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and computer vision approaches
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1Trondheim Biological Station, Department of Biology, Norwegian University of Science and
Technology (NTNU), Trondheim, Norway, 2Department of Software Engineering, Safety and Security,
SINTEF Digital, Trondheim, Norway, 3Seaweed Solutions AS, Trondheim, Norway, 4Department of
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Seaweed farming is the fastest-growing aquaculture sector worldwide. As farms

continue to expand, automated methods for monitoring growth and biomass

become increasingly important. Imaging techniques, such as Computer Vision

(CV), which allow automatic object detection and segmentation can be used for

rapid estimation of underwater kelp size. Here, we segmented in situ underwater

RGB images of cultivated Saccharina latissima using CV techniques and explored

pixel area as a tool for biomass estimations. Sampling consisted of underwater

imaging of S. latissima hanging vertically from a cultivation line using a mini-ROV. In

situ chlorophyll a concentrations and turbidity (proxies for phytoplankton and

particle concentrations) were monitored for water visibility. We first compared

manual length estimations of kelp individuals obtained from the images (through

manual annotation using ImageJ software). Then, we applied CV methods to

segment and calculate kelp area and investigated these measurements as a robust

proxy for wet weight biomass. A strong positive linear correlation (r2 = 0.959)

between length estimates from underwater image frames and manual

measurements from the harvested kelp was observed. Using unsupervised

learning algorithms, such as mean shift clustering, colour segmentation and

adaptive thresholding from the OpenCV package in Python, kelp area was

segmented and the number of individual pixels in the contour area was counted.

A positive power relationship was found between length from manual

measurements with CV-derived area (r2 = 0.808) estimated from underwater

images. Likewise, CV-derived area had a positive power relationship with wet

weight biomass (r² = 0.887). When removing data where visibility was poor due to

high turbidity levels (mid-June), the power relationship was stronger between CV-

derived area estimates and the field measurements (r² = 0.976 for wet weight

biomass and r² = 0.979 for length). These results show that robust estimates of

cultivated kelp biomass in situ are possible through kelp colour segmentation.

However, we demonstrate that the quality of CV post-processing and accuracy of

the model are highly dependent of environmental conditions (e.g. turbidity and

chlorophyll a concentrations). The establishment of these technologies has the

potential to offer scalability of production, efficient real-time monitoring of sea

cultivation and improved yield predictions.
KEYWORDS

kelp farm monitoring, underwater marine robotics, biomass estimation, seaweed
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1 Introduction

Cultivated seaweed is the fastest-growing aquaculture sector

worldwide (~6% y-1) and a multibillion-dollar industry, comprising

half of global mariculture production (Duarte et al., 2021). Seaweed

farming has the potential to provide a sustainable, low trophic

source of food (and feed) for a world approaching 10 billion by 2050

and can potentially be used as a nature-based solution for climate

change mitigation and nutrient remediation (Duarte et al., 2021;

van Dijk et al., 2021). The positive impact of seaweed aquaculture

can help society to achieve many of the United Nations Sustainable

Development Goals (UNSDGs) – from eliminating hunger and

climate change mitigation, to economic growth, and improvement

of life under water (Duarte et al., 2021; Hossain et al., 2021;

Alleway, 2023).

While seaweed aquaculture has a long history in Asia (over a

thousand years) (Hwang et al., 2019), which is responsible for 99%

of worldwide production, sea cultivation of kelp has only recently

become established in Europe (last 5-15 years). Norway, with its

long coastline and favourable seaweed growing conditions, has the

potential to be a major player as the European industry develops. In

Norway alone, the number of licenses for seaweed cultivation has

increased from 54 in 2014 to 511 in 2020, revealing the increased

interest in seaweed farming (Albrecht, 2023). Predictions suggest

the expansion of seaweed cultivation up to 2 × 107 tonnes per year

by 2050 (Olafsen et al., 2012; Skjermo et al., 2014; Broch et al.,

2017), although there are some discussion about how realistic these

projections are (Albrecht, 2023).

Although market demand for seaweed is generally increasing in

Europe, Norwegian seaweed aquaculture is not yet profitable. One

major reason for this is a lack of automation regarding seedling

production, farm operations, monitoring, harvesting and

processing of biomass at a large scale. Thus, as seaweed producers

scale-up, it is important that they are able to maximise their yields at

sea, while minimising production costs. To achieve this goal, a

holistic understanding of the environmental conditions influencing

macroalgal growth and the onset of biofouling is necessary to

achieve biomass of consistent quality and yield. Accurately

predicting the total biomass at harvest is also vital for planning

the processing of the biomass. To date, kelp biomass measurements,

biofouling inspections and environmental monitoring are still

largely done by hand, which is time-consuming, labour intensive

and cannot easily build up a holistic picture that is representative of

the whole farm. Automation of kelp farm monitoring has the

potential to revolutionize this aspect of the industry. The more

automated and frequent monitoring is, the faster the pace of

knowledge acquisition for optimising growth at sea, predicting

yield and planning harvest and processing logistics.

Cost-effective monitoring of wild kelp has been performed in

pilot studies using Red-Green-Blue (RGB) cameras (Bewley et al.,

2012) or hyperspectral imaging by air using aerial drones/airplanes

Volent et al. (2007) and from underwater platforms using remotely

operated underwater vehicle (ROVs) (Summers et al. (2022).

However, very little research has been done using underwater

robot monitoring (autonomous underwater vehicles, AUVs, and

ROVs) in kelp farms. Biomass growth has been assessed using
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AUVs with a split-beam acoustic echosounder (Fischell et al., 2019)

and a sideward scanner to monitor the macroalgae growth in a kelp

farm (Stenius et al., 2022). However, they are more appropriate for

seaweed species that possess pneumatocysts (e.g. Macrocystis

pyrifera), due to enhanced acoustic returns, and not for

commercial species from Norway (mostly Saccharina latissima

and Alaria esculenta) (Bell et al., 2020). Visual inspections are still

necessary, though, for monitoring the kelp health and for robust

estimation of biomass measurements, given that strong currents can

underestimate these values by changing the direction of the kelp in

the water (Bell et al., 2020). Moreover, AUVs cannot operate

everywhere. They are less suited to areas that are heavily

populated (near the shore) due to acoustic interference, and have

a high collision and entanglement risk, which can lead to damage of

the farm. They are also very expensive and require technical

personnel for operation. Due to the tight space between kelp lines

(maximum of a few meters), small and light underwater robots,

such as portable drones (uncrewed surface vehicles, USV) (Zolich

et al., 2022) and manually controlled mini-ROVs can offer a low risk

assessment of the environmental conditions within the farm. The

small, portable, mini-ROV Blueye model X3 (Blueye Robotics,

Norway) was chosen in this study because of its user-friendly

operability, making it manoeuvrable enough for easy operation in

the tight spaces of a kelp farm, while at the same time providing

sufficient power to operate in coastal conditions. It is also affordable

(~ US$ 12k for the Blueye X3 drone + basic kit), making it an easily

available option for seaweed farmers.

The aim of this study was to provide a proof-of-concept for in

situ biomass estimation of cultivated S. latissima derived from

underwater RGB imaging and computer vision (CV) techniques.

For that, we compared manual length estimations to the ones

obtained from images through human supervision, then, we

applied CV methods to estimate kelp area and used these

measurements as a proxy for wet weight biomass. To our

knowledge, this is the first attempt where in situ biomass

estimations from images are validated against field-measured,

harvested biomass data. We show that robust estimates of

cultivated kelp biomass in situ are possible through lamina colour

segmentation, although we demonstrate that the quality of CV post-

processing and accuracy of the model are highly dependent of

environmental conditions, such as the colour of the water, turbidity,

natural illumination and current velocities. The establishment of

these technologies will offer scalability of production, efficient real-

time monitoring of farm cultivation and improved yield predictions.
2 Methods

2.1 Study area and sampling methods

Fieldwork was carried out at the Seaweed Solutions kelp farm,

Måsskjæra, in Frøya, an island located off the coast of mid-Norway

(Trøndelag region) (63°44.62’N 8°52.76’E) (Figure 1). Frøya island

is a biodiversity-rich area with strong water mixing due to internal

waves, strong winds and tidal currents (Fragoso et al., 2021). The

hydrography of the region is characterized by two different currents:
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the Norwegian Coastal Current (NCC) located above the

Norwegian Atlantic Current (NAC). NCC is a result of freshwater

runoff from Norwegian fjords comprising several rivers outflow in

each fjord (Skagseth et al., 2011), while the NAC is a warm nutrient-

rich water mass located below the NCC that occasionally intrudes to

the surface in spring and summer (Skagseth et al., 2011)

(Figure 1A). Because of the influence of the NAC, the area is

highly productive regarding fisheries and aquaculture activities,

with high economical revenue to Norway (Tiller et al., 2015;

Ervik et al., 2018).

Måsskjæra is a semi-exposed farm location sheltered from

westerly and southerly wind directions and exposed to north-

eastly winds (Førde et al., 2016) (Figure 1). Due to the shelter

protection provided by the mainland and surrounding islands, wave

height does not exceed 2 meters. The depth where the farm is
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located ranges from 10 - 35 m. The farm size is approximately 400 ×

400 m and is based on a horizontal longline system that is divided

into approximately 16 cultivation squares. S. latissima was

cultivated on 100 m long substrate lines (14 mm diameter) that

were seeded by wrapping them with cultivation twine (2 mm

twisted polyester). The cultivation depth was between 2 and 5 m

and was achieved by placing buoyancy in the middle of the 100 m

substrate lines. Lines were cultivated with a spacing of

approximately 1 m distance.

Sampling consisted of underwater imaging of a single kelp (S.

latissima) cultivation line (~25 m in length) located at the edge of

the farm and at ~ 2-5 m depth (Figures 1B, C). The monitored

seaweed line was deployed in November 2021. Sampling occurred

every 2 - 4 weeks within the later stages of the main growing season

(from March to June 2022, 7 sampling times in total, Table 1). This
FIGURE 1

Map showing (A) Norway, and the coast of Trøndelag (mid-Norway, square) and (B) the island of Frøya and the location of Måsskjæra seaweed farm,
and Sula meteorological station (where wind data were collected). (C) Illustration of the Måsskjæra seaweed farm, showing the collection site
(star symbol).
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allowed imaging and sampling during distinct development stages

of S. latissima, from young sporophytes in March to ‘bushy canopy”

in June, to test the method on kelp lines with a range of sizes and

growth densities. Sampling was, where possible, carried out at low

tide (slack water) to minimise current speeds in order to obtain

images of S. latissima specimens oriented as vertical as possible.

Sampling during high tide could also have been an option but, due

to logistical reasons (boat and personnel availability), low tide was

chosen in order to maintain consistency. In practice, however, ideal

conditions for video recording (low tides) were not possible on all

sampling days due to the logistical difficulties of arriving and

deploying the ROV during the exact time of slack water (e.g.

weather conditions and boat logistics) (Table 1).

Prior to recording underwater video, an aluminium-based

hand-made checkerboard plate (30 × 20 cm) was placed at the

start of the cultivation line for size reference. The plate was weighted

in an attempt to keep it vertical during underwater videos.

Additionally, red plastic strips were attached to the same line at

1-meter intervals to mark one meter replicate samples. For each

sampling day (total of 7), triplicate 1-meter samples (adjacent to

each other) from the cultivation line were selected for image

analysis and validation (manual or field-based wet weight biomass

and average length estimations collected in the field). Underwater

images of marked 1-meter replicates were then captured under

natural light conditions by driving the mini-ROV Blueye X3 (Blueye

Robotics, Norway) sideways along the cultivation line. To achieve

this, the internal camera of the ROV was pointed in the direction of

the kelp and at a sufficient distance to ensure that the whole length

of the kelp and width of the 1-meter mark was captured in the

frame. After video recording, the videos were uploaded for later

image post-processing in the lab (Figure 2). The internal camera of

the ROV was used as the optical sensor for the image sampling: a

digital RGB camera equipped with 30° tilt (up and down), which

can collect imagery with Full High-Definition (FHD) resolution

(1920 × 1080 25/30 frame per second) and 115° field of view (FOV).

For more specificat ions, see Blueye website (https ://

support.blueye.no/hc/en-us/articles/4402566916626-X3-

technical-specifications)

After video recording, sporophytes of S. latissima from each 1 m

replicate were sampled for wet weight biomass (presented as field-
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measured weight per meter) and length measurements (field-

measured lamina + stipe + holdfast length, herein referred as

lamina length) for validation. For the field-measured weight, the

whole wet weight biomass of the 1 m cultivation line was

considered. For field-measured length, 10 randomly selected S.

latissima sporophyte specimens from each 1-meter replicate line

were measured for lamina, as well as lamina width at the widest

point. Only 10 sporophytes within each 1-meter replicate were

chosen because it would be too time consuming to measure the

length of each individual specimen (densities can reach many

hundreds of individuals per meter). This is also a common

methodology used by seaweed farmers when carrying out field

monitoring. The same method was repeated on each field day,

meaning that the sampling is destructive – the seaweed was

permanently removed from the cultivation line for biomass and

length measurements.

To investigate the influence of environmental variables, such as

particles (phytoplankton and detritus), irradiance and wind speed,

on water visibility and image quality for post-processing, additional

environmental data were collected. A submersible fluorometer

sensor (C3, Turner Designs, USA) was attached at the edge of the

farm and placed at 3 m depth (Figure 1C). The sensor measured

temperature (°C), chlorophyll a fluorescence (calibrated later to

concentration [Chl a] in mg m-3) and turbidity (Relative

Fluorescence Unit - calibrated later to Formazin Turbidity Unit

(FTU)) every 10 minutes from mid-February to mid-June. The C3

submersible was also equipped with an antifouling copper plate and

a mechanical wiper that rotates and cleans the optical sensor before

each measurement (every 10 min). Data on wind speed (m s-1) from

February until mid-June was obtained hourly from Sula

meteorological station (located west of Frøya, Figure 1) and

retrieved from the Norwegian Weather Service Center (https://

seklima.met.no/).
2.2 Image processing

2.2.1 ImageJ-derived measurements
To ascertain whether reliable measurements (in this case

length) were possible using underwater imaging, preliminary
TABLE 1 Date, local Norwegian time, tidal conditions (cm), average and maximum wind speed (from Sula meteorological station, see methods) and
cloud cover (Ørland meteorological station) for each video recording and sampling day at Måsskjæra.

Field day Date
Local Time
(UTC+2)

Tide (cm)
Wind strength

(m s-1) (maximum)
Weather

1 22-Mar-22 10:30 - 12:00 103-181 (Rising) 5.0 (6.7) Partially sunny

2 5-Apr-22 12:30 - 14:00 178-232 (Rising) 1.9 (8.7) Partially sunny

3 20-Apr-22 07:50 - 09:30 37-39 (Low) 2.4 (3.7) Sunny

4 4-May-22 08:30 - 09:30 50-63 (Low/rising) 6.1 (8.5) Cloudy

5 27-May-22 10:20 - 12:10 231-199 (High/receding) 6.7 (8.5) Partially sunny

6 3-Jun-22 08:40 - 09:20 61-64 (Low) 5.1 (7.9) Cloudy

7 15-Jun-22 08:40 - 09:50 84-145 (Rising) 7.9 (11.0) Rainy
Source: www.kartverket.no for tides and www.yr.no for wind and cloud cover conditions.
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estimates derived from the image frames were compared to the

manual measurements obtained from the kelp harvested in the field.

For that, comparisons were made between the average length of

randomly selected “imaged” fronds (see more below) and the

average length of 10 harvested fronds measured in the field

(explained in section 2.1). The reason we decided to do this initial

step was to ascertain whether, on average, sporophyte length

measured manually from an underwater image had comparable

results with manual measurements in the field before applying CV

(OpenCV package in python) techniques. To achieve this, image

frames that included the checkerboard for scaling were selected and

uploaded to ImageJ (Image Processing and Analysis in Java)

(Figure 3). The checkerboard in the frame was used as a size

reference to set a scale for the number of pixels per centimetre

(pixels cm-1) for the corresponding frame (Figure 3). Then, 10 kelp

specimens in each frame were randomly selected, and their length

in centimetres (cm) were measured by drawing a line from the tip to
Frontiers in Marine Science 05
the holdfast of the specimen, using the “line” and “measure” tools in

ImageJ (Figure 3). A total of 6 frames for each 1-meter replicate

were selected based on checkerboard visibility, and with different

distances and positions of the kelp. It was decided that 6 frames

were sufficiently representative to capture some variability in the

image data, while also being manageable for manual processing. For

each frame, 10 sporophyte lengths were measured accounting for a

total of 60 measurements per day (10 sporophytes × 6 frames). The

pipeline was repeated using image data from each field day (10

sporophytes × 6 frames × 7 sampling days).

2.2.2 Open CV-derived measurements
Kelp area estimates from 1-meter replicates were performed using

the Python library OpenCV. The pipeline started with extraction of six

frames of the first kelp replicate from the video collected by the mini-

ROV camera (Figure 4). The six frames selected were the same frames

used for the ImageJ-derived estimates. The region of interest (ROI) in

the frame, defined as the width of the 1-meter replicate and height, was

cropped from the original frame to sufficiently capture the full length of

the kelp within 1-meter replicate (Figure 4).

Before segmenting the kelp from the images, a type of

unsupervised learning algorithm known as ‘mean shift clustering’

was applied to distinguish foreground kelp, background and sea

water as separate features. First introduced by Fukunaga and

Hostetler (1975) and reintroduced by Comaniciu and Meer

(2002) as a general-purpose algorithm for image segmentation

and filtering, the algorithm used here deconstructs the original

image into several homogeneous, unstructured segments based on

the similarity of colour space representation of neighbouring pixels

(Figure 4). Colour segmentation was then applied to distinguish the

kelp as the object of interest (OOI) from the surrounding

background in the frame (Figure 4). Next, adaptive thresholding

(Yang et al., 1994) was applied to mask out the OOI from the

background, allowing detection of the contour of the OOI

(Figure 4). Lastly, the number of individual pixels in the contour

area was counted. The pixel count was converted to square

decimetres (dm2 m-1) by using the 1-meter width of the ROI as a

scale and is defined herein as CV-derived area per meter. The

pipeline was repeated using image data from each field day.
FIGURE 3

Pipeline for manual annotation of length performed using ImageJ. Extraction of image frames from videos. Using a checkerboard to set scale of
pixels per centimetre (pixels cm-1). Drawing and measuring length from tip to holdfast (indicated by yellow lines) of ten randomly selected
kelp specimens.
FIGURE 2

Schematic of the image sampling method, where a checkerboard
was placed at the edge of the long line and used for size reference.
Plastic cable ties indicated 1-meter replicates of kelp samples. A
mini-ROV with internal RGB camera was used to collect videos
along the longline.
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2.3 Statistical analyses

Statistical analyses were performed using NumPy, SciPy, scikit-learn

andMatplotlib, libraries for data analysis and visualization in Python and

Matlab. Relationships between field-measured length and weight versus

ImageJ length and CV-derived area were investigated by applying

regressions and evaluated by their coefficient of determination (r2).
3 Results

3.1 Environmental parameters

Average wind speed varied from February until mid-June,

reflecting the dynamic weather in the Frøya region, and was

particularly strong (up to 20 m s-1) during March and early April

(Figure 5A). Weakening of wind speed (< 10 m s-1) observed from

mid- to late April likely contributed to the shoaling of the mixing

layer depth and phytoplankton bloom formation. Environmental

variables, such as Chl a and turbidity levels varied during the field

season (Figure 5B). Several peaks in [Chl a] were observed from

February to June (5b), with a short peak in late March (~2.5 mg m-3),

a long peak around mid-April (up to 5.7 mg m-3) and variable values

from late May until mid-June (< 4 mg m-3). The overall trend was

towards higher concentrations in the second half of the field

campaign. The [Chl a] served as a proxy for phytoplankton

biomass and, thus, indicated when phytoplankton blooms ([Chl a]

>~ 3 mg m-3) occurred. Turbidity showed significant variability

throughout the field season (Figure 5B). A relatively similar trend

compared to [Chl a] until late May was observed, with a long peak in
Frontiers in Marine Science 06
turbidity levels in mid-to-late April (> 0.2 FTU). A short turbidity

peak was observed in mid-June (> 0.2 FTU) (Figure 5B). Seawater

temperature showed a gradual increase from February until the end

of June, varying from 5.6°C to 9.4°C (Figure 5C).
3.2 Image quality

Differences in the image quality of the videos/frames used for

processing were observed between different sampling days

(Figure 6). For example, early in the season (22nd March and 5th

April), the image quality was very high, indicating good water

visibility. During the period of the spring phytoplankton bloom

(first peak 20th April, later peaks on May 27th and June 3rd), the

observed image quality decreased, indicating bad water visibility

due to particles present in the water and the absorption of light from

phytoplankton. The visibility of the images slightly improved on

May 4th (a period between phytoplankton bloom peaks). On the last

sampling day, June 15th, the observed image quality was poor,

coinciding with a high concentration of phytoplankton and other

particles (indicated by a high peak in Chl a and turbidity

concentrations Figure 5B). Image quality due to poor visibility

decreased towards the end of the cultivation period due to the high

abundance of phytoplankton and other particles in the water.
3.3 Calibration and validation

Field-measured verification of kelp length and biomass had a

positive power relationship (r2 = 0.941, biomass = 5.197e-06
FIGURE 4

Pipeline for the computer vision (CV) area estimation performed with OpenCV. Extraction of frames from image data. Extraction of region of interest
(ROI) from frame. Mean shift clustering of pixel values. Segmentation of object of interest (OOI) based on colour. Masking out OOI from the
background using adaptive thresholding. Detection of the contour of the OOI and counting of area pixels, converted to square decimetres (dm2 m-1)
using known pixel width and real-world width (one meter) of the frame as size reference, resulting in CV-derived area.
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length3.037, p<0.05) (Figure 7A). On June 15 (latest day in the

season), sporophytes were smaller (average= 65.9 cm) than

specimens from late May and early June (> 80 cm in May 27th

and June 3rd) (Figure 7A). Similarly, imageJ-derived length

estimations had a positive strong correlation with field-measured

biomass (r2 = 0.977, biomass = 3.713e-06 ImageJ-length3.083,

p<0.05) (Supplementary Figure S1, Supplementary Material). The

relationship between length (field-measured and derived from

ImageJ) and biomass is best approximated by an isometric

function (exponent b=3).

ImageJ-derived length (ranging from 33.9 cm to 95.7 cm) had a

positive correlation with field-measured length (ranging from 37.4 cm

to 93.5 cm) for the 10 randomly selected sporophytes (images and field

measurements) (r2 = 0.959, ImageJ-length = 1.208 field-measured

length – 13.817, p < 0.05, Figure 7B). Variability was larger in field-

measured length (standard deviation ranged from 12.4 cm to 19.5 cm)

compared to variability from ImageJ-derived measurements (standard

deviation ranging from 2.8 cm to 14.0 cm) (Figure 7B).
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A strong positive power relationship (r2 = 0.808, CV area =

0.7327 length1.026, p < 0.05) was observed between field-measured

length and image CV-derived kelp area (Figure 7C). Both CV-

derived area and field-measured length showed large variation

between sampling timepoints. CV-derived area ranged from 32.2

dm2 m-1 to 79.3 dm2 m-1 (Figure 7C). Measurements from the last

sampling day (June 15th) had CV-derived area (35.6 dm2 m-1)

notably below the power trend. When removing the June 15th data

from the analysis, an even stronger significant power relationship

(r2 = 0.979, CV area = 0.988 length0.9694, p <0.01) was observed

(Figure 7D). The area-length relationship with an exponent being

equal to 1 indicates a linear relationship between these two

variables, where the increase in area is directly proportional to the

increase in length.

A wide range in field-measured weight was observed between

sampling timepoints, ranging from 0.24 kg to 4.97 kg per meter

(Figure 7E). When comparing area measurements (CV-derived)

with biomass (wet weight), a strong positive power relationship was
A

B

C

FIGURE 5

(A) Average wind speed (m s-1) at Sula meteorological station, and (B) chlorophyll a concentrations (red, mg m-3) and turbidity (black, FTU) and (C)
seawater temperature (°C) at Måsskjæra farm from February 16th to June 15th, 2022. Lines indicate the sampling dates.
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observed (biomass = 2.204e-05 CV area2.81, r² =0.887) (Figure 7E).

Similar to the relationship between CV-derived area and field-

measured length, measurements from June 15th had a lower CV-

derived area (35.6 dm2 m-1) compared to the trend, and if removed,

the relationship becomes stronger (r2 = 0.976, biomass = 1.231e-06

CV area3.472, p < 0.01) (Figure 7F).
4 Discussion

4.1 Effect of environmental factors on
image quality

The image quality varied widely in this study as a function of the

inherent optical properties (IOPs) of the water, including coloured

dissolved organic matter (CDOM) and particle concentrations,

such as phytoplankton and detritus. The IOPs, such as

phytoplankton cells (light absorption and scattering), non-algal

particles (NAP, e.g. detritus and sediments, mainly light
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scattering) and CDOM (absorbing), will tend to absorb (through

pigments) or scatter light through deflection (Werdell et al., 2018),

reducing the amount of light reflected from the kelp to the camera.

The influence of IOPs varies with the water type and depends on

where the seaweed is cultivated, making underwater imaging more

suitable for clear, open offshore waters (Broch et al., 2019) and more

challenging in turbid and brackish coastal seawater.

Besides IOPs, the apparent optical properties (AOPs) of the

water, meaning the angular distribution and intensity of the

ambient light-field, can also impact the quality of the images

taken under natural light conditions (Johnsen et al., 2009).

Measurements of underwater light conditions were not conducted

in our study; however, according to our observations, the ambient

irradiance impacted water quality image. In this study, incident

light would, in some cases, improve water column visibility and

detection of kelp from the surrounding water, while in other cases, it

could overexpose the images, reducing contrast and corresponding

loss of colour information. Kelp self-shading from incident light,

which was more prominent as the kelp became bigger, impacted
FIGURE 6

Example of image frames collected during each sampling day. Note the variability in water colour, clarity, and the positioning of the kelp (vertical or
diagonal) in the cultivation line.
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negatively the algorithms for area detection, particularly towards

the later stages of the cultivated kelp (early summer). Kjerstad

(2014) showed that light attenuation between the camera and the

object limits the range at which pictures of organisms can be taken,

since spatial and colour (spectral) resolution becomes distorted in
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underwater images as the distance to an OOI increases. Artificial

light might be a solution, although, in waters with a lot of particles

(plankton, sediments and marine snow/detritus), direct light can

intensively illuminate those particles, creating bright spots of

scattered light and causing image degradation (Boffety and
A B

D

E F

C

FIGURE 7

Relationships between S. latissima (A) field-measured lamina length (cm) and field-measured wet weight (kg m-1), (B) field-measured length (cm) and
ImageJ-derived length (cm), (C) field-measured length (cm) and computer vision (CV)-derived area per meter (dm2 m-1) with and (D) without the
outlier (June 15th), (E) CV-derived area per meter (dm2 m-1) and field-measured wet weight (kg m-1) with and (F) without the outlier (June 15th). Error
bars show the standard deviation of ground-truth length (n=10 sporophytes in 1-meter line), ground-truth weight (n=1 in triplicate 1-meter line),
ImageJ length (n=6 image frames, 10 sporophyte per frame in 1-meter line).
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Galland, 2012). Choice of camera, field of view, spectral resolution

and positioning of the external light sources are important pre-

image processing factors that should be considered before video

recording, in order to optimize post-processing time and

image quality.

Waters around Frøya are known to be highly productive, where

phytoplankton blooms can start from late March and persist until

June-July (Fragoso et al., 2021). Moreover, CDOM concentrations are

known to increase from spring and peak in summer as freshwater

input from rivers is accumulated in the NCC, the main current along

the coastal of Norway (Nima et al., 2016). In this study, CDOM was

not measured; however, the other IOPs, such as [Chl a] for a proxy of

phytoplankton biomass and turbidity, for particle concentration,

clearly impacted the quality of the image. The combination of high

turbidity and [Chl a]- suggesting not only that a bloom is occurring

but that it is composed of large cells, colonies and aggregates - makes

the water visibility worse, particularly in mid-June. Such conditions

become even more detrimental as the kelp gets bigger and the camera

needs to move further away to increase the FOV, allowing light to be

more attenuated between the camera and the OOI. Chain-forming

diatom blooms dominated by the genera Chaetoceros, Skeletonema

and Thalassiosira are common during spring in Frøya (Fragoso et al.,

2019, Fragoso et al., 2021), as well as many other coastal northern

regions (Throndsen et al., 2007), making visibility a challenge for

ROV video recording at seaweed farms. Water quality improved on

4th May, after the decline of the first bloom and potentially because of

a storm that diluted the particle density throughout the mixed layer

depth. Marine snow, as well as zooplankton abundance, which are

high in Frøya waters (Fragoso et al., 2019) and other coastal

productive regions of Norway, would increase the turbidity signal

after bloom conditions, being an additional challenge for water

visibility and kelp size inspection.

Underwater imaging enhancement (UIE), such as white

balance, dehazing algorithms and histogram equalization are

modern tools to improve the contrast of objects from ocean RGB

imagery, allowing more accurate segmentation and identification of

the OOI (Mathur and Goel, 2022). Mohamed et al. (2020) used the

Multi-Scale Retinex (MSR) algorithm for image correction and the

YOLO algorithm to enhance fish detection and tracking in tanks,

increasing underwater detection of fish specimens by three times.

UIE in seaweed and fish farms could be a potential tool to reduce

the optical effects of particles in the water, improving the accuracy

of our model, particularly for conditions later in the season due to

increased turbidity. Another possibility could be to monitor

phytoplankton concentrations and turbidity levels using sensors

at the kelp farm and adapt the time of video recording to periods

with lower turbidity levels and between phytoplankton blooms, in

order to collect higher quality imagery.

Strong currents were also another issue that impacted the

quality of data. In our studies, slack tides (particularly low tide)

were the best periods to video record the kelp lamina hanging

vertically from the ropes. This allowed the best positioning of the

kelp to be able to better extract area information. According to most

of our images, the kelp was aligned vertically from the cultivation

rope, except for June 15th, which contributed to the lower rendering

of CV-derived area estimations. This suggests that the
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environmental conditions, possibly obtained from instruments

such as acoustic doppler current profilers (ADCPs) and optical

instruments for IOPs measurements, need to be taken into

consideration before underwater video recording/digital imaging.

Awareness of the impact of environmental variables on the

reliability of remote sensing results (e.g. seagrass beds, Nahirnick

et al. (2019)) has been raised and similar approaches could be

implemented for seaweed farms. Pre-analyses of the environmental

conditions (irradiance, turbidity and current velocities) from

sensors attached to kelp farm infrastructure can help improve

decisions about the optimum conditions for underwater farm

inspection (Bell et al., 2020).
4.2 Kelp length and area estimations from
underwater RGB imagery

Our work indicates that it is possible to detect and derive kelp size

from RGB camera images. Through human supervision, length

measurements of 10 randomly selected sporophytes extracted from

the frames using imageJ (Figure 3) demonstrated strong relationships

with measurements done by hand in the field (also 10 randomly

selected sporophytes from 1m of cultivation line). Variability in the

data is likely related to the fact that these two 1m sections (for image

and field measurements) were not the same. Human annotation of

traits (length, area, point count, segmentation) is a useful tool in

underwater biological image analysis (Gomes-Pereira et al., 2016),

which, when combined with CV, has the potential to simplify in situ

size estimation of underwater organisms.

Automated size estimation, as well as species identification and

animal tracking, via CV techniques, are modern tools in ecology.

Estimation of individual biomass of marine organism from

dimensions derived from images is possible because of the strong

isometric/allometric biomass-size relationships expected in many

organisms, including macroalgae and seagrasses (Scrosati, 2006;

Scrosati et al., 2020). In S. latissima, allometric models (where the

organism does not maintain its shape as it grows) have been shown

to explain a substantial portion of thallus fresh weight (Campbell

and Starko, 2021). However, these relationships have previously

been studied in individual specimens. In our study, kelp area and

biomass estimations were retrieved from a 1-meter line (rather than

individuals), while lengths were retrieved from individuals. This

makes it complicated to compare our results to these growth

models, and it is the reason that we do not observe an isometric/

allometric growth function when comparing individual lengths to

CV-derived area. Despite this, we observed an isometric

relationship between average lamina length and total biomass

within 1m line, suggesting that the “canopy” maintains its shape

as it grows (conceptually, it can perhaps be thought of as an

expanding “cylinder”, horizontally oriented in the water column).

Our findings indicate that it is likely possible to derive robust

size information about kelp by applying CV techniques to

underwater RGB imagery. This technique is commonly applied in

agriculture and aquaculture. For example, above ground biomass

has been successfully estimated in wheat crops using airborne laser

scanning for 3D point cloud reconstruction when comparing
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estimated volume and ground-truth biomass (Walter et al., 2018).

The plant height of summer barley has also been suggested as a

good proxy for fresh and dry biomass using an RGB camera on a

small unmanned aerial vehicle (UAV) (Bendig et al., 2015).

Comparisons between seaweed biomass and area coverage from

intertidal zones derived from UAV multispectral images revealed a

positive correlation (r2 = 0.8, 0.73 and 0.59, respectively for Ulva

pertusa, Sargassum thunbergii and Sargassum fusiforme), although

accuracy decreased in highly dense beds due to mutual masking of

seaweed (Chen et al., 2022). For fish farm applications, CV-derived

image area of grey mullet, carp and St. Peter’s fish were well

correlated to mass (r2 = 0.954, 0.986, 0.986, respectively) (Zion

et al., 1999), while shape and weight exhibited only a 3% error rate

in prediction accuracy with machine learning algorithms (Odone

et al., 2001). Side view imaging (2D CV) of Scortum barcoo showed

that shape is a good predictor (r2 = 0.99) for measuring fish weight

outside tanks (Viazzi et al., 2015). The fact that area estimates

showed a positive relationship with length and weight in our studies

indicates the feasibility of using area as a proxy for biomass under

suitable conditions (vertically aligned kelp). Consequently, our

results indicate that a model using area estimates as a proxy for

biomass can be further developed and eventually applied to

accurately predict kelp biomass in situ throughout the

cultivation season.

These predictions will likely become even more common as

machine learning techniques improve and become more

mainstream (Weinstein, 2018). During the last decade, machine/

deep learning techniques have been increasingly applied to classify

distinct functional groups/species in macroalgae and aquatic

vegetation (e.g. seagrass beds) from remote sensing imaging

derived from drones (Duffy et al., 2018; Chen et al., 2022; Tahara

et al., 2022). For seaweed cultivation, however, emerging

technologies and methodologies for remote sensing and precision

farming, are in their infancy, although they show great promise. Bell

et al. (2020), for instance, used underwater colour images from

mini-ROVs and side scan sonar of kelp farm longlines, combined

with deep learning models, to classify juvenile kelp from the images

and acoustic returns before and after pneumatocyst (gas bladders)

formation. These acoustic approaches can be a potential way to

quantify biomass in species with gas bladders since total gas volume

from pneumatocyst increases as kelp laminas grow (Bell et al.,

2020). Stenius et al. (2022) also explored the use of side-scan sonar

for detection of ropes and buoys at a kelp farm, which could be

successfully implemented for biomass estimations of seaweed that

possesses pneumatocysts. However, it is unclear whether this

methodology would be as successful for other cultivated kelp

species that lack pneumatocysts. From RGB imagery, machine

learning algorithms successfully classified kelp underwater

background, in spite of water motion, although these authors

emphasized that water clarity is a requirement for the best

visibility and suitability of the model (Bell et al., 2020).

In this study, we showed that a robust relationship between CV-

derived area and ground-truth biomass and length. However, post-

processing segmentation was time consuming, since we had to

manually tune the algorithms for distinct environmental conditions

(low versus high turbidity, changes in irradiance, colour hue and
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contrasts, etc). By combining similar detection algorithms

developed by Bell et al. (2020) and others (Duffy et al., 2018;

Chen et al., 2022), with the methodology developed in our study,

further segmentation for kelp density and automated kelp area

estimation for biomass prediction could be feasible. For

maintaining the simplicity of this method, density effects (i.e.

sporophytes per m) on biomass were not considered and

quantified. CV-derived area, by its nature, should capture density

more effectively than image derived length. The nature of this

relationship (biomass-density) should be explored in detail,

however, to verify if cultivation lines with very high densities are

likely to have their biomass underestimated due to the inability to

capture the third growth dimension (essentially the “thickness” or

“bushiness” of the canopy). The relationship between biomass and

density, however, is not simplistic as phenomena such as “self-

thinning” at high densities, and intra-specific “dynamic thinning”

in response to abiotic factors, can occur (see review by

Scrosati (2005)).

In order to upscale this method, larger sample datasets can be

used as calibration and validation data, as to reduce the statistical

uncertainty and provide cross-validation of the results (Bendig

et al., 2015). The ultimate goal would be an universally applicable

model for different kelp species. However, it is possible that

location-specific models will be required. Campbell and Starko

(2021) demonstrated that allometric models, for predicting thallus

weight from length, were broadly applicable at sites with similar

environmental conditions, but suggested the need for region-

specific models between substantially different locations. It should

be examined if this finding holds true for estimating biomass on

cultivation lines from canopy area. If region-specific models need to

be constructed, that would still likely be worth the relatively small

time invested by the farmer(s) in order to later automate the process

of biomass estimation from images.
4.3 Future perspectives for biomass
estimation of cultivated kelp

The use of mini-ROVs has been applied in many studies for

short-distance inspection and monitoring of several habitats,

including benthos (Nevstad, 2022), kelp forests (Summers et al.,

2022) and coral reefs (Raoult et al., 2020). In this study we

demonstrate that the use of a mini-ROV, equipped with an RGB

camera, can reliably estimate kelp biomass using underwater

imaging and CV techniques.

Our preliminary results focused on a small section of a farm,

which is most likely not representative of the whole farm and has

considerable constraints, such as the need for human operation,

limited battery time and tether length (Sørensen et al., 2020).

Consequently, the use of the ROV can only be applied in sub-

sections of the farm to give an idea of how heterogeneously seaweed

grow in space and time. In this study we tested our method at the

edge of the farm for simplicity (accessibility and so as not to

interfere with farm operations). Performing this task inside the

farm (e.g. between cultivation lines) is likely to raise issues relating

to maneuverability within confined spaces. For further estimations
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at a “whole farm” scale, other types of observation platforms

equipped with cameras and additional sensors could be used, but

this will likely depend on the exact farm design and location (e.g.

vertical or horizontal cultivation lines, inshore or offshore, low or

high energy environment). As farms scale up in size, there will be an

increasing need for kelp farm monitoring at different scales, and

combinations of platforms, such as satellites (Jin et al., 2023), UAVs

(Bell et al., 2020), AUVs (Stenius et al., 2022) and ROVs.

Here, we anticipate that our concept can be used as the

foundation to upscale imagery as a reliable tool for biomass

estimation of kelp. For example, Stenius et al. (2022) developed a

methodology where they deployed an AUV to monitor a whole

kelp-farm autonomously and continuously. In their small-scale

scheme, an AUV followed pre-programmed or self-detected

sampling patterns based on the outline of the farm and, thus,

enabled high resolution monitoring of an entire kelp-farm

throughout the cultivation season. Other possibilities could be

moving the cameras along strategically structured cables

throughout the farm, removing the need for underwater vehicles.

Perhaps the cameras do not need to move around at all, but rather

placed in fixed positions where they can capture enough image data

to build up a representative picture of the total farmed kelp biomass.

Ultimately, the goal of the technology and method should be to

optimize accuracy of biomass estimation, providing sufficient

monitoring, while at the same time minimizing operational risks

and costs.
5 Conclusion

Our proof-of-concept results indicate that CV-derived area

estimation can serve as a robust proxy for biomass estimation of

cultivated kelp. However, accuracy of the data is strongly related to

the visibility of the water and current speed. Although there was still

a strong relationship when water visibility was reduced, the

relationship improved when outliers (with poor water visibility)

were removed.

As technology advances and machine learning algorithms for

object detection improve, kelp biomass estimation in situ with

camera systems, perhaps combined with other methods (e.g.

acoustics), can be a viable option for large scale farm monitoring.

We see this work as an important step towards that goal, where we

also envisage autonomous data collection and real-time processing.
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Scrosati, R. A., MacDonald, H. L., Córdova, C. A., and Casas, G. N. (2020). Length
and Biomass Data for Atlantic and Pacific Seaweeds From Both Hemispheres. Front.
Mar. Sci. 7. doi: 10.3389/fmars.2020.592675

Skagseth, Ø., Drinkwater, K. F., and Terrile, E. (2011). Wind- and buoyancy-induced
transport of the Norwegian Coastal Current in the Barents Sea. J. Geophys. Res. 116,
C08007. doi: 10.1029/2011JC006996

Skjermo, J., Aasen, I. M., Arff, J., Broch, O. J., Carvajal, A. K., Hartvig, C. C., et al. (2014).A
new Norwegian bioeconomy based on cultivation and processing of seaweeds: Opportunities
and R&D needs. SINTEF. Available at: https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/
handle/11250/2447684/A25981-++A+new+Norwegian+bioeconomy+based+on+cultivation
+and+processing+of+seaweeds+%28ver.2%29-Jorunn+Skjermo.pdf?sequence=1.

Sørensen, A. J., Ludvigsen, M., Norgren, P., Ødegård, Ø., and Cottier, F. (2020).
“Sensor-Carrying Platforms.” in POLAR NIGHT Marine Ecology – Life and light in the
dead of the night, eds J. Berge, G. Johnsen and J. Cohen. (Hampton Roads, VA, USA:
OCEANS 2022) 380 pp. doi: 10.1007/978-3-030-33208-2

Stenius, I., Folkesson, J., Bhat, S., Sprague, C. I., Ling, L., Özkahraman, Ö., et al.
(2022). A system for autonomous seaweed farm inspection with an underwater robot.
Sensors 22, 1–16. doi: 10.3390/s22135064

Summers, N., Berge, J., Johnsen, G., Mogstad, A., Lovas, H., and Fragoso, G. (2022).
Underwater hyperspectral imaging of arctic macroalgal habitats during the polar night
using a novel mini-ROV-UHI portable system. Remote Sens. 14 (6), 1325. doi: 10.3390/
rs14061325

Tahara, S., Sudo, K., Yamakita, T., and Nakaoka, M. (2022). Species level mapping of
a seagrass bed using an unmanned aerial vehicle and deep learning technique. PeerJ 10,
e14017. doi: 10.7717/peerj.14017

Throndsen, J., Hasle, G. R., and Tangen, K. (2007). Phytoplankton of Norwegian
coastal waters. (Almater Forlag AS).

Tiller, R. G., Hansen, L., Richards, R., and Strand, H. (2015). Work segmentation in
the Norwegian salmon industry: The application of segmented labor market theory to
work migrants on the island community of Frøya, Norway. Mar. Policy 51, 563–572.
doi: 10.1016/j.marpol.2014.10.001

van Dijk, M., Morley, T., Rau, M. L., and Saghai, Y. (2021). A meta-analysis of
projected global food demand and population at risk of hunger for the period 2010–
2050. Nat. Food 2, 494–501. doi: 10.1038/s43016-021-00322-9

Viazzi, S., Van Hoestenberghe, S., Goddeeris, B. M., and Berckmans, D. (2015).
Automatic mass estimation of Jade perch Scortum barcoo by computer vision. Aquac.
Eng. 64, 42–48. doi: 10.1016/j.aquaeng.2014.11.003

Volent, Z., Johnsen, G., and Sigernes, F. (2007). Kelp forest mapping by use of
airborne hyperspectral imager. J. Appl. Remote Sens. 1, 011503. doi: 10.1117/1.2822611
frontiersin.org

https://doi.org/10.1007/s40152-023-00324-2
https://doi.org/10.1038/s41893-022-01044-x
https://doi.org/10.3389/fmars.2020.520223
https://doi.org/10.1016/j.jag.2015.02.012
https://doi.org/10.1109/OCEANS-Yeosu.2012.6263448
https://doi.org/10.3389/fmars.2018.00529
https://doi.org/10.3389/fmars.2017.00199
https://doi.org/10.1007/s10811-020-02315-w
https://doi.org/10.3390/rs14092143
https://doi.org/10.1109/34.1000236
https://doi.org/10.1038/s41893-021-00773-9
https://doi.org/10.1038/s41893-021-00773-9
https://doi.org/10.1016/j.ecss.2017.11.001
https://doi.org/10.1007/s11356-017-1000-4
https://doi.org/10.1007/s11356-017-1000-4
https://doi.org/10.1007/s10811-015-0606-5
https://doi.org/10.1016/j.pocean.2019.05.001
https://doi.org/10.1016/j.csr.2020.104322
https://doi.org/10.1109/TIT.1975.1055330
https://doi.org/10.1016/j.pocean.2016.07.005
https://doi.org/10.1016/j.marpol.2021.104469
https://doi.org/10.1080/00318884.2019.1639436
https://doi.org/10.1080/10106049.2023.2203114
https://doi.org/10.1049/ipr2.12210
https://doi.org/10.1016/j.procs.2020.03.123
https://doi.org/10.1002/rse2.98
https://doi.org/10.1016/j.ecss.2016.05.012
https://doi.org/10.1080/088395101317018573
https://doi.org/10.1016/j.jembe.2019.151253
https://doi.org/10.1111/j.1440-1835.2005.tb00375.x
https://doi.org/10.1139/b06-077
https://doi.org/10.3389/fmars.2020.592675
https://doi.org/10.1029/2011JC006996
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2447684/A25981-++A+new+Norwegian+bioeconomy+based+on+cultivation+and+processing+of+seaweeds+%28ver.2%29-Jorunn+Skjermo.pdf?sequence=1
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2447684/A25981-++A+new+Norwegian+bioeconomy+based+on+cultivation+and+processing+of+seaweeds+%28ver.2%29-Jorunn+Skjermo.pdf?sequence=1
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2447684/A25981-++A+new+Norwegian+bioeconomy+based+on+cultivation+and+processing+of+seaweeds+%28ver.2%29-Jorunn+Skjermo.pdf?sequence=1
https://doi.org/10.1007/978-3-030-33208-2
https://doi.org/10.3390/s22135064
https://doi.org/10.3390/rs14061325
https://doi.org/10.3390/rs14061325
https://doi.org/10.7717/peerj.14017
https://doi.org/10.1016/j.marpol.2014.10.001
https://doi.org/10.1038/s43016-021-00322-9
https://doi.org/10.1016/j.aquaeng.2014.11.003
https://doi.org/10.1117/1.2822611
https://doi.org/10.3389/fmars.2024.1324075
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Overrein et al. 10.3389/fmars.2024.1324075
Walter, J., Edwards, J., McDonald, G., and Kuchel, H. (2018). Photogrammetry for
the estimation of wheat biomass and harvest index. F. Crop Res. 216, 165–174.
doi: 10.1016/j.fcr.2017.11.024

Weinstein, B. G. (2018). A computer vision for animal ecology. J. Anim. Ecol. 87,
533–545. doi: 10.1111/1365-2656.12780

Werdell, P. J., McKinna, L. I. W., Boss, E., Ackleson, S. G., Craig, S. E., Gregg, W. W.,
et al. (2018). An overview of approaches and challenges for retrieving marine inherent
optical properties from ocean color remote sensing. Prog. Oceanogr. 160, 186–212.
doi: 10.1016/j.pocean.2018.01.001
Frontiers in Marine Science 14
Yang, J.-D., Chen, Y.-S., and Hsu, W.-H. (1994). Adaptive thresholding algorithm
and its hardware implementation. Pattern Recognit. Lett. 15, 141–150. doi: 10.1016/
0167-8655(94)90043-4

Zion, B., Shklyar, A., and Karplus, I. (1999). Sorting fish by computer vision. Comput.
Electron. Agric. 23, 175–187. doi: 10.1016/S0168-1699(99)00030-7

Zolich, A., Faltynkova, A., Johnsen, G., and Johansen, T. A. (2022). Portable
Catamaran Drone – an uncrewed sampling vehicle for micro-plastics and aquaculture
research. (Hampton Roads, VA, USA: OCEANS 2022) 1–6. doi: 10.1109/
OCEANS47191.2022.9977294
frontiersin.org

https://doi.org/10.1016/j.fcr.2017.11.024
https://doi.org/10.1111/1365-2656.12780
https://doi.org/10.1016/j.pocean.2018.01.001
https://doi.org/10.1016/0167-8655(94)90043-4
https://doi.org/10.1016/0167-8655(94)90043-4
https://doi.org/10.1016/S0168-1699(99)00030-7
https://doi.org/10.1109/OCEANS47191.2022.9977294
https://doi.org/10.1109/OCEANS47191.2022.9977294
https://doi.org/10.3389/fmars.2024.1324075
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

	Biomass estimations of cultivated kelp using underwater RGB images from a mini-ROV and computer vision approaches
	1 Introduction
	2 Methods
	2.1 Study area and sampling methods
	2.2 Image processing
	2.2.1 ImageJ-derived measurements
	2.2.2 Open CV-derived measurements

	2.3 Statistical analyses

	3 Results
	3.1 Environmental parameters
	3.2 Image quality
	3.3 Calibration and validation

	4 Discussion
	4.1 Effect of environmental factors on image quality
	4.2 Kelp length and area estimations from underwater RGB imagery
	4.3 Future perspectives for biomass estimation of cultivated kelp

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


