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Modelling mass accumulation
rates and 210Pb rain rates in the
Skagerrak: lateral sediment
transport dominates the
sediment input
Timo Spiegel1*, Markus Diesing2, Andrew W. Dale1, Nina Lenz1,
Mark Schmidt1, Stefan Sommer1, Christoph Böttner3,
Michael Fuhr1, Habeeb Thanveer Kalapurakkal1,
Cosima-S. Schulze4 and Klaus Wallmann1

1GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany, 2Geological Survey of Norway,
Torgarden, Trondheim, Norway, 3Aarhus University, Institute for Geoscience, Aarhus, Denmark,
4Albert-Ludwigs-Universität Freiburg, Institute of Earth and Environmental Sciences,
Freiburg, Germany
Sediment fluxes to the seafloor govern the fate of elements and compounds in

the ocean and serve as a prerequisite for research on elemental cycling, benthic

processes and sediment management strategies. To quantify these fluxes over

seafloor areas, it is necessary to scale up sediment mass accumulation rates

(MAR) obtained from multiple sample stations. Conventional methods for spatial

upscaling involve averaging of data or spatial interpolation. However, these

approaches may not be sufficiently precise to account for spatial variations of

MAR, leading to poorly constrained regional sediment budgets. Here, we utilize a

machine learning approach to scale up porosity and 210Pb data from 145 and 65

stations, respectively, in the Skagerrak. The models predict the spatial

distributions by considering several predictor variables that are assumed to

control porosity and 210Pb rain rates. The spatial distribution of MAR is based

on the predicted porosity and existing sedimentation rate data. Our findings

reveal highest MAR and 210Pb rain rates to occur in two parallel belt structures

that align with the general circulation pattern in the Skagerrak. While high 210Pb

rain rates occur in intermediate water depths, the belt of high MAR is situated

closer to the coastlines due to lower porosities at shallow water depths. Based on

the spatial distributions, we calculate a total MAR of 34.7 Mt yr-1 and a 210Pb rain

rate of 4.7 · 1014 dpm yr-1. By comparing atmospheric to total 210Pb rain rates, we

further estimate that 24% of the 210Pb originates from the local atmospheric

input, with the remaining 76% being transported laterally into the Skagerrak. The

updated MAR in the Skagerrak is combined with literature data on other major

sediment sources and sinks to present a tentative sediment budget for the North

Sea, which reveals an imbalance with sediment outputs exceeding the inputs.

Substantial uncertainties in the revised Skagerrak MAR and the literature data
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might close this imbalance. However, we further hypothesize that previous

estimates of suspended sediment inputs into the North Sea might have been

underestimated, considering recently revised and elevated estimates on coastal

erosion rates in the surrounding region of the North Sea.
KEYWORDS

machine learning, mass accumulation rate, sedimentation rate, porosity, spatial
distribution,

210
Pb, Skagerrak, North Sea
1 Introduction

Bulk sediment fluxes control the transport and distribution of

many substances in the water and sediment column, such as organic

carbon and pollutants. Furthermore, in coastal and shelf regions

that are used economically, sediment budgets are crucial to assess

the anthropogenic pressure on the natural systems, such as the

disturbance of surface sediments and redistribution of sedimentary

material, and to set up management plans for seafloor resources

(Walling and Collins, 2008; Morang et al., 2012). An integral part of

the sediment cycle is the accumulation and subsequent burial of

particles at the seafloor, which acts as the ultimate sink in many

marine geochemical mass balances. In regional sediment budgets,

estimates of area-wide sediment mass accumulation rates (MAR)

are often obtained by averaging and subsequent upscaling of the

average MAR to the study area extent. This approach has been

applied in previous studies to estimate sediment budgets in the

North Sea and Skagerrak (van Weering et al., 1987; Bøe et al., 1996;

de Haas et al., 1996; de Haas and van Weering, 1997). However, the

traditional upscaling technique is unable to resolve non-linear

spatial heterogeneities between individual data sites, which is

particularly important in such dynamic regions. As a result,

current area-wide quantifications derived using the averaging

technique are likely associated with high uncertainties.

The Skagerrak represents the largest depocenter for sediments

from the North Sea. With the dynamic hydrography, complex

seabed topography and high data density, the Skagerrak offers an

ideal setting to examine MAR in an environment with various

sedimentation patterns. Furthermore, the Skagerrak and North Sea

sedimentary systems have been increasingly impacted by

anthropogenic activities such as bottom trawling (ICES, 2020),

sediment extraction (De Groot, 1986; ICES, 2019; Mielck et al.,

2019) or offshore wind park constructions (Heinatz and Scheffold,

2023) since industrial times. Hence, sediment budgeting in this area

may improve our understanding of sediment redistribution in a

changing environment. In this study, a machine learning approach

was applied to upscale the gathered data from literature studies and

own sampling campaigns and predict the spatial distributions of

sediment water content (porosity) and 210Pb rain rates in the

Skagerrak. Based on the modeled porosity and published spatial

data on sedimentation rates (Diesing et al., 2021), we present an
02
area-wide MAR and compare it to previous estimates. The

radionuclide 210Pb is known to be readily scavenged by particles

in the water column and to settle alongside sediments (e.g.

Krishnaswamy et al., 1971; Nittrouer et al., 1979; Nozaki et al.,

1991). Hence, the spatial distribution of 210Pb rain rates serves as an

indicator of sedimentation rates and is compared to the

sedimentation patterns previously presented in Diesing et al.

(2021). Furthermore, area-wide 210Pb rain rates are utilized to

estimate the contributions of local and lateral inputs in the

Skagerrak. Finally, we compare the machine learning approach

with previous estimates based on upscaling that used the

averaging approach.
2 Study area

The Skagerrak is located between Denmark, Norway, and

Sweden and connects the North Sea and the Kattegat, with water

depths reaching about 700 meters (Figure 1). The Jutland current

carries water and suspended particles from the central and southern
FIGURE 1

Study area with information on water depth. Black arrows indicate
the current regime. The Jutland Current (JC) originates from the
south and merges with the Baltic Current (BC) to form the
Norwegian Coastal Current (NCC), which leaves the
Skagerrak northwards.
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North Sea to the Skagerrak, where it meets the Baltic current and

continues to circulate anticlockwise before leaving the Skagerrak

northward through the Norwegian Coastal Current (van Weering

et al., 1987; Otto et al., 1990). Towards the northeastern Skagerrak,

current velocities decrease and the particles transported into the

Skagerrak settle. As a result, the Skagerrak sediments are

characterized by a large lateral input primarily consisting of

lithogenic material from the North Sea (van Weering et al., 1993;

de Haas and van Weering, 1997). The sediment composition varies

throughout the region, with sand (< 40% clay) being common along

the Danish coast while fine-grained silt and clay sediments

dominate the Skagerrak basin at water depth below ~150 m

(Stevens et al., 1996; Mitchell et al., 2019a). The sediment column

is potentially subject to substantial reworking due to bottom

trawling by fisheries at water depths shal lower than

approximately 300-500 m (ICES, 2020).
3 Materials and methods

A machine learning model was employed to scale up the data of

individual stations and determine the spatial distributions of the

desired variables porosity and 210Pb rain rate (response variables).

In principle, high-resolution spatial data of parameters that were

assumed to correlate with the response variables, e.g. bathymetry or

grain size (predictor variables), were sourced from the available

literature in the study area. These predictor variables were leveraged

by the model to predict the spatial distribution of the response

variables at the same resolution as the predictors using a quantile

regression forest (QRF) algorithm (Meinshausen, 2006).
3.1 Data collection

3.1.1 Response variables
Most of the data used to determine the spatial distribution of

porosity were sourced from the PANGAEA database by applying a

data warehouse search over the area of interest. The downloaded
Frontiers in Marine Science 03
data were filtered to retain records with realistic porosity values

between 20% and 100%, as the range of typical values of porosity is

50 - 90% for unconsolidated muddy sediments and 25 - 50% for

sandy sediments (Richardson and Jackson, 2017). Additionally, we

limited the dataset to the upper 0.1 m of sediment depth. Data on
210Pb were collected from various publications (Erlenkeuser and

Pederstad, 1984; Erlenkeuser, 1985; van Weering et al., 1987;

Wilken et al., 1990; van Weering et al., 1993; Paetzel et al., 1994;

Beks, 2000; Ståhl et al., 2004; Ferdelman, 2005a, b, c; Deng et al.,

2020). A full summary of the porosity and 210Pb data is given in the

supplement (Tables S1, S2). The literature data were complemented

with data from nine short sediment cores (< 50 cm) recovered over

two sampling campaigns in the Skagerrak, AL557 and AL561, with

R/V Alkor in June and August 2021, respectively (Schmidt, 2021;

Thomas et al., 2022; Spiegel et al., 2023). Porosity was determined

by weighting sediment samples before and after conventional

drying in an oven or freeze-drying. The porosity was then

calculated from the difference between the two weights and the

density of dry solids of the sediment, which was either measured or

assumed (2.3 - 2.6 g cm-3). Measurements of 210Pb were carried out

by alpha or gamma spectrometry. In marine sediments, the term

excess 210Pb (210Pbex) refers to the 210Pb content that is introduced

by sinking particles and excludes the 210Pb resulting from the

natural background decay of 226Ra within the sediment column.
210Pbex values were obtained either by subtracting the natural

background activities of 226Ra or by subtracting the steady-state
210Pb activity in sediment depths below the profile of exponential
210Pb decay. In some studies, the raw 210Pb values were not

explicitly provided but were depicted either as linear or double

logarithmic plots. In those cases, the activity data were carefully

extracted from the figures by graphical evaluation. In total, the

dataset consists of porosity and 210Pb data gathered from 194 and

65 locations, respectively (Figure 2; Tables S1, S2). Averaging

porosity values in the same grid cell of the model resulted in 145

porosity values for the machine learning procedure (see section 3.2).

To determine total 210Pb rain rates to the seafloor (FPb), the
210Pbex activity data were integrated over the sediment column

ranging from the surface (0) to the depth where the 210Pb activities
BA

FIGURE 2

Stations where data was available for (A) porosity and (B) 210Pb rain rates that were utilized for spatial predictions. The gray area refers to the area of
applicability (AOA) of the model. Stations marked in red indicate disturbed 210Pb profiles that do not reach natural background levels at the bottom
of the sediment core, likely due to physical mixing by currents and waves or bottom trawling.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1331102
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Spiegel et al. 10.3389/fmars.2024.1331102
reached natural background levels (max) and multiplied by the

decay constant (Cochran et al., 1990; Alperin et al., 2002):

FPb =
Z max

0
Pb · l · rDB dx (1)

rDB = ds · (1 − f) (2)

where Pb is the 210Pbex activity, l is the 210Pb decay constant

(0.031 yr-1), rDB is the dry bulk density, ds is the density of dry

solids that was assumed to be 2.5 g cm-3 and f is depth-dependent

porosity. An interpolation function was fitted through the

downcore 210Pbex data using the program Mathematica 12.2. This

function was integrated over the entire sediment core to determine

the depth-integrated 210Pbex activity. At 10 stations, 210Pbex at the

bottom of the sediment core did not reach natural background

levels. Hence, the 210Pbex inventories were underestimated at these

sites to an uncertain extent (highlighted in red in Figure 2B).

Considering the exponential decline of 210Pbex activities with

sediment depth, and generally low 210Pbex activities observed at

these sites, a relatively minor error was expected by including

these stations.
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For a comparison between atmospheric 210Pb input rates and

total 210Pb rain rates, it is usually necessary to consider the

production of 210Pb by the in-situ decay of 226Ra in the water

column (Cochran et al., 1990). However, given the long half-life of
226Ra (1600 yr), along with the large sedimentary inventory of 210Pb

and relatively shallow water depths in the Skagerrak, the decay of
226Ra in the water column contributes< 1% to the sedimentary 210Pb

pool. Thus, a correction for this fraction was not performed.

3.1.2 Predictor variables
Initially, a wide range of potential predictor variables was

selected considering their data availability at a sufficient spatial

resolution and full area coverage in the Skagerrak, including

topographic, sedimentological, hydrodynamic, and oceanographic

variables. Porosity and 210Pb rain rates were expected to be

controlled by particle transport and the characteristics of the

transported particles in the Skagerrak. Hence, bathymetry, current

velocity, distance to the shoreline and suspended particulate matter

concentrations were chosen as predictor variables as they directly or

indirectly reflect particle transport and distribution (Table 1). Since

the particle size has been shown to be closely related to porosity
TABLE 1 List of predictor variables used in the 210Pb rain rate and porosity models.

Predictor variable Model Source Resolution (arcmin)a

Bathymetry (m) 210Pb
EMODnet Bathymetry Consortium (2018), Mitchell

et al. (2019a)
0.125

Ratio of tidal boundary layer thickness to water
depth (-)

210Pb Williams et al. (2019)
1.5 · 1.0

Mean tidal current speed at the seafloor (m s-1) 210Pb Mitchell et al. (2019a), Mitchell et al. (2019c) 0.125

Maximum surface current speed (m s-1) 210Pb
https://bio-oracle.org, Tyberghein et al. (2012), Assis

et al. (2018)
5.0

Minimum surface current speed (m s-1) 210Pb
https://bio-oracle.org, Tyberghein et al. (2012), Assis

et al. (2018)
5.0

Maximum surface water temperature (°C) 210Pb
https://bio-oracle.org, Tyberghein et al. (2012), Assis

et al. (2018)
5.0

Minimum surface water temperature (°C) 210Pb
https://bio-oracle.org, Tyberghein et al. (2012), Assis

et al. (2018)
5.0

Mean bottom water salinity 210Pb
https://bio-oracle.org, Tyberghein et al. (2012), Assis

et al. (2018)
5.0

Mean surface water salinity 210Pb
https://bio-oracle.org, Tyberghein et al. (2012), Assis

et al. (2018)
5.0

Minimum bottom water salinity 210Pb
https://bio-oracle.org, Tyberghein et al. (2012), Assis

et al. (2018)
5.0

Maximum surface water salinity 210Pb
https://bio-oracle.org, Tyberghein et al. (2012), Assis

et al. (2018)
5.0

Content of silt and clay in surface sediments (%) Porosity Mitchell et al. (2019a), Mitchell et al., (2019b) 0.125

Summer suspended particulate matter (g m-3) Porosity Mitchell et al. (2019a, c) 0.125

Euclidean distance to shoreline (m) Porosity Calculated 0.125

Mean bottom water temperature (°C) Porosity
https://bio-oracle.org, Tyberghein et al. (2012), Assis

et al. (2018)
5.0
a0.125 arcmin are ~ 116m · 230m, 1.5 · 1.0 arcmin are ~ 1.5km · 1.0 km and 5 arcmin are ~ 4.9km · 9.2 km (x · y) at a latitude of 58°N, representative of the research area.
(-) is a dimensionless quantity.
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(Wilson et al., 2018), the content of silt and clay in surface

sediments was also chosen as a predictor variable. Furthermore,

the ratio of the tidal benthic boundary layer thickness to water

depth is important for sediment transport dynamics near the seabed

(Williams et al. , 2019) and was deemed an important

environmental control on sediment fluxes in a previous study

(Diesing et al., 2021). Temperature and salinity were also

included as predictor variables as they have been shown to reflect

the contributions of different water masses to the Skagerrak, i.e.

from the North Sea, Baltic Sea and local riverine input (Kristiansen

and Aas, 2015) that carry the sediment and 210Pb into the

Skagerrak. Despite 210Pb being closely related to bulk sediment

fluxes, we opted to exclude the spatial distribution of sedimentation

rates (Diesing et al., 2021) from the list of predictor variables. This

decision was made to avoid circularity arguments, as the presented

sedimentation rate data in the literature itself is derived from
210Pb measurements.

The predictor variables were gathered from various sources

with unequal spatial extent, projection, and resolution. To create a

stack of predictor layers, the predictor raster data were separately

cropped to the area of interest depending on the initial resolution

and projection. Subsequently, the predictors were reprojected to a

common projection (Lambert azimuthal equal-area) and a

resolution of 500 m by 500 m). The grid cells were aligned prior

to modeling. The response data were averaged in those cases where

more than one value fell into a grid cell of the predictor stack.
3.2 Machine learning models

The complete analysis was carried out in the free software

environment for statistical computing and graphics R 4.2.3 (R Core

Team, 2022) and RStudio 2023.03.0. This section provides an

overview of the methodology used to spatially predict porosity

and 210Pb rain rates. We first give an overview of the workflow and

its key features. The subsequent sections give more detailed

information on the algorithms and R packages that were used.

3.2.1 Overview
The goal of this study is to determine the spatial distribution of

a variable in a specific area. However, only a limited number of

precise measurements of this variable is at our disposal. The task is

therefore to estimate the variable at unsampled locations. This can

be achieved by spatial prediction, which is the estimation of

unknown quantities based on sample data and assumptions

regarding the form of the trend and its variance and spatial

correlation (Bivand et al., 2008). There are different types of

spatial prediction models such as deterministic (e.g., inverse

distance weighted interpolation) and stochastic methods (e.g.,

kriging). Here, we opted for a data-driven machine learning

approach, because such models are flexible, can fit nonlinear and

complex relationships, and do not need to satisfy strict statistical

assumptions as opposed to stochastic models. In addition, such

approaches allow users to quantify the uncertainty in

the predictions.
Frontiers in Marine Science 05
Machine learning spatial models make predictions based on

learned relationships between the variable to be predicted (response

variable) and predictor variables, which exist with better coverage

over the area of interest. Initially, it might be prudent to select a

wide range of potentially relevant predictor variables, ideally based

on a conceptual model (Guisan and Zimmermann, 2000) of the

environmental system to be modeled. It is, however, generally

recommended to limit the number of predictor variables that are

finally used for modeling, as the predictive power decreases with an

increase in the number of predictor variables given a fixed number

of response data points (Hughes, 1968). The aims of variable

selection are threefold: (1) to improve the prediction

performance, (2) to enable faster predictions, and (3) to increase

the interpretability of the model (Guyon and Elisseeff, 2003). Here,

we use a forward selection approach whereby the model

performance of various combinations of predictors is determined.

Starting with combinations of two predictors, the number of

predictors is increased until the model performance increases

no longer.

Cross-validation is usually employed for model tuning and

predictor variable selection. A frequently used scheme is k-fold

cross-validation, whereby the dataset is randomly partitioned into k

parts (folds) of approximately equal size. A single fold is retained for

validating the model, while the remaining k - 1 folds are used to

train the model. This is repeated k times, such that every fold serves

as validation data once. The performance of a trained model can

then be tested based on independent data not used for model

building. However, truly independent test data are rarely available

due to the costs of collecting sample data offshore. Holding back a

fraction (usually 20-50%) of the data from model building and

using this dataset for model testing might sometimes be an

alternative. However, this requires a sufficiently large dataset.

Additionally, a single split into training and test data might be

unrepresentative and may provide misleading information about

estimates and their uncertainty (Lyons et al., 2018). Because of these

limitations, k-fold cross-validation is frequently used for

model validation.

The use of machine learning algorithms in spatial prediction

has strongly increased in recent years due to the advantages

mentioned above and the seemingly high performance that is

frequently achieved. However, it has been shown that model

performance indicators might be inflated when spatial

autocorrelation in the data is ignored (Ploton et al., 2020). To

account for this, spatially separated folds can be generated for cross-

validation. This is achieved by separating the sample data into

spatial blocks of a size that accounts for spatial autocorrelation in

the data. The blocks are subsequently randomly assigned to folds

(Valavi et al., 2019).

Sampling design should be an integral part of spatial prediction

and modeling to ensure good coverage of the environmental and

geographic space (Biswas and Zhang, 2018). However, due to the

costs of obtaining new sample data, making use of existing data

stored in databases is crucial. This does mean that the set of

sampling stations used for modeling rarely constitutes an optimal

sampling design. Tools exist to gain insights to what extent the
frontiersin.org
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existing sample data deviates from an optimal design. Diesing

(2020) provided plots that allow to assess to what extent the

selected samples cover the environmental space of the predictor

variables. Meyer and Pebesma (2022) compared the distributions of

the spatial distances of sample data to their nearest neighbor with

the distribution of distances from all points of prediction locations

within an area of interest to the nearest sample data point. They

showed that in the case of a spatially random sample dataset, which

is a preferred design for spatial prediction, the two distribution

curves overlap to a large extent. Model performance can be

estimated with a random cross-validation in such a case.

Conversely, clustered sample datasets show nearest neighbor

distances between samples that are shorter than the distances

from the prediction locations to the nearest sample data point.

Spatial cross-validation is advised to derive realistic estimates of

model performance.

Another way of accounting for limitations in the distribution of

the sample data is to estimate the area in which the predictive model

is valid. This area of applicability (AOA) of a model is defined as the

area where the model was enabled to learn about relationships

based on the training data, and where the estimated cross-validation

performance holds. To delineate the AOA, a dissimilarity index

(DI) is initially calculated. The DI is based on distances to the

training data in the multidimensional predictor variable space. To

account for the relevance of predictor variables responsible for

prediction patterns variables are weighted by the model-derived

variable importance scores prior to distance calculation. The AOA

is then derived by applying a threshold based on the DI observed

in the training data using cross-validation (Meyer and

Pebesma, 2021).
3.2.2 Quantile regression forests
The QRF algorithm (Meinshausen, 2006) was selected to

generate spatial predictions of porosity and 210Pb rain rates. QRF

can be seen as an extension of the random forest (RF) algorithm

(Breiman, 2001), which has shown high predictive accuracy in

several studies across various research domains (Prasad et al., 2006;

Mutanga et al., 2012; Oliveira et al., 2012; Huang et al., 2014). The

RF is an ensemble technique that creates regression trees using the

predictor and response data. Each tree is constructed from a

bootstrapped sample and a random subset of the predictor

variables is used at each split in the tree-building process, making

every tree in the forest unique. Individually, each tree in the forest

may be a poor predictor and any combination of two trees can give

different predictions. However, by aggregating the predictions over

many uncorrelated trees, prediction variance is reduced, and

accuracy is improved (James et al., 2013). RF can handle a large

number of predictor variables, is insensitive to the inclusion of noisy

predictors, can be used without extensive parameter tuning, and

makes no assumptions regarding the shape of distributions of the

response or predictor variables (Cutler et al., 2007). While RF

outputs the mean over many regression trees to make an

ensemble prediction, the QRF algorithm also returns the whole

distribution of the response variable, based on which other

measures of central tendency (e.g. median) and prediction
Frontiers in Marine Science 06
uncertainty can be obtained. Following common practice in the

global soil mapping community (Arrouays et al., 2014; Heuvelink,

2014), we used the 90% prediction interval (PI90) as a measure of

spatially explicit uncertainty. PI90 gives the range of values within

which the true value is expected to occur nine times out of ten, with

a one in twenty probability for each of the two tails (Arrouays et al.,

2014). It is defined as:

PI90 =  q0:95 − q0:05 (3)

with q0.95 and q0.05 being the 0.95 and 0.05 quantiles of the

distribution, respectively. We chose the median as a measure of

central tendency, as the conditional distributions were expected to

be non-normal, and the median was not affected by

extreme outliers.

As RF, and by extension QRF, has been shown to perform well

without extensive parameter tuning (Cutler et al., 2007), we only

carried out limited parameter tuning. The number of variables to

consider at any given split (mtry) was tuned as part of the forward

feature selection (see below). It is usually sufficient to set the

number of trees in the forest (ntree) to a high value; 500 was

selected in this case.

3.2.3 Predictor variable selection
Predictor variable selection can be achieved in different ways.

Here, we chose forward feature (variable) selection as

implemented in the package “CAST” (Meyer et al., 2018). The

algorithm first trained the models based on all possible

combinations of two predictor variables. The best combination

was retained and tested for the best performance with a third

variable. Additional variables are added until the performance

stops to increase. The model performance was calculated as R2

using a spatial cross-validation scheme. Processing time increased

with the number of predictors and response data points. The

number of observations in the 210Pb dataset was sufficiently small

to run the forward feature selection on all predictor variables.

However, it was decided to run a predictor variable pre-selection

in the case of the porosity model. This pre-selection process first

only retained important variables that performed better than

random variables using the Boruta algorithm (Kursa and

Rudnicki, 2010). In a second step, a de-correlation analysis was

carried out to limit the collinearity. This was achieved with the

“vifcor” function of the package “usdm” (Naimi et al., 2014). The

function required a correlation threshold and the predictor

variables as input to calculate variance inflation factors (VIF) of

the predictors. The correlation threshold was stepwise decreased

from 1 with a step size of 0.01 and predictors with a VIF ≥ 5 were

removed. This process was repeated until the VIFs of all predictors

were below 5 to avoid a problematic amount of collinearity (James

et al., 2013).

A full list of the predictor variables that were selected by the

models is provided in Table 1.

3.2.4 Spatial cross-validation
The estimation of model performance was based on k-fold

cross-validation, whereby the response data were split into k folds.
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The model was built on k - 1 folds and validated against the fold

which was not used for model building. This process was repeated k

times, where k was set to 3. In the case of spatially clustered data,

spatial autocorrelation might lead to inflated estimates of model

performance (Roberts et al., 2017; Ploton et al., 2020). Folds

therefore needed to be spatially separated and this was achieved

with the function “cv_spatial” of the package “blockCV” (Valavi

et al., 2019). The block size was initially determined by estimating

the spatial autocorrelation range of the response data with the

“automap package” (Hiemstra et al., 2009). The distance functions

of the sample-to-sample, prediction-to-sample, and cross-

validation distances were plotted with the “plot_geodist” function

of “CAST” (Meyer and Pebesma, 2021) and the block size was

altered by applying a multiplier to the spatial autocorrelation range

until there was a visual agreement between the distance functions of

the prediction-to-sample and cross-validation distances.

The performances of the final models were assessed based on

the explained variance (R2) and the root mean square error (RMSE).

Correlation plots between measured and predicted data are shown

in the supplement (Figures S1, S2).
3.2.5 Area of applicability
We estimate the area of applicability (AOA) of the two models

with the “aoa” function of the package “CAST” (Meyer and

Pebesma, 2020). The spatial predictions and areawide

quantifications presented in this study refer to the joint AOA of

both the porosity and 210Pb rain rate models, which spans an area of

21,270 km2.
3.3 Calculation of MAR

In each grid cell of the model, predicted porosities were

multiplied with existing spatial data of sedimentation rates

(Diesing et al., 2021) to determine the spatial distribution of MAR:

 MAR = rDB · SR    (4)
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where rDB is the dry bulk density (Equation 2) and SR is the

sedimentation rate.

Uncertainties for MAR (u(MAR)) were propagated by the

uncertainties of rDB and sedimentation rate from the literature

(Diesing et al., 2021):

u(rDB) = rDB ·
u(f)
1 − f

� �
(5)

u(MAR) = MAR ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(
u(rDB)
rDB

)2 + (
u(SR)
SR

)2

s

where u(rDB), u(f) and u(SR) are the uncertainties for dry bulk

density, porosity, and sedimentation rates. The uncertainty of ds

was assumed to be 0 g cm-3. We note that the uncertainty

calculation of porosity in this study differs from the approach for

sedimentation rates in Diesing et al. (2021).
4 Results

4.1 Porosity

The four predictor variables for porosity selected by the model

were the content of silt and clay in surface sediments, the distance to

shoreline, mean bottom water temperatures and concentrations of

suspended particulate matter during summer (Table 1). Predicted

porosities varied between 42 and 86%, while the uncertainty ranged

from 3 to 47% (Figure 3). The RMSE of the model was 5.1% and the

R2 was 0.8 (Figure S1). High porosities were observed in the basin

below approximately 400 m water depth and low values along the

coastlines at shallower water depths.
4.2 Mass accumulation rate

Total MARwithin the joint AOA of 21,270 km2 was 34.7Mt yr-1

with an uncertainty of 39.8 Mt yr-1 (Figure 4). The MAR varied

between 0.01 and 0.38 g cm−2 yr−1 with the uncertainty ranging
BA

FIGURE 3

(A) Predicted spatial distribution of porosity and (B) associated uncertainty of the prediction.
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from 0.05 to 0.51 g cm−2 yr−1. High MARs were observed in a

narrow belt between 300 and 350 m water depth in the southwestern

part. The belt widens as it extends towards the northeastern part to

up to 130 m water depth. Intermediate MAR occurred in the central

Skagerrak basin, while lowest MAR were found in the southwestern

part of the Skagerrak basin and along the Danish coastline at

shallow water depth.
4.3 210Pb rain rate

Thepredictor variables for the 210Pb rain rate selectedby themodel

were bathymetry, minimum and maximum surface current velocity

and temperature, tidal current velocity at the seafloor, the ratio of tidal

boundary layer thickness to water depth andminimum,maximum, as

well asmeanbottomand surface salinity. Thepredicted total 210Pb rain

rate in the jointAOAwas4.7 · 1014 dpmyr-1with anuncertainty of 9.3 ·

1014 dpm yr-1 (Figure 5). The 210Pb rain rates varied between 0.3 and

5.4 dpm cm-2 yr-1 with uncertainties ranging from 1.0 to 6.8 dpm cm-2

yr-1. The model had an RMSE of 1.4 dpm cm-2 yr-1 and an R2 of 0.41

(Figure S2). The highest rates were found in a belt structure along the

basinbetweenapproximately120and600mwaterdepth. Intermediate
210Pb rain rates were predicted at the flanks of the high accumulation

belt and in the central Skagerrak basin. The lowest rates were found

along the Danish coastline at shallower water depths.
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5 Discussion

5.1 Spatial distribution of porosity, MAR
and 210Pb rain rates

Certain patterns in the spatial variability of porosity, MAR, and
210Pb rain rates can be explained by the hydrographic regime,

indicating that the sediment transport broadly follows the general

water circulation in the Skagerrak. Towards the northeastern part of

the Skagerrak the current velocities decrease (van Weering et al.,

1987, 1993), which promotes particle settling and contributes to the

formation of belts characterized by highMAR and 210Pb rain rates. In

the case of MAR, the belt is located closer towards the coast at

shallower water depths of up to 130 m. Since theMAR is a function of

sedimentation rates and porosity (Equation 5), where lower porosities

lead to higher MAR, the shift of the belt towards the coastline can be

explained by the spatial variability of the porosity (Figure 3). Lower

porosities close to the coastlines are indicative of coarser particle

settling as a result of a more energetic hydrodynamic regime

preventing the deposition of fine sediments. This relationship is

consistent with the spatial grain size data in the Skagerrak (Stevens

et al., 1996; Mitchell et al., 2019a). Conversely, high porosities found

at greater water depths reflect the dominance of finer particles at the

seafloor that settle due to reduced current velocities. The belt of

elevated 210Pb rain rates is situated in the area of high porosity and
BA

FIGURE 5

(A) Predicted spatial distribution of 210Pb rain rates and (B) associated uncertainty of the prediction.
BA

FIGURE 4

(A) Calculated spatial distribution of MAR and (B) associated uncertainty of the prediction.
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extends along the basin between 120 and 600 m water depth. The

close relationship between 210Pb rain rate and sediment transport is

reflected in similar spatial patterns of the 210Pb rain rates compared to

previously published sedimentation rates (Diesing et al., 2021).

Intermediate to high 210Pb rain rates, sedimentation rates, and high

porosities in large parts of the region suggest a substantial input of

fine particles that may be delivered by lateral transport into the

Skagerrak (see section 5.3).

In some areas along the coastlines at shallow water depths, the
210Pb rain rates are comparable to, or lower than, the atmospheric
210Pb input of 0.52 dpmcm-2 yr-1 (Peirson et al., 1966; Beks et al., 1998;

Baskaran, 2011), indicating no lateral sediment input or net seafloor

erosion in these areas (Figure 5). A possible explanation is the physical

disturbance by waves and currents, leading to the resuspension of

surface sediments at the seafloor. Given the exponential shape of a
210Pb activity profile, continuous resuspension and subsequent

relocation of 210Pb-rich surface sediments could explain the depleted
210Pb inventories at these sites. Considering the fishery activities in

shallow waters and their impact on the seafloor in the North Sea and

Skagerrak (ICES, 2020; Zhang et al., 20231), relocation of surface

sediments by bottom trawling is another potential reason behind the
210Pb loss. Supporting this hypothesis, disturbed 210Pb profiles

(Figure 2B) that may be indicative of bottom trawling (Spiegel et al.,

2023) exclusively occur at shallowwater depths< 400m in linewith the

footprint of bottom trawling on the seafloor of the Skagerrak.
5.2 Total MAR and 210Pb rain rates in
the Skagerrak

The spatial distributions predicted by the machine learning

models allowed for an estimate of the total MAR and 210Pb rain

rates in the Skagerrak. When integrating the rates across the joint

AOA of the two models of 21270 km2, the Skagerrak exhibits a MAR

of 34.7 ± 39.8 Mt yr-1 and a 210Pb rain rate of 4.7 · 1014 ± 9.3 · 1014

dpm yr-1. The presented rates are applicable for the last ~ 100 years,

as the 210Pb rain rates and the sedimentation rates used to calculate

the MAR depend on 210Pb activities in the sediment, of which

roughly 97% is decayed after five times the half-life of 210Pb (22.3

years). Hence, the results are representative as average values since

the beginning of extensive human activities in the Skagerrak and

North Sea (ICES, 2018, 2019, 2020; OSPAR, 2023) and can be used

for comparisons with the sediment system of pre-industrial times.

The presentedMAR is comparable to previous estimates of 28Mt yr-1

and 46 Mt yr-1 for the same area slightly differing in size (van

Weering et al., 1987; de Haas and van Weering, 1997) and 19 Mt yr-1

in the Norwegian part of the Skagerrak (Bøe et al., 1996). Their results

were based on averaging sedimentation rate data and either assuming

or measuring values for the porosity and density of dry solids to

calculate area-wide MAR. Hence, the difference in the estimates is

likely due to utilizing different data sets and upscaling methods.
1 Zhang, W., Porz, L., Yilmaz, R., Wallmann, K., Spiegel, T., Neumann, A., et al.

(2023). Intense and persistent bottom trawling impairs long-term carbon

storage in shelf sea sediments. doi: 10.21203/rs.3.rs-3313118/v1.
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5.3 Proportions of local and lateral 210Pb
and sediment inputs

By comparing 210Pb rain rates at the seafloor with the

atmospheric 210Pb flux, it is possible to estimate the proportions

of local and lateral 210Pb inputs (DeMaster et al., 1986; Biscaye and

Anderson, 1994), where the atmospheric flux is considered as the

local source for 210Pb. Assuming a constant spatial and temporal

atmospheric 210Pb flux of 0.52 dpm cm-2 yr-1 (Peirson et al., 1966;

Beks et al., 1998; Baskaran, 2011) across the Skagerrak, the 210Pb

input by the atmosphere was calculated to be 1.1 · 1014 dpm yr-1.

Hence, the total 210Pb rain rate of 4.7 · 1014 dpm yr-1 is about 4 times

the atmospheric input. The relative proportions of the local and

lateral inputs are 24% and 76%, respectively. Consequently, lateral

transport from outside the study area is the main source of 210Pb in

the Skagerrak. No details on the provenance of the lateral load can

be derived from our evaluation. However, it is likely that a

substantial portion stems from the southern and central North

Sea as proposed by previous studies (Zöllmer and Irion, 1993;

Bengtsson and Stevens, 1998; Irion and Zöllmer, 1999; Lepland

et al., 2000).

de Haas and van Weering (1997) presented proportions of local

and lateral organic matter inputs in the Skagerrak based on total

organic carbon accumulation rates and primary production rates.

They proposed that primary production only contributes about 10%

to the total organic carbon accumulation rate,while the remaining90%

is transported laterally into the Skagerrak. We argue that the high

affinity for particles and the otherwise conservative behavior make
210Pb a favorable indicator for separating the lateral and local inputs of

MAR.Despite itshighparticle reactivity, 210Pbactivities indeposits can

be further affected by TOC contents (Xu et al., 2011; Anjum et al.,

2017), the grain-size distribution (HeandWalling, 1996) andsediment

redistribution, making the assumption of a proportional relationship

between 210Pb and sediment fluxes in a natural system uncertain

(Sanchez-Cabeza and Ruiz-Fernández, 2012). Such effects may

become even more pronounced when considering that particle

transport from the North Sea to the Skagerrak requires about two

years (Hainbucher et al., 1987; Dahlgaard et al., 1995; Salomon et al.,

1995). For instance, during transport from theNorthSea, resuspension

might introduceburied andalreadydecayed 210Pb to the lateral particle

load. Conversely, the lateral load could be continuously recharged by

fresh 210Pb from the atmosphere.Decayduring the transit is unlikely to

significantly affect 210Pb activities given the travel times and a 210Pb

half-lifeof 22.3years. Since adetailedunderstandingof the relationship

between long transit times, resuspension, and their impact on 210Pb

activities is unknown, the local and lateral sediment inputsweobtained

represent a rough estimate. Assuming that the proportions of the local

and lateral inputs derived from 210Pb can be applied to the MAR, we

calculated local and lateral sediment inputs of 8.2 and 26.5 Mt yr-1,

respectively. Local sediment sources usually constitute aeolian input

and primary production. Considering primary production rate

estimates of 90 - 190 g m-2 yr-1 in the Skagerrak (Anton et al., 1993;

Meyenburg andLiebezeit, 1993;Heilmannet al., 1994; Richardsonand

Heilmann, 1995; Skogen et al., 1995; de Haas and vanWeering, 1997;

Skogen and Søiland, 2006), multiplication with the AOA yields a

primary production of 1.9 - 4.0Mt yr-1 in the research area.Hence, our
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results indicate that aeolian inputs account for a significant fraction of

the local input. However, there exist significant uncertainties in both

the earlier estimates and in our 210Pb-based calculations. Furthermore,

previous studies indicated substantial temporal variability of primary

production rates in the Skagerrak (Binczewska et al., 2018; Louchart

et al., 2022). Hence, a more comprehensive approach, such as the

application of organic carbon diagenetic modeling, is required to

constrain the role of primary production in the local sediment input.
5.4 Tentative sediment budget of the
North Sea

Based onour updated estimate onMARand the existing literature,

we derived a tentative sediment budget for the North Sea (Figure 6).

Minor contributors to the sediment budget (< 3 Mt yr-1) such as the

BalticCurrent input or sediment extractionwerenot considered in this

budget, as their sum constituted only a small fraction of the overall

sediment budget and sources and sinks of these minor contributors

mostly balance out (Oost et al., 2021). Total sediment input into the

North Sea amounts to 44 - 78 Mt yr-1. The main contributors include

sediment transport via theNorthAtlantic (Eisma and Irion, 1988; Puls

et al., 1997; Eisma, 2009), the Dover Strait (McManus and Prandle,

1997; Fettweis et al., 2007; Eisma, 2009), cliff erosion along the UK

coastline (Eisma and Irion, 1988; Puls et al., 1997), riverine inputs

(Eisma and Irion, 1988) and seafloor erosion (Eisma and Irion, 1988;

Van Alphen, 1990; ICONA, 1992). Total sediment outputs at

depocenters in the North Sea and by the outflow to the North

Atlantic are 88 Mt yr-1. Of that, 35 Mt yr-1 are deposited in the

Skagerrak, supporting the notion that this region is the main

depocenter for sediments from the North Sea. The Wadden Sea, in

the southern and central North Sea, acts as another major sediment

sink and traps approximately 11 Mt of the total sediment input

annually (Oost et al., 2021). Furthermore, substantial MAR on the

order of 28 Mt yr-1 has been previously reported in the Norwegian

Trench (de Haas et al., 1996). The remainder of 14 Mt yr-1 that is not

deposited at the seafloor leaves the North Sea through the Norwegian

Coastal Current (Eisma, 2009). The overview reveals an imbalance
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between sedimentary sources and sinks in the North Sea, with sinks

exceeding the sources. It is important to note the substantial

uncertainties associated with the presented estimates, which may

explain the observed imbalance. However, we further emphasize that

the riverine inputs play a relatively minor role, while the particle

transport through the northern Atlantic entrance and the Dover

Straight are the major sediment sources for the North Sea. Most of

the suspended load carried by both of these channels is probably

supplied by erosion at coastlines surrounding the North Sea region.

Recent studies have demonstrated that coastal erosion is a more

dominant source than previously thought in the European seas

(Regard et al., 2022) including the Baltic Sea (Wallmann et al., 2022).

Hence,wesuggest that current estimatesof thechannel inputsmightbe

underestimated and could potentially close the sediment budget in the

North Sea. The tentative North Sea sediment budget demonstrates the

need to constrain the quantities of the different major sediment

pathways for a comprehensive sediment budget in the North Sea.
5.5 Model appraisal, limitations, and
future directions

We applied a machine learning approach to spatially predict

sediment porosity and 210Pb rain rates in the Skagerrak, while

previous studies employed averaging to scale up individual data

points in the Skagerrak (van Weering et al., 1987; Bøe et al., 1996; de

Haas et al., 1996; de Haas and van Weering, 1997). We opted for

machine learning as it has been previously demonstrated to be

successful in predicting sedimentation rates and organic carbon

densities in the same region (Diesing et al., 2021). Moreover, the

machine learning approach shows principal advantages over

averaging: (1) Machine learning yields spatially explicit results that

can be displayed asmaps. This allowed us to identify differences in the

spatial patterns of MAR and 210Pb rain rate, which were presented in

section 5.1. In contrast, upscaling by averaging would yield one value

applicable to the whole area, but without information about spatial

variability. (2) The uncertainty of the predictions was assessed in a

robust and spatially explicit way. Previous studies, as cited above, have

provided estimates of the sediment accumulation, but no uncertainty

has been given. (3) Although not investigated here, it is generally

possible to explore the relationships between the response variable and

the predictor variables with tools like variable importance and partial

dependence plots (Hastie et al., 2009). This might help improvemodel

building and understanding of the driving forces of the spatial patterns

of the variable under consideration.

Although high uncertainties were calculated, it is important to

keep in mind the definition of uncertainty we used (Equation 3).

The PI90 gives the range of values within which the true value is

expected to occur in 90% percent of the cases. Other studies have

used the standard deviation (Diesing et al., 2021), a conformal

prediction methodology (Restreppo et al., 2021) or none (Mitchell

et al., 2021), leading to lower estimated uncertainties. Additionally,

the propagation of uncertainties when calculating MAR (Equation

6) has increased the associated uncertainty estimates. This could be

alleviated by directly predicting the MAR. However, this would
FIGURE 6

Tentative sediment budget for the North Sea. The major
contributors to the sediment input include transport from (a) the
North Atlantic (Eisma and Irion, 1988; Puls et al., 1997; Eisma, 2009)
and (b) the Dover Strait (McManus and Prandle, 1997; Fettweis et al.,
2007; Eisma, 2009), (c) cliff erosion (Eisma and Irion, 1988), (d)
riverine input (Eisma and Irion, 1988) and (e) seafloor erosion (Eisma
and Irion, 1988; Van Alphen, 1990; ICONA, 1992). Sediment outputs
include deposition in the Skagerrak (this study), (f) the Norwegian
Trench (de Haas et al., 1996) and (g) the Wadden Sea (Oost et al.,
2021) and (h) outflow towards the North Atlantic (Eisma, 2009). All
numbers are given in million tons of sediment per year.
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require sufficient stations where sedimentation rates and dry bulk

density or porosity have been measured.

General difficulties associated with sediment budgeting have been

discussed in the literature (Brown et al., 2009; Parsons, 2012; Walton

et al., 2012).Uncertainties includedata availability, dataquality and the

applied upscaling approach. In our study, it was not possible to

quantitatively address uncertainties owing to the data quality of the

predictor and response variables, as measurement errors were rarely

reported, and different sampling strategies and measurement

techniques were applied in the complied literature. Therefore,

improving the model performance and reducing the uncertainties

was largely dependent on the available amount of response data and

how the stations are distributed in space. Ideally, one should design a

sampling surveyprior tomodeling in away thatoptimizes the coverage

of the samples in the studyarea.This couldbeachievedby, e.g., a simple

random design (Meyer and Pebesma, 2022). However, data collection

at sea is time and resource-consuming, and not making use of existing

datasetswould be awasteful practice.We therefore followed the advice

of Meyer and Pebesma (2021) and estimated the AOA of our models.

TheAOAresults couldbe used for directing future sampling surveys to

areas where the environment has not been sufficiently captured

(Figure 2). Such a strategy would allow collecting additional data in

an informed way to reduce uncertainties in the spatial distributions.

Predictor variables affected the performance based on their

predictive capability, data quality and spatial resolution. A wide

set of spatial data was available in the Skagerrak, enabling us to test

their potential as predictors and ultimately providing a sufficient

amount for the machine learning model. However, most of these

predictors originate from the Bio-ORACLE global dataset

(Tyberghein et al., 2012; Assis et al., 2018) with a spatial

resolution of 5 arcmin, limiting the resolution of the model’s grid

and its ability to consider fine-scale heterogeneities below the

resolution of the raster stack. Hence, additional high-quality data

on predictor variables could improve the predictive capability of the

machine learning models to constrain the presented spatial

distributions of porosity, MAR and 210Pb rain rates.
6 Conclusion

In this study, we present the spatial distributions of porosity, 210Pb

rain rates andmass accumulation rates (MAR) in the Skagerrak based

on machine learning. High MAR and 210Pb rain rates are observed

within two similar belt structures. The MAR belt is situated at

shallower water depths given lower porosities towards the coast,

while the 210Pb belt extends along the basin. The calculated areawide

MAR is 34.7 ± 39.8 Mt yr-1 and 210Pb rain rate is 4.7 · 1014 ± 9.3 · 1014

dpm yr-1. By comparing the total 210Pb rain rate to the atmospheric
210Pb input, we calculate that 24% of the 210Pb stems from the

atmosphere, with the remainder of 76% being transported laterally

into the Skagerrak. Considering the high particle reactivity of 210Pb,

these proportions are applied to theMAR to broadly estimate the local

and lateral sediment inputs of 8.2 and 26.5 Mt yr-1, respectively. We

further present a tentative sediment budget for the North Sea, which

reveals sedimentary sinks to be higher compared to the sources. Large

uncertainties in the budget estimates may explain the imbalance. We
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further suggest that sediment inputs through the northern North

Atlantic entrance and the Dover Straight could be underestimated.

Although the machine learning approach currently represents one of

the state-of-the-art methods for upscaling, large uncertainties in the

predicted quantities persist. Incorporatingmore response data in areas

that lie outside the AOA of the models could improve the predicted

spatial distributions. The findings of this study contribute to the

characterization of the Skagerrak region, particularly in terms of

sediment mass balances and its role as the major depocenter for

sediments from the North Sea. The spatial distributions can be used

to validate ecosystem models and vice versa and provide a knowledge

basis for resource management plans. Furthermore, the presented

machine learningmethod for spatial upscaling can be applied to other

regions to gain insights into areawide distribution patterns.
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