain

where recognizing overarching acoustic patterns is critical. However, the

model’s capability in processing detailed local features is less

pronounced, leading to a slight reduction in accuracy. This

underscores the necessity of balancing global and local feature analysis

in complex acoustic signal processing, highlighting the importance of a

model architecture that effectively integrates bothmacro-level contextual

understanding and micro-level detail recognition.
3.5 Verification experiments

Due to the sensitive nature of ship-radiated noise data, only two

public datasets, ShipsEar and DeepShip, are available. For a

comprehensive validation of our model, we integrated DeepShip

(Irfan et al., 2021) into our analysis. DeepShip encompasses 47

hours and 4 minutes of varied underwater recordings from 265

vessels in four classes: Cargo, Passenger Ship, Tanker, and Tugboat.

Recorded between May 2016 and October 2018 at the Strait of

Georgia delta node, it presents a diverse environment compared to

ShipsEar’s data from Spain, collected between 2012 and 2014.

Before being processed by the models, each audio recording is

segmented into 75-millisecond clips, following the same

preprocessing approach that was applied to the ShipsEar dataset.
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Additionally, the hyperparameters used in the verification

experiments remain consistent. The classification results are

shown in Figure 13.

While no individual category in the DeepShip dataset

surpasses a classification accuracy of 95%, the lowest recorded

accuracy is a commendable 90%. Notably, the Tugboat and

Passenger Ship categories are common to both the DeepShip

and ShipsEar datasets, showing consistent classification results.

In particular, the Passenger Ship class achieves relatively high

accuracy in both datasets when analyzed with the DWSTr model.

However, the classification accuracy for Tugboats is the lowest in

both datasets. This lower performance could be attributed to data

scarcity, as Tugboats constitute approximately only 2.2% of the

ShipsEar and 11% of the DeepShip dataset, compared to Passenger

Ships, which represent about 33% in ShipsEar and 31% in

DeepShip. The overall accuracy of the model on the DeepShip

dataset is approximately 92.75%, underscoring its robustness and

adaptability across different datasets.
4 Conclusion

In this study, we introduce a hybrid neural network model,

named as DWSTr, which integrates a convolutional neural

network with a Transformer framework to address the challenge

of shipradiated noise identification. The model’s efficacy was

rigorously evaluated through experiments, demonstrating its

capacity to robustly extract features from input data and achieve

accurate classification of underwater acoustic targets, even with

signal data lasting mere milliseconds. Comparative analysis

reveals that DWSTr surpasses conventional models like CRNN,

DBNs, Swin-Transformer, SAEs, and MobileNet, commonly

employed in underwater acoustic signal classification.

Specifically, DWSTr attains a remarkable classification accuracy

of 96.5% on the ShipsEar dataset, coupled with an impressive

validation speed of 9 ms/step, suggesting its potential for real-time

application. Across the ShipsEar dataset, the model consistently

achieves identification accuracies above 94%, with more than half

of the categories exceeding 95%, indicative of its overall

superior performance.

To further investigate the architecture’s efficacy, ablation studies

were conducted. Ship-radiated noise, encapsulating both temporal

and spectral dimensions, necessitates a model capable of

comprehensive time-frequency analysis. The absence of either the

DWS or Transformer blocks resulted in a decrease in accuracy to

91.86% and 89.42%, respectively, underscoring the significance of

both components in the model. Moreover, the inclusion of the DWS

block notably enhanced the model’s computational speed.

Substituting it with a traditional CNN block, while only slightly

affecting accuracy, led to a significant increase in computational

time, from 25 s/epoch to 33 s/epoch.

Beyond the ShipsEar dataset, the model’s robustness was

validated using the DeepShip dataset, which comprises recordings

from a distinct location and time period. DWSTr achieved

commendable classification accuracies for Cargo, Passenger Ship,
FIGURE 13

Categorical classification accuracy for the DeepShip dataset.
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Tug, and Tanker classes, with respective scores of approximately

91%, 95%, 95%, and 90%, further affirming its robustness and

versatility. Given the model’s exceptional performance, we posit

that the DWSTr is well-suited for a broad spectrum of underwater

acoustic signal classification tasks.
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