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Underwater applications present unique challenges such as color deviation,

noise, and low contrast, which can degrade image quality. Addressing these

issues, we propose a novel approach called the learnable full-frequency

transformer dual generative adversarial network (LFT-DGAN). Our method

comprises several key innovations. Firstly, we introduce a reversible

convolution-based image decomposition technique. This method effectively

separates underwater image information into low-, medium-, and high-

frequency domains, enabling more thorough feature extraction. Secondly, we

employ image channels and spatial similarity to construct a learnable full-

frequency domain transformer. This transformer facilitates interaction between

different branches of information, enhancing the overall image processing

capabilities. Finally, we develop a robust dual-domain discriminator capable of

learning spatial and frequency domain characteristics of underwater images.

Extensive experimentation demonstrates the superiority of the LFT-DGAN

method over state-of-the-art techniques across multiple underwater datasets.

Our approach achieves significantly improved quality and evaluation metrics,

showcasing its effectiveness in addressing the challenges posed by underwater

imaging. The code can be found at https://github.com/zhengshijian1993/

LFT-DGAN.
KEYWORDS

dual generative adversarial network, reversible convolutional image decomposition,
learnable full-frequency transformer, underwater image enhancement, frequency
domain discriminator
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1 Introduction

Underwater image enhancement is a complex and challenging

endeavor aimed at enhancing the visual quality of underwater

images to suit specific application scenarios. This technology finds

extensive utility in domains like marine scientific research,

underwater robotics, and underwater object recognition. Owing

to the unique characteristics of the underwater environment,

underwater images typically suffer from significant noise and

color deviation, adding to the complexity of the enhancement

process. Consequently, enhancing the quality of underwater

images remains a daunting task, necessitating ongoing

exploration and innovation to cater to the demands for high-

quality underwater imagery across diverse application scenarios.

Traditional methods for underwater image enhancement often

rely on manually designed features and shallow learning algorithms,

which struggle to handle the inherent variability and complexity of

underwater images. To tackle these challenges, recent research has

shifted towards leveraging advanced deep learning techniques to

enhance underwater image quality performance. Deep neural

networks (Zhang et al., 2021a; Li et al., 2022) have exhibited

remarkable capabilities in learning intricate patterns and

representations directly from raw data, enabling them to adapt to

the degraded and noisy nature of underwater images. One approach

involves the direct development of complex deep network models,

where researchers aim to create intricate deep structures to enhance

underwater image quality. However, this approach often leads to

issues of high model complexity. Another strategy explores

leveraging characteristics from other domains to enhance images.

This method allows for better processing of image details, structure,

and frequency information, thereby improving clarity, contrast, and
Frontiers in Marine Science 02
overall image quality. Although these methods have made strides in

image enhancement, they sometimes overlook local feature

differences. As illustrated in Figure 1, frequency domain

techniques are employed to investigate the issue of perceptual

quality distortion in degraded underwater images alongside their

corresponding authentic reference images. The task of image

enhancement is carried out by computing the one-dimensional

power spectrum information (indicative of image information

quantity) between the images. This involves an analysis of

frequency domain variability across the images. Upon closer

examination of different stages depicted in the figure, it is evident

that there exists a discernible variance in the frequency domain

power spectrum values between the original underwater image and

the reference image at each stage, as presented across the entire

frequency spectrum. Hence, employing a frequency domain

decoupling method to separately learn and approximate the

authentic labels proves to be a highly rational approach. By

addressing these challenges, researchers can pave the way for

more effective underwater image enhancement techniques,

meeting the demands of various application scenarios effectively.

To cope with the above problems, we propose a novel

underwater image enhancement method using the learnable full-

frequency transformer dual generative adversarial network (LFT-

DGAN). Specifically, we first design an image frequency domain

decomposition without natural information loss based on a

reversible convolutional neural network structure. Reversible

convolutional networks allow us to apply the advantageous high-

frequency texture enhancement approach explicitly and separately

to the high-frequency branch, which greatly alleviates the problem

of frequency conflicts in the optimization objective. In addition, an

interactive transformer structure has been designed to ensure
FIGURE 1

Frequency domain difference analysis between the original image and the ground-truth image, with the amount of image information represented
as a 1D power spectral density image. The calculation method of 1D power spectrum image can be found in Appendix 1.1.
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improved information consistency and interactivity across multiple

frequency bands. Finally, we develop an efficient and robust dual-

domain discriminator to further ensure high-quality underwater

image generation. The main innovations of this article are

as follows:
Fron
1. We present a novel approach to image frequency domain

decomposition, implemented using reversible neural

networks. This marks the first instance of introducing

reversible neural networks to the domain of underwater

image frequency domain decomposition.

2. We introduce an interactive transformer structure to

ensure improved information consistency and

interactivity across multiple frequency bands, further

enhancing the quality of enhanced underwater images.

3. We have developed an efficient and robust dual-domain

discriminator to further ensure high-quality underwater

image generation. The proposed discriminator effectively

distinguishes between real and generated images in both

spatial and frequency domains, thereby aiding in achieving

high-quality image enhancement results.

4. In comparison to current state-of-the-art methods, our

approach yields satisfactory image effects across multiple

underwater datasets. Additionally, we have performed

several challenging applications, such as underwater

image structure analysis, fog removal, and rain removal,

demonstrating the superiority of our method.
2 Related work

2.1 Underwater image
enhancement methods

The development of underwater image enhancement methods

has evolved from the traditional methods at the beginning to deep

learning methods, which have received much attention from

scholars. Traditional underwater image enhancement methods are

mainly based on the redistribution of pixel intensities to improve

image contrast and color without considering the specific

characteristics of underwater images. It mainly includes spatial

domain and transform domain image enhancement; spatial

domain image enhancement is primarily based on gray mapping

theory, and intensity histogram redistribution is achieved by

expanding the gray level, which is done in different color models,

such as the retinex theory (Zhang et al., 2022a) and histogram

methods (Ghani and Isa, 2017). Transform domain image

enhancement generally transforms the image into the frequency

domain, enhancing the high-frequency components (target edges)

and eliminating the low-frequency components (background) to

improve the quality of underwater images, such as Laplacian

pyramid (Zhuang et al., 2022) and wavelet transform (Ma and

Oh, 2022). These traditional underwater image enhancement

methods have the advantages of high flexibility and low

computational requirements; however, the traditional methods
tiers in Marine Science 03
require human intervention, have limited enhancement effects,

and lack generalization (they cannot be applied to multi-scene

underwater scenes).

With the rapid development of deep learning, many new

methods for underwater image enhancement have made

significant progress and overcome some limitations of traditional

methods. For example, Wang et al. (2021) effectively integrate RGB

color space and HSV color space into a single CNN model and

propose the uiec2-net end-to-end trainable network, which achieves

better results in underwater images, but the authors are limited to

the spatial domain and do not explore whether the transform

domain could also effectively improve underwater image

enhancement. To validate this idea, Wang et al. (2022b) use an

asymptotic frequency domain module and a convolutional

bootstrap module to create an underwater image correction

model. However, the aforementioned deep learning methods

often require a large amount of running memory and

computational resources, which is not conducive to real-time

application on underwater devices. In order to reduce the number

of parameters and improve computational efficiency, Zheng et al.

(2023) propose a lightweight multi-scale underwater enhancement

model. They achieve efficient underwater image enhancement by

using a layer-wise attention mechanism and a compact network

structure. In addition to these methods, scholars have proposed

GAN algorithms to improve the quality of image perception for

underwater image enhancement. Wang et al. (2023a) enhance

underwater images by integrating a cascaded dense channel

attention module and a position attention module into the

generator in the GAN framework. Li et al. (2018b) use a circular

structure to learn the mapping function between input and target

and propose a weakly supervised method for color correction of

underwater images. Although the above methods achieve promising

results, their performance is dependent on the network architecture

design and training data, and deep learning architectures for

underwater images have some potential drawbacks, such as

limited applicability of the trained model, blurring of some

underwater image features, and over-emphasis on human

visual quality.
2.2 Image decomposition methods

Underwater images mainly suffer from color distortion caused

by light absorption and blurring caused by light scattering (Wang

et al., 2023b). In terms of spatial domain, image enhancement is

generally performed as a whole, ignoring the coherence between

multiple degradations. Image decomposition methods can help

represent an image as a collection of frequency components, such

as wavelet transform and sparse representation. By processing these

frequency components, we can gain a better understanding of the

structure and features of the image, and isolate noise and blur

components. This decomposition method can assist with enhancing

underwater images by addressing various degradation issues. Kang

et al. (2022) decompose underwater images into three conceptually

independent components of average intensity, contrast and

structure for processing, and fusion to produce enhanced
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underwater images. Wu et al. (2021) decompose the underwater

image into high- and low-frequency images, then process the high-

frequency part using a deep learning method and the low-frequency

part using a physical modeling method, and finally obtained the

enhanced image.

Current ly , the commonly used frequency domain

decomposition methods include discrete Fourier transform (DFT),

discrete wavelet transform (DWT), and discrete cosine transform

(DCT). However, these methods are built based on mathematical

approaches, which can cause different degrees of data loss

phenomena and are not suitable for task-specific studies. For this

reason, influenced by octave convolution (Chen et al., 2019), Li et al.

(2021) use downsampling convolution to decompose mixed feature

representations of images, and although they are able to decompose

different frequency domain features, there is still unknown

information loss due to the random loss of information features

from convolution. In a similar operation, Jiang et al. (2023) use

dilated convolution to decompose a mixed feature representation of

the image, which also suffer from random loss of information (which

could not be quantified). The above studies show that the

convolution approach is effective in decomposing image

information, so what is the best way to do it without information

loss? The reversible convolution approach has the advantage of low

memory and no loss of information. For this work, we can refer to

the cornerstone NICE (Dinh et al., 2014), which describes the entire

framework and coupling layers in detail. Although this method is

widely used in the areas of image scaling (Xiao et al., 2020), denoising

(Liu et al., 2021), and hiding information (Guan et al., 2022), it has

not yet been explored in the area of underwater image

decomposition. For this reason, we use a reversible convolution

approach to decompose image information, which allows for both no

loss of image information and a complete decomposition of the

image hybrid feature representation.
3 Proposed method

The LFT-DGAN framework consists of a generator network

and two discriminator networks. The generator takes underwater

images as input and produces enhanced images. The two

discriminator networks, one operating at the frequency level and

the other at the image level, provide feedback to improve the quality

of the generated images. The training process involves an

adversarial loss, perceptual loss, l1 loss, and gradient difference

loss (GDL) to optimize the generator and discriminator networks,

as shown in Figure 2.
3.1 Generator network

The generator overall structure is shown in Figure 3. The

network includes a frequency domain decomposition module and

a frequency domain enhancement module. Specifically, given the

original underwater image I  ∈  RC�H�W, our method first applies

the frequency domain decomposition module to project the image

into the low-frequency L0, mid-frequency M0, and high-frequency
Frontiers in Marine Science 04
H0 components’ (i.e., full-frequency) feature space, and then the

low-frequency feature L0 is used to extract the low-frequency

effective feature L1 through a multi-level residual network

(ResBlk), while the mid-frequency feature M0 and the feature L1
go through an interactive transformer structure (LFT-ResBlk) to

obtain the mid-frequency effective feature M1. Subsequently, the

effective mid-frequency feature M1 and the high-frequency feature

H0 through the LFT-ResBlk obtain the high-frequency effective

feature H1. The effective high-frequency (H1), mid-frequency (M1),

and low-frequency (L1) features are further propagated into densely

connected neural network modules to construct clear underwater

images O  ∈  RC�H�W. The generator network process can be

described as follows (Equations 1–5):

H0,M0, L0 =
Z
d
(I) (1)

L1 =
Z
resblk

(L0) (2)

M1 =
Z
lft
(L1,M0) (3)

H1 =
Z
lft
(M1,H0) (4)

O =
Z
fusion

(L1,M1,H1) (5)

In the formula,
Z
d
( · ) represents the simplified forms of the

frequency decomposition.
Z
resblk

( · ) signifies a multi-level residual

network (ResBlk).
Z
lft
( · ) denotes an interactive transformer

structure (LFT-ResBlk).
Z
fusion

( · ) refers to a densely connected

fusion network.
3.1.1 Frequency decomposition module
In traditional signal processing methods, image transformation

methods include fast Fourier transform (FFT), DCT, and DWT.

These methods are deterministic mathematical operations and task-

independent, and inevitably discard some key information for the

recovery task. Both DFT and DCT characterize the entire spatial

frequency domain of an image, which is not conducive to local

information. DWT can represent the entire spatial frequency domain

of an image and local spatial frequency domain features. In addition,

scholars proposed dilated convolution filtering transform (DCFT)

(Jiang et al., 2023) and up-/downsampling sampling filtering

transform (USFT) (Li et al., 2021), both of which are difficult to

measure quantitatively as the information through the convolution or

up-/downsampling sampling will randomly lose high-frequency

signals. Figures 4A–C show that different decomposition methods

can separate low-, medium-, and high-frequency image differences to

some extent, with the DWT being able to obtain better separation,
frontiersin.org
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while the convolution and up-/downsampling sampling filter

transforms designed by the researcher are able to separate image

differences in high-frequency images, and our proposed

decomposition method can obtain better separation in each

frequency domain. In addition, Figure 4D shows the low

redundancy (correlation) of decomposed features by our proposed

decomposition method, indicating that the image information is

relatively thoroughly decomposed.

To solve the problems of information integrity and flexibility of

decomposed images, we propose an image decomposition method

based on reversible convolution. If we make the potential

representation of the image after the reversible network

transformation separable, the different frequency signals will be
Frontiers in Marine Science 05
encoded in different channels. As shown in Figure 5, the input

image goes through a reversible convolution module and produces

two feature parts, Z1 and Z2. The Z1 feature serves as the style

extraction template for high-frequency features of the image. The Z2
feature continues to pass through another reversible convolution

module, resulting in Z3 and Z4. Similarly, the Z4 feature acts as the

style extraction template for medium-frequency features of the

image. The Z3 feature further goes through a reversible block to

obtain the Z5 feature, which is used as the style extraction template

for low-frequency features of the image. Finally, based on the

distribution of these new style templates, the original image is

redistributed. This process decomposes the original image into

high-, medium-, and low-frequency images, with each frequency
FIGURE 3

The generator framework of our proposed LFT-DGAN method. For detailed explanations of the Decomposition and LFT modules in the figure,
please refer to Sections 3.1.1 and 3.1.2.
FIGURE 2

The overall network structure of LFT-DGAN, where Ds represents the image domain discriminator and Df represents the frequency
domain discriminator.
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part influenced by the corresponding style extraction template.

Note that the reversible convolution module (Kingma and

Dhariwal, 2018) uses the regular stream mode. The Frequency

decomposition process can be described as follows (Equations 6–9):

Z1,Z2 = RB (I) (6)

Z3,Z4 = RB (Z2) (7)

Z5 = RB (Z3) (8)

low,mid, high = ½Z2 ☉ I,Z4 ☉ I,Z5 ☉ I� (9)

where RB represents the reversible block. ☉ indicates the re-

editing of images according to the new distribution.
3.1.2 Learnable full-frequency
adaptive transformer

There are two key problems with the frequency domain

hierarchical feature processing approach: (1) The amount of

information in the low-frequency, mid-frequency, and high-

frequency image features is significantly different, and a simple

connection will greatly suppress the high-frequency information.

(2) Different branch enhancement modules will generate what

they consider reasonable for their own bands (independent) and
Frontiers in Marine Science 06
may not be consistent with other branch band enhancement

content. To address these issues, we have designed a novel

custom transformer structure technique that results in more

realistic restoration results, as shown in Figure 6.

For the problem of independence of the augmented content of

different branches, we calculate the similarity between the L1
features and the M0 features to align the augmented content of

each branch. Specifically, we first flatten one patch of L1∈ 1 × 1 × K2

into a K × K × 1 feature map, then take out the K × K × C size M0

features centered on the L1 feature size, and finally multiply the two

features and scale them inward as size features. Different patches are

processed in turn to obtain each channel and spatial similarity

content of the two branches.

For the problem of different sparsity of frequency information,

we adopt a half instance normalization (HIN) (Chen et al., 2021) to

retain structural information. The normalization method is first

applied to the pre-modulation M0 features and post-modulation F0
features, then the a and b modulation parameters are obtained by

two 3 × 3 convolutions of F0 features, and finally the F1 features are

modulated as follows (Equation 10):

H = a
F1 − m
d

+ b (10)

where H is the post-processing image features, and µ and d are

means and variances of F1, respectively.
A B

C D

FIGURE 4

Analysis of the frequency domain difference between the original images (OI) and ground-truth images (GT) for different frequency domain
decomposition methods. (A) Difference in the amount of low-frequency image information (1D power spectrum) between GT and OI. (B) Difference
in the amount of information in the mid-frequency image between GT and OI. (C) Difference in the amount of high-frequency image information
between GT and OI. (D) Correlation between low-, mid-, and high-frequency images for different frequency domain decomposition methods.
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3.2 Dual discriminator network

Most of the current discriminators of GAN-based underwater

image enhancement methods mainly focus on image domain

discrimination. However, the difference of image features in the

frequency domain is often ignored. To solve this problem, we

introduce a dual discriminator to more comprehensively

discriminate the authenticity of images.

3.2.1 Discriminator in the image domain
The discriminator requires greater discriminative power for

complex training outputs. We have replaced the PatchGAN-style

discriminator with a U-Net. The U-Net can obtain more detailed

features, but increases the instability of training, and we introduce
Frontiers in Marine Science 07
spectral normalization technology to solve this problem, as shown

in Figure 7. With these adjustments, we can achieve better training

of the network.
3.2.2 Discriminator in the frequency domain
Recent research has shown that there is a gap between the real

and generated images in the frequency domain, leading to artifacts in

the spatial domain. Based on this observation, we propose the use of a

frequency domain discriminator to improve image quality. The ideas

in this paper are mainly influenced by the conclusion that a one-

dimensional representation of the Fourier power spectrum is

sufficient to highlight the differences in the spectra, as proposed by

Jung and Keuper (2021). We transform the results of the Fourier

transform into polar coordinates and calculate the azimuthal integral.
FIGURE 6

Learnable full-frequency adaptive transformer model.
FIGURE 5

Image decomposition method based on reversible convolution.
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We propose a spectral discriminator using a full 2D power spectrum

and a convolution structure, as in the original discriminator. Firstly, the

proposed spectral discriminator takes as input a real or generated image

and then calculates the magnitude of its Fourier transform through the

spectral transform layer, which converts a 2D image into a 2D array of

its spatial frequencies. Next, we calculate the magnitude of the 2D

spectrum frequencies and integrate the resulting 2D array for each

radius to obtain a one-dimensional profile of the power spectrum.

Finally, in order to understand the differences in the higher-frequency

bands, we feed the 1D spectral vectors into a high-pass filter and then
Frontiers in Marine Science 08
apply the results to a spectral discriminator. The specific formula is

described as follows (Equations 11–13):

F(k, l) =om=0
M−1on=0

N−1e
−2p i mkM e−2p i 

nl
N  * I (m, n) = F(r, q) (11)

AI(r) =
1
2p

Z 0

2p
F(r, q)j j (12)

Fhp (AI(r)) (x) =
x, r > rt

0, otherwise

(
(13)
A B C D E F

G H I J K L

FIGURE 8

Visualization of the comparative results of the UCCS dataset. The results produced using the following methods: The three inputs are from the blue
(first row), blue-green (second row), and green (third row) subsets of the (A) UCCS, (B) UDCP, (C) ULAP, (D) MLLE, (E) HLRP, (F) CWR, (G) PUIE, (H)
STSC, (I) UDnet, (J) URSCT, (K) USLN, and (L) OURS data.
FIGURE 7

Architecture of the U-Net discriminator with spectral normalization.
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where F(k, l) denotes calculation of the DFT on two-dimensional

image data, in which k ∈ [0, M − 1] and l ∈ [0, N − 1]. AI(r) means the

average intensity of the image signal about radial distance r. Fhp denotes

the high-pass filter. rt is a threshold radius for high-pass filtering.
3.3 Loss function

L1 loss (l1): We use L1 loss on RGB pixels between the predicted JF
and ground-truth images JT. The formula is as follows (Equation 14):

ll1 = JF − JTk k1 (14)

Perceptual loss (lperceptual): We use perceptual loss (Johnson

et al., 2016) to provide additional supervision in the high-level

feature space. The formula is as follows (Equation 15):

lPerceptual =oi=1
N Ø (JF) −Ø (JT )k k (15)

where Ø ( · ) represents the feature maps obtained by the layers

within the VGG16 network.

WGAN loss (lWGAN−GP): the WGAN-GP loss is adopted and

modified into conditional setting as the adversarial loss. The

formula is as follows (Equation 16):

lWGAN−GP = EJF ,JT ½D(JF , JT )�

− EJF D(JF ,G(JF)) + lEĴF (D(ĴF))
2 − 1

� �h i
(16)

where JF and JT are the original raw image and the ground-truth

underwater image, respectively, ĴF are the samples along the lines
Frontiers in Marine Science 09
between the generated images G(JF) and JT, and l stands for the

weight factor.

GDL loss (lgdl): We use the GDL function (Fabbri et al., 2018)

by directly improving the generator of these predictions by

penalizing the image gradient predictions. The formula is as

follows (Equation 17):

lgdl =o
i,j

jjJTi,j − JTi−1,j +j jJFi,j − JFi−1,jjja+jjJTi,j − JTi,j−1 +j jJFi,j − JFi,j−1jja (17)

where JT means a ground-truth image. JF stands for

predicted image.

The final combination loss is a linear combination of L1 loss,

perceptual loss, WGAN loss, and GDL loss (Equation 18):

L = a1ll1 + a2lWGAN−GP  + a3lperceptual  + a4lgdl  (18)

where a1, a2, a3, and a4 are determined through extensive

experimental exploration, and we set a1 = 1, a2 = 10, a3 = 2, and

a4 = 10.
4 Experimental results

4.1 Baseline methods

To demonstrate the superiority of our proposed method, we

compare 10 advanced underwater image enhancement methods. In

more detail, four representative traditional methods are selected for

comparison, namely, ULAP (Song et al., 2018), UDCP (Drews et al.,

2013), HLRP (Zhuang et al., 2022), and MLLE (Zhang et al., 2022b).

Our method is also compared with six deep learning-based
TABLE 1 Experimental results of different approaches to the UCCS dataset.

Dataset Method UDCP ULAP HLRP MLLE USLN UDnet URSCT PUIE CWR STSC OURS

Blue UQIM 0.2805 0.5986 0.7672 0.8762 0.6444 0.4774 0.6569 0.7011 0.8002 0.7170 0.7930

UCIQE 1.4839 2.6869 3.4340 2.2574 2.5893 2.0489 2.8328 2.7054 3.4420 2.8404 3.3026

CCF 15.8399 18.2907 27.0656 23.5719 25.2206 15.1000 24.7161 24.1712 22.7284 22.8724 30.6200

Entropy 6.9562 7.5203 7.4128 7.7734 7.5826 7.2552 7.5959 7.5974 7.7386 7.6037 7.7588

TM 0.0356 0.5561 0.5914 0.6146 0.9007 0.4936 1.0185 0.7491 0.4937 0.7466 1.0658

Blue-green UQIM 0.2177 0.1737 0.5721 0.6823 0.7168 0.2442 0.3822 0.5815 0.7161 0.6789 0.8241

UCIQE 1.2079 3.1600 2.3751 2.3677 3.1126 2.7901 2.9749 3.2026 4.3596 3.1216 3.7236

CCF 10.4546 19.7899 21.8464 14.4578 21.4152 12.2822 18.1140 18.2764 20.0089 18.0861 28.3831

Entropy 6.8138 7.2097 7.1199 7.6959 7.5539 6.9794 7.2003 7.3745 7.7378 7.4311 7.7878

TM 0.2577 0.5863 1.0404 0.8182 1.2999 1.4221 1.0813 0.8211 0.6626 0.9145 1.5907

Green UQIM 0.4904 0.3129 0.5201 0.6931 0.6696 0.3108 0.2266 0.5655 0.8625 0.6135 0.9274

UCIQE 1.1012 2.8052 2.2637 1.8285 2.5843 2.5745 2.6777 2.7592 4.0124 2.7567 3.9203

CCF 22.4462 15.4961 17.3230 27.0804 19.4656 11.4729 16.7603 19.9980 21.3270 15.7379 29.8022

Entropy 6.2752 6.8939 7.4152 7.7382 7.4024 6.7962 7.0914 7.2439 7.7248 7.2369 7.8478

TM 0.1202 0.0769 0.4269 0.3431 0.4711 0.1017 0.4245 0.3806 0.3221 0.2944 0.6809
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Red indicates the best result, and blue indicates the second best result.
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methods, namely, USLN (Xiao et al., 2022), URSCT (Ren et al.,

2022), UDnet (Saleh et al., 2022), PUIE (Fu et al., 2022b), CWR

(Han et al., 2021), and STSC (Wang et al., 2022a). All our

experiments are conducted on an NVIDIA Titan RTX GPU (24

GB), 64-GB memory device, and the deep models use the Adam

optimizer. The initial learning rate is 1e-2.
Frontiers in Marine Science 10
4.2 Dataset and evaluation metrics

To train our network, we utilize a dataset comprising 800

labeled images. These images were randomly drawn from the

UIEB dataset (Li et al., 2019), which encompasses 890 pairs of

underwater images captured across various scenes, exhibiting
A B C D E F
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FIGURE 9

Visualization of the comparison results for the UIQS dataset. Results generated using five inputs from subsets (A) (first row), (B) (second row),
(C) (third row), (D) (fourth row), and (E) (fifth row) of the (A) UIQS, (B) UDCP, (C) ULAP, (D) MLLE, (E) HLRP, (F) CWR, (G) PUIE, (H) STSC, (I) UDnet,
(J) URSCT, (K) USLN, and (L) OURS data.
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diverse quality and content. The reference image was selected from

among 12 enhanced results by a panel of 50 volunteers.

For assessing our network’s performance, we employ three widely

recognized benchmark datasets: UIEB, UCCS (Liu et al., 2020), and

UIQS (Liu et al., 2020). Among these, UCCS and UIQS lack reference

images, while the UIEB dataset includes them. The UCCS dataset is

used primarily for evaluating the efficacy of corrective color models and

comprises three subsets, each containing 100 images exhibiting blue,

green, and cyan tones, respectively. Meanwhile, the UIQS dataset is

chiefly utilized to gauge the correction capabilities of models aimed at

enhancing image visibility, featuring a subset with five distinct levels of

image quality as measured by UCIQE.

We have used seven commonly used image quality evaluation

metrics, namely, peak signal-to-noise ratio (PSNR), structural

similarity (SSIM), underwater image quality metric (UIQM) (Panetta

et al., 2015), underwater color image quality evaluation (UCIQE) (Yang

and Sowmya, 2015), twicemixing (TM) (Fu et al., 2022a), a combination

index of colorfulness, contrast, and fog density (CCF) (Wang et al.,
Frontiers in Marine Science 11
2018), and entropy. The UIQM is an image quality evaluation index that

comprehensively considers factors such as color, contrast, and clarity of

underwater images. The UCIQE is a perceptual model based on color

images that takes into account color distortion, contrast changes, and

other factors to evaluate the quality of underwater color images by

simulating the working mode of the human visual system. The TM

evaluates image quality by using two blending ratios in the generation of

training data and in the supervised training process. The CCF quantify

color loss, blurring, and foggy, respectively. The entropy indicates the

entropy value of the image.
4.3 Color restoration on the UCCS dataset
1. Qualitative comparisons: We evaluate the color correction

capability of the algorithm on the UCCS dataset with three

tones. Figure 8 shows the results of the different methods of
TABLE 2 Experimental results of different approaches to the UIQS dataset.

Dataset Method UDCP ULAP HLRP MLLE USLN UDnet URSCT PUIE CWR STSC OURS

A UQIM 0.2624 0.6717 1.05 1.4177 0.8747 0.5917 0.8889 0.9126 0.9605 0.9142 1.0072

UCIQE 1.6184 1.4487 3.4037 2.5668 3.1534 2.2996 3.2995 3.4283 4.2247 3.4761 3.7073

CCF 18.706 11.5649 26.8382 22.51 29.7624 17.8651 29.5053 29.4401 26.7736 28.0359 34.3478

Entropy 7.0386 7.4441 7.3737 7.7582 7.6527 7.2168 7.6075 7.6617 7.7869 7.6721 7.8197

TM 0.3725 0.7422 0.7124 0.8398 1.1837 0.555 1.2481 0.9335 0.6238 0.9442 1.3742

B UQIM 0.1347 0.2245 1.1408 1.3351 0.8352 0.463 0.7377 0.7794 0.9785 0.8149 1.0115

UCIQE 1.4018 2.0279 2.8489 2.1675 2.7157 2.4606 2.6478 2.9528 4.0891 2.9368 3.5109

CCF 10.8455 10.1708 21.8436 24.8785 24.5079 14.6972 22.0912 24.9349 25.7268 21.1953 32.0104

Entropy 6.7771 7.22 7.5254 7.7461 7.5398 7.0236 7.3609 7.4704 7.7696 7.468 7.8019

TM 0.1826 0.4765 0.7246 0.7241 1.0577 0.3565 1.0057 0.759 0.6269 0.7683 1.2991

C UQIM 0.1908 0.0939 1.1052 1.2566 0.7507 0.3883 0.6113 0.6932 0.9041 0.7502 0.972

UCIQE 2.4367 2.0319 2.677 2.2374 2.8143 2.6215 2.7135 3.0184 4.2389 2.9981 3.6102

CCF 18.5137 14.9624 24.1595 21.5271 22.2052 13.3821 20.0343 22.3457 23.5882 19.3187 30.3306

Entropy 6.6623 7.1361 7.394 7.7096 7.4867 6.9612 7.2692 7.3961 7.7445 7.4098 7.7922

TM 0.1628 0.4364 0.6945 0.6243 0.9577 0.3255 1.0412 0.7392 0.5249 0.7386 1.1891

D UQIM 0.2864 0.1065 0.9749 1.0247 0.6074 0.2521 0.3638 0.5279 0.7381 0.5838 0.836

UCIQE 1.0903 1.8212 2.2942 2.2026 2.9106 2.9257 2.7073 2.9997 4.4156 2.9333 3.7216

CCF 25.7091 16.9191 26.6111 23.5912 18.8959 10.8657 16.4595 17.7478 19.3404 15.0257 26.4707

Entropy 6.4785 7.0627 7.152 7.6602 7.4379 6.8769 7.1504 7.2836 7.6938 7.2796 7.7715

TM 0.0832 0.2562 0.5543 0.4671 0.7086 0.2208 0.619 0.5202 0.4504 0.5084 0.9437

E UQIM 0.2966 0.0279 0.9249 0.9727 0.5608 0.2272 0.4277 0.5196 0.6743 0.5610 0.7863

UCIQE 1.5435 2.9118 2.7188 2.3697 3.0641 3.0453 2.6687 3.1068 4.6266 3.1638 3.8615

CCF 16.0148 18.6792 18.9914 22.2963 18.3614 10.6133 16.3301 17.0854 18.3641 14.6125 24.7637

Entropy 6.4374 7.1444 6.9743 7.6286 7.4475 6.9092 7.2046 7.3128 7.6756 7.3092 7.7418

TM 0.117 0.3058 0.5612 0.467 0.7063 0.2698 0.6534 0.5383 0.4562 0.5289 0.9199
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FIGURE 10

Visualization of the comparison results for the UIEB dataset. Results generated using the inputs of the (A) UIEB, (B) UDCP, (C) ULAP, (D) MLLE,
(E) HLRP, (F) CWR, (G) PUIE, (H) STSC, (I) UDnet, (J) URSCT, (K) USLN, and (L) OURS data.
TABLE 3 Experimental results of different approaches to the UIEB dataset.

Method UDCP ULAP HLRP MLLE USLN UDnet URSCT PUIE CWR STSC OURS

PSNR 11.7997 19.4783 15.6763 21.1899 25.545 20.3741 22.194 24.0521 24.3758 21.1268 24.4591

SSIM 0.5216 0.7582 0.2931 0.8208 0.8948 0.7651 0.8608 0.9057 0.8614 0.7327 0.8284

UQIM 0.3004 0.739 0.8426 0.9154 0.7696 0.4733 0.8778 0.7582 0.7617 0.8820 0.9618

UCIQE 2.3597 2.7313 4.6963 3.4436 4.6444 2.7125 4.5149 4.248 4.8607 4.6332 5.2957

CCF 15.1024 20.8028 23.8784 26.6497 29.8479 14.5760 29.4049 23.8073 23.9543 27.0381 34.9749

Entropy 6.6726 7.3559 7.3946 7.6831 7.6076 7.1623 7.6649 7.6463 7.6660 7.6716 7.8017

TM 0.6095 0.8413 0.8714 0.9172 2.3716 0.6792 2.4479 1.3374 1.0579 1.2415 2.1803
F
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Fron
processing; here, we focus on the ability of the algorithm to

correct the colors. The UDCP method enhances the results

with darker colors, where the results for the bluish-green

dataset are relatively more realistic. The ULAP method is

barely able to process the underwater images and only

weakly recovers the results for the bluish dataset. The HLRP

method is able to handle underwater images, but still suffers

from color bias, and the MLLE method is the best of the

traditional image enhancement methods, with some local over-

enhancement, such as excessive brightness of stones in the

image. The CWR method is a good solution to the problem of

underwater color bias, especially in the greenish dataset, but

there is an uneven color distribution in the bluish-green dataset.

The PUIEmethod is able to obtainmore balanced colors on the

bluish-green dataset, but cannot handle the greenish dataset

well. The STSC andURSCTmethods give greenish and blurred

results on both blue-green and greenish datasets. The UDnet

method gives bluish results on the UCCS dataset with three

tones. The images enhanced by the USLNmethod appear to be

over-processed. Our proposed method gives more balanced

and reasonable results in terms of color.

2. Quantitative comparisons: We use five evaluation indicators to

further demonstrate the superiority of our approach to color

correction. From the metric measures in Table 1, we can draw

the following conclusions: (1) It shows that the traditional

method enhancement results are not necessarily worse than the

deep learning method enhancement processing; for example,
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the MLLE and HLRP methods show better scores in some

metrics. (2) Based on the scores of the UCCS dataset processed

by the various methods, the algorithm enhancement results

show decreasing scores from the blue data subset to the green

data subset. It indicates that the algorithm is able to handle the

underwater blue bias problem excellently, but is slightly less

capable of solving the green bias problem. (3) The enhanced

results of our proposed method are able to obtain essentially

optimal scores, and it can be observed that it is difficult to have

a method that obtains optimal results on every indicator,

probably due to the fact that the various evaluation indicators

are biased towards one factor of the image.
4.4 Visibility comparisons on the
UIQS dataset
1. Qualitative comparisons: We evaluated the algorithm’s

enhanced contrast performance on the UIQS dataset at five

levels of different visibility. Figure 9 shows the different

algorithm enhancement results. The UDCP and ULAP

methods basically fail to enhance the contrast of underwater

images, but ULAP gives better results for the A data subset of

the UIQS dataset. The MLLE method gives excellent results in

images of different contrast levels, but is not ideal for enhancing
A B C D E F
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FIGURE 11

Local visualization comparison results for selected UIEB datasets. Results generated using the inputs of the (A) UIEB, (B) UDCP, (C) ULAP, (D) MLLE,
(E) HLRP, (F) CWR, (G) PUIE, (H) STSC, (I) UDnet, (J) URSCT, (K) USLN, and (L) OURS data.
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underwater images with particularly low contrast (subset E).

The HLAP method also enhances underwater low contrast to

some extent, but not as well as the MLLE method. The results

of the STSC and URSCT methods of enhancement are

yellowish. The CWR method and the USLN method give the

best results for the C subset of images, but the contrast of the

enhanced images in the D and E subsets is still low (greenish or

bluish). The UDnet method results in low-contrast (bluish)

enhancement. The PUIE method is able to solve the low-

contrast problem better in the A subset of images, but as the

contrast gets lower and lower, the processing becomes less and

less effective. Our proposed method gives the best visualization

results at all contrast levels.
tiers in Marine Science 14
2. Quantitative comparisons: We use five evaluation indicators to

further demonstrate the ability of our method to achieve

excellent scores on each level of contrast. From the metric

measures in Table 2, we can obtain similar conclusions to those

obtained by correcting the color processing results of

underwater images.
Firstly, the traditional method of enhancement was able to obtain

images that scored as well as the deep learning enhanced images.

Secondly, as the contrast of the underwater images decreases, the

scores of the algorithm-enhanced results for each of the image metrics

also decrease. Finally, the enhanced results of our proposed method are

able to obtain excellent scores in most metrics.
A B C D E F
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FIGURE 12

Comparison results for structural enhancement. The red numbers indicate the number of visible edges recovered by the algorithm. The inputs of the
(A) UIEB, (B) UDCP, (C) ULAP, (D) MLLE, (E) HLRP, (F) CWR, (G) PUIE, (H) STSC, (I) UDnet, (J) URSCT, (K) USLN, and (L) OURS data.
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4.5 Comprehensive comparisons on the
UIEB dataset
Fron
1. Qualitative comparisons: We comprehensively evaluate the

superiority of our proposed method on different degraded

underwater image datasets (blur, low visibility, low light,

color shift, etc.). Figure 10 shows several visual results where

the enhanced results of the UDCP and ULAP methods still do

not resolve the blue and green bias, and cause color shifts in

other colors. The MLLE method over-enhances the results and

causes a slight color cast, while the HLAPmethod is blurrier for

border enhancement and does not enhance darker areas as well.

The CWR method enhances the color and contrast of

underwater images, but with localized brightness overload

(first row). The USLN method is able to resolve the

underwater color cast, but some images are over-colored

(second row). The UDnet method of enhancement results in

a blue bias. Both the PUIE and STSC methods solve the

problem of underwater color cast, with the STSC method

enhancing the high contrast of the results. The URSCT

method enhanced the results more satisfactorily. In terms of

color and contrast analysis, we can observe that the proposed

method enhances the results visually better.

2. Quantitative comparisons: We also quantitatively assessed the

ability of these methods to address different degraded data

through seven metrics. Table 3 shows the average quantitative
tiers in Marine Science 15
scores of the algorithms across the UIEB. Our method has

higher PSNR, SSIM, UQIM, UCIQE, CCF, Entropy, and TM

values compared to the comparative method. The results show

that our method generally produces pleasing visual effects.
4.6 Comparisons of detail enhancement

We observe the superiority of the algorithm by enhancing the local

magnification of the image for each algorithm. Figure 11 shows the local

features of the images, and it can be seen that the UDCP, ULAP, and

UDnet methods enhance the results with color bias and low contrast.

The STSC, URSCT, and USLN methods give slightly greenish results;

the MLLE and HLRP methods give results as good as the deep learning

enhancement; the PUIE method gives low contrast; and the CWR

method gives high contrast-enhanced images. The enhanced results of

our method give better color and contrast.
4.7 Structural enhancement comparison

To demonstrate the image structure enhancement effect of our

proposed method, the number of visibility edges recovered in the blind

contrast enhancement assessment (Hautiere et al., 2008) was measured,

as shown in Figure 12. We can observe the following phenomena: (1)

The proposed method is able to obtain a higher number of recovered
FIGURE 13

Ablation visualization results for each module in the model in the UCCS, UCIQ, and UIEB datasets.
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visible edges, confirming its effectiveness in terms of sharpness and

contrast enhancement. (2) The enhancement results of the traditional

methods are comparable to those of the deep learning methods (HLRP

and MLLE methods) and even surpass those of the UDnet method. (3)

Our enhancement method, despite being able to obtain the maximum

number of visible edges while blurring the target edges (by enhancing

many of the background ambient edges as well), may not be beneficial

for advanced visual processing.
4.8 Ablation study

We perform ablation experiments on the UCCS, UIQS, and

UIEB datasets to illustrate the effectiveness of each component of

our approach. The main components include (a) our method

without frequency decomposition module (-w/o FD); here, we

use the conventional DFT approach as a benchmark; (b) our

method without learnable full-frequency transformer module

(-w/o LFT); here, we use the regular multi-headed transformer

structure as a benchmark; (c) our method without discriminator

in the frequency domain (-w/o DFD); and (d) our method with

LFT-DGAN.

Figure 13 shows the visualization results for the UCCS, UCIQ,

and UIEB datasets. From the visualization results, it can be observed

that (1) OURS-w/o FD is able to correct the color of underwater

images, but the detail texture is blurred; (2) OURS-w/o LFT is able

to recover image texture details but does not work well for color

correction and contrast; (3) OURS-w/o DFD can solve the

underwater image color and contrast problems well, but the

image colors are dark; and (4) our proposed method can further

enhance the contrast and color of underwater images.

As shown in Table 4, we quantitatively evaluate the scores for

each module of the proposed algorithm, where the UCCS dataset is

the average of three subsets and the UIQS dataset is the average of

five subsets. It can be seen that each of our proposed modules plays

a role in the LFT-DGAN algorithm and that the LFT-DGAN

algorithm was able to obtain the best scores.
4.9 Generalization performance of
our method

We validate the generalization of the LFT-DGAN on different

tasks [motion blurring (Rim et al., 2020), brightness (Cai et al.,

2018), defogging (Li et al., 2018a), and rain removal (Yasarla and

Patel, 2020)]. As can be seen in Figure 14, the LFT-DGAN is able to

remove the haze phenomenon better and improve the contrast of

the image at different levels of haze images. In the dataset of images

with different degrees of motion blur, the LFT-DGAN is only able to

remove minor motion blur and does not work well for images with

strong motion blur. In images with different degrees of illumination,

our method is able to perfectly eliminate the effects of illumination.

In images with different levels of rain, the LFT-DGAN is able to

resolve the effect of different levels of raindrops on the image and

can significantly enhance the image details.
Frontiers in Marine Science 16
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5 Conclusion

In this paper, an underwater single-image enhancement

method that can learn from an LFT-DGAN is proposed.

Experimental results show that the advantages of the proposed

method are summarized as follows: (1) A new image frequency

domain decomposition method is designed using reversible

convolutional networks, which can effectively separate low-,

medium-, and high-frequency image information from

underwater images. Note that the frequency domain

decomposition method in this paper can be applied not only in

the field of image enhancement, but also in other fields. (2) We have

designed a custom transformer for frequency domain image feature

enhancement that takes full account of underwater image space and

channel correlation to effectively address underwater image color

and contrast issues. (3) We design a dual discriminator method in

the spatial and frequency domains, taking into account the

differences between spatial and frequency domain underwater

image features in order to reduce the differences between images.

(4) The proposed model is able to operate directly at the pixel level

without additional conditional priors. (5) The combined analysis
Frontiers in Marine Science 17
shows that our proposed method performs superiorly on multiple

datasets. Moreover, the ablation experiments also demonstrate the

effectiveness of each module.

Although our method has good performance, it also has some

limitations. The image enhancement method proposed in this paper

is able to achieve pleasing results, but whether it is beneficial to the

high-level domain deserves further investigation. In addition,

current underwater imagery consists mainly of sonar imaging

(Zhang et al., 2021b; Zhang, 2023) and optical camera imaging.

Since sonar imaging uses acoustic signals while camera imaging

uses optical signals, there are significant differences between the two

methods. It is difficult for the method in this paper to perform

mutual transfer learning. In future work, we intend to address the

above issues.
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Appendix

Power spectral density image

To analyze the influence of the image frequency domain

distribution, we rely on the Fourier power spectrum with a one-

dimensional representation of the features. First, we calculate the

spectral representation from the DFT of a two-dimensional image

of size M*N. The specific formula is (Equation A1):

P(u, v) = jo
N−1

m=0
o
N−1

n=0
f (m, n) · e−i2p(

mu
N +nv

N )j2 (A1)

In this equation, P(u,v) represents the power spectrum of the

image, while f(m,n) represents the pixel values of the original image

in the spatial domain. The symbol S denotes summation, indicating

that we sum over all values of m and n. The symbol i represents the

imaginary unit, while u and v respectively denote the coordinates in

the frequency domain, andm and n represent the coordinates in the

spatial domain. N represents the size or dimensions of the image.

Secondly, by integrating the azimuth angle at the radial frequency,

the one-dimensional power spectral density of the image at the

radial frequency q can be obtained. The specific formula is

(Equation A2):

AI(r) =
1
2p

Z 0

2p
P(u, v)(r, q)j j (A2)
Param, flops, memory, and running
time comparisons

In order to fully detect the efficiency of our proposed

method, we based on the number of parameters (#Pama),

number of floating point operations per second (#Flops), GPU

memory consumption (#GPU Mem.) and running time

(#Avg.Time). Among them, #Flops is the calculation value of

the underwater image whose input size is 256*256. #Avg.Time is

the average time for testing 100 underwater images with a size of

620*460. The results are shown in Table A1. Our proposed

method can basically maintain a smaller footprint in terms of

parameter volume and running floating point numbers, but our

proposed method can achieve the optimal image enhancement
Frontiers in Marine Science 20
results, secondly, in terms of memory footprint and average test

running time. It can also achieve more excellent results.
TABLE A1 Comparison of parameter counts, floating-point operation per second, memory, and runtime.

Methods #Param [M] #Flops [G] #GPU Mem. [M] #Avg.Time [ms]

CWR 11.4 642.5781 18,475 20.55

PUIE 1.4 234.4316 295 1.3

USLN 0.00085 0.5708 313.89 13.4

STSC 69.3 242.63 356.21 18.6

UDnet 16.1 286.12 596.92 22.7

URSCT 11.4 14.95 435.62 25.62

LFT-DGAN 3.3 132.14 234.52 15.23
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